
APSIPA Transactions on Signal and Information Processing, 2023, 12, e11
This is an Open Access article, distributed under the terms of the Creative Commons 
Attribution licence (http:// creativecommons.org/ licenses/ by-nc/ 4.0/ ), which permits un-
restricted re-use, distribution, and reproduction in any medium, for non-commercial use, 
provided the original work is properly cited.

Original Paper

Malicious Network Traffic Detection for
DNS over HTTPS using Machine
Learning Algorithms
Lionel F. Gonzalez Casanova and Po-Chiang Lin∗

Department of Electrical Engineering, Yuan Ze University, Taoyuan, Taiwan

ABSTRACT

Machine learning is an effective analysis tool to tackle the challenges
to detect any suspicious events in the network traffic flow. In this
paper, our major contribution is to process and transform the CIRA-
CIC-DoHBrw-2020-time series dataset to train deep learning models for
network intrusion detection. The main focus of our detection algorithms
is to classify the data in a two-layer network approach. At the first layer,
we classify DNS over HTTPS (DoH) and non-DoH traffic, and at the
second layer, we characterize benign-DoH and malicious-DoH. We use
26 features out of the 34 features describing every pattern of network
traffic. We use the DoH predictions in the first layer and pass it to
the second layer for characterization of benign or malicious DoH. We
then feed data to a fully connected neural network and four types of
Recurrent Neural Networks. They are the Long Short-Term Memory,
Bidirectional Long Short-Term Memory, Gated Recurrent Unit, and
Deep Recurrent Neural Network. The proposed methods are simple and
efficient, so that they can be applied to computer systems with limited
resources. The generated models are small, so that they can be easily
and quickly deployed into the internet network environment.

∗Corresponding author: Po-Chiang Lin, pclin@saturn.yzu.edu.tw. This work was sup-
ported in part by Ministry of Science and Technology (MOST), Taipei, Taiwan, R.O.C.
under grant number MOST 110-2221-E-155-002.

Received 30 August 2022; Revised 18 November 2022
ISSN 2048-7703; DOI 10.1561/116.00000058
© 2023 L. F. Gonzalez Casanova and P.-C. Lin

http://creativecommons.org/licenses/by-nc/4.0/


2 Gonzalez Casanova and Lin

Keywords: Network attack, Anomaly detection, Machine learning, Recurrent
neural network.

1 Introduction

Intrusion detection aims to identify the anomaly access or attacks in network
environments. This research field has been approached by applying machine
learning (ML) techniques and has grown exponentially in recent years. Needless
to say, the internet has become intrinsic in our daily lives. It helps individuals
in a myriad of areas, such as business, entertainment, education, health care, to
name a few. We can definitely find internet applications such as websites and
email systems at various establishments of business operations. With that said,
information security of the internet is of paramount priority and importance.
Recently we have been hearing of cyber-attacks to key business areas in America
and other wealthy nations. Not to exclude ordinary people or households that
use internet services. People privacy are also at risk of attacks. All these
attacks fall under the umbrella of the vulnerabilities in network security.

To counter these network attacks under the internet environment, there
are various systems designed to block them. In particular, intrusion detection
systems (IDS) help the network to counterattack external attacks [7]. According
to [2], intrusion detection is based on the assumption that the behavior of
intruders is different from a legal user. This, in turn, provides us with two
categories derived from IDSs. They are anomaly and misuse (signature)
detection based on their detection approaches [18].

In this paper, we clean and process the first ever Canadian Internet Regis-
tration (CIRA)-Canadian Institute for Cybersecurity (CIC) DNS over HTTPS
(DoH) University of Brunswick (Brw) 2020 (CIRA-CIC-DoHBrw-2020) dataset.
It’s a two-layered approach that is used to capture benign and malicious DoH
traffic along with non-DoH traffic. We train five deep learning models. In so
doing, we investigate what algorithm works best for the CIC-DoHBrw-2020
dataset. Our dataset is well balanced for our model’s best performance be-
cause reviews in machine learning research state that many researchers have
overlooked this important step. We use techniques to robustly evaluate our
models and use algorithms to evaluate the dataset. We use the resampling
technique for splitting the data into training and testing sets to improve the
robustness of the result. This is the holdout validation method that uses
the Train-Test split function. We also implement well performing techniques
such as hyper parameter tuning to acquire optimal parameters for a better
performing solution. Our contribution in this research is two-fold. First, we
propose a different approach on how to classify DoH and Non-DoH traffic in
the first layer, and Benign-DoH and Malicious-DoH in the second layer. In
the latter network layer, we create a dataframe that is the same length as



Malicious Network Traffic Detection for DoH using ML Algorithms 3

our predicted data values (1, 0). Then we extract the DoH predicted values
(0 s representing DoH) and merge it with the Benign-DoH and Malicious-DoH
datasets. A detail to bear in mind is that the DoH dataset is the combination
of the Benign-DoH and Malicious-DoH datasets.

The second contribution is to apply deep learning neural networks such as a
Fully-Connected Convolutional Neural Network (FCN) and four different types
of Recurrent Neural Networks (RNNs). FCN and its variant architectures
have significantly performed well in comparison to the traditional machine
learning classifiers. In regards to the RNNs, these models have limitations
whereby they fail to capture the context as time steps increases. Knowing
these limitations, we use other improved types of the RNNs. We use the
Long-Short Term Memory (LSTM) networks that comprise of memory cells
that can store information about previous time steps. The second type is the
Gate Recurrent Unit (GRUs) that uses a set of gates to control the flow of
information, instead of separate memory cells. In the bidirectional LSTM
(third type of the RNNs), instead of training a single model, we introduce two.
The first model learns the sequence of the input provided, and the second model
learns the reverse of the sequence. The other type of the RNNs is the deep
recurrent neural network (deepRNN). Here we stack the RNNs on top of each
other. The deepRNN functions by given a sequence of length T, the first RNN
produces a sequence of outputs, also of length T. These, in turn, constitute
the inputs to the next RNN layer. In a nutshell, the FCN and LSTM neural
network-based algorithms for anomaly detection have been investigated and
reported to produce significant performance gains over conventional methods.

The rest of this paper is organized as follows. In Section 2 we describe
the related work in the literature. The problem description is presented
in Section 3. The proposed method is described in Section 4, followed by
the performance evaluation results and discussions in Section 5. Finally,
conclusions are presented in Section 6.

2 Related Work

As prior definitions lay the groundwork for our study of network anomaly
detection, Fernandes Jr. et al. [8] categorize network anomalies under two
relevant properties. They discussed and dealt with the property that how
the network anomalies are characterized. There are three categories; however,
the “point anomalies” category is looked at more closely. It is considered the
simplest category by researchers. Ultimately, no matter what is the underlying
nature of an anomaly, the bottom line is identifying these anomalies in a
network helps to prevent malicious attacks from occurring.

In retrospect, the research on anomaly detection methods has seen signifi-
cant advancements [3, 5, 8, 10, 12, 13]. Powerful computers and processors



4 Gonzalez Casanova and Lin

have also contributed to a wider audience of researchers to undergo data
analysis. To secure or bring an alternative to maintaining order in the domain
of network security came about DNS over HTTPS (DoH) [17]. A number of
web browsers have invested and implemented DoH support in their application
technological structure. However, despite all this effort and determination
to stop network intruders, there is a significant security risk of DoH that is
related to the decreased visibility for the security tools and applications. Many
researchers are being motivated to analyze DoH traffic. Bagnall et al. [1]
announced the first occurrence of malware that intentionally uses DoH to
hide its communication with Command and Control servers. Haddon et al.
described possible ways of data exfiltration using DoH, which is more difficult
to detect using current tools [9]. [6] studied and analyzed DoH encrypted
traffic. They implemented and experimented with five machine learning mod-
els: Naïve Bayes, K-Nearest Neighbors, Random Forest, C4.5 Decision Tree,
and Ada-Boosted Decision Tree. Moreover, they stated that the mentioned
algorithms are commonly used in Network applications.

Banadaki [2] studied a systematic two-layer approach for detecting DNS over
HTTPs (DoH) traffic and distinguishing Benign-DoH traffic from Malicious-
DoH traffic using a number of machine learning algorithms. The author
evaluated the DoHBrw-2020 dataset using the Decision tree, Extra trees,
Gradient Boosting, Random Forest, Light Gradient Boosting Machine (LGBM)
and XGBoost algorithms considering their accuracy, precision, recall, F-score,
confusion matrices, ROC curves, and feature importance. Two algorithms
outperformed the other four machine learning algorithms. LGBM and XGBoost
algorithms show the maximum accuracy of 100% in the classification tasks of
layers 1 and 2. The author explains that LGBM algorithms misclassified one
DoH traffic test as non-DoH out of 4000 test datasets. In addition, out of 34
features extracted from the CIRA-CIC-DoHBrw-2020 dataset, Source IP is
the critical feature for classifying DoH traffic from non-DoH traffic in layer one
followed by the DestinationIP feature. Interestingly, the feature DestinationIP
is an important feature for LGBM and gradient boosting when classifying
Benign-DoH from Malicious-DoH traffic in layer 2.

According to [13], computer networks have fallen easy prey to cyberattacks
in the fast-moving internet services. Recently, the Domain Name System
(DNS) has been targeted with malicious intent such as cybercrime, data theft
or the like. The new protocol DNS over Encrypted HyperText Transfer Pro-
tocol (HTTP) traffic over Secure Socket Layer (SSL), known as HTTPS, has
succeeded to prevent DNS attacks, significantly. Hence, the cybersecurity
community has introduced the concept of DNS over HTTPS (DoH) to im-
prove user privacy and security by combating eavesdropping and DNS data
manipulation on the way to prevent Man-in-the-Middle attacks. The au-
thors studied covert channels by tunneling data through DNS packets. They
identify tunneling activities that utilize DNS communications over HTTPS



Malicious Network Traffic Detection for DoH using ML Algorithms 5

by presenting a two-layered approach to detect and characterize DoH traffic
using time-series classifiers. Their classifiers such as Random Forest (RF) and
C4.5 produced equivalent classification results with equal precision, recall and
f-score value. It is followed by the Support Vector Machine (SVM) and Naïve
Bayes (NB) at 0.877 and 0.84 precision, recall and f-score value, respectively.
The researchers also studied two deep learning models such as the LSTM and
two-dimensional (2D) CNN via classification by statistical features of the flows
with 0.97 and 0.98 precision, respectively. They introduced packet clumps and
clump segments to find patterns in a limited window of traffic which in turn
reduces detection latency. In this regard, they use the LSTM via classification
by time-series features of the flows with precision hikes above 0.99 after six
clumps in layer 1 and three clumps at layer 2. They argue that such precision
values are comparable with most of the accurate statistical classifiers.

Other literature emphasizes the urgent outcry of keeping vulnerable network
protocols secured from various security gaps that have exploited repeatedly
over several years. DNS abuse is one of the most challenging threats for
cybersecurity specialists [11]. To counterattack threats from attackers using
complicated methodologies to inject malicious software in DNS inquiries is a
challenging task. As a consequence, many researchers have explored different
machine learning (ML) techniques to encounter this challenge. Jafar et al. [11]
introduces a systematic approach identifying malicious and encrypted DNS
queries by examining the network traffic and deriving statistical characteris-
tics. The authors implemented several ML methods such as Random Forest
(RF), Decision Tree Classifier (DT), Gaussian Naïve Bayes (GNB), K-nearest
neighbor (KNN), Logistic Regression (LR), Support Vector Classifier (SVM)
and Quadratic Discriminant Analysis (QDA). The CIRA-CIC-DoHbrw-2020
dataset is used to evaluate their ability to detect malicious DNS traffic. The
results report that the machine learning models, RF, SVM, DT, and KNN
have an accuracy of almost 99.9%. SVM and KNN are the slowest machine
learning models in the training phase whereas, GNB is the fastest one yet has
the worst results in the detection phase.

Another important research study sought the solution of implementing
an encrypted DNS, called DNS-over-HTTPS (DoH) to counter measure the
problem of privacy issues in networks. DoH guarantees privacy and security to
prevent various attacks such as eavesdropping and manipulating DNS data by
using the HTTPS protocol to encrypt the data between DoH client and DoH-
based DNS resolver [14]. The authors emphasize once again that DoH is one of
the best security options for an enterprise network where more sensitive data
protection is required. Despite this, DoH may cause an unintended security
breach, that is, information leakage via malicious DoH tunneling. There exist
some limitations in DoH that have been addressed previously. The authors
argue that collection and labeling data in this area is an impossible task while
the data processing to feed to the Supervised Machine Learning methods



6 Gonzalez Casanova and Lin

rely heavily on human-engineered feature extraction which makes classifying
encrypted DoH traffic difficult. The authors explain there is no complete
functional DoH detection application to network infrastructure. They propose
a detection system for DoH tunneling attacks based on Transformer to detect a
malicious DoH tunneling and build a fully functional DoH detection system that
can be integrated with the security operation system of an enterprise network.

Upon using the Transformer architecture as a classifier method to detect
malicious DOH, the authors emphasize that its more complex than other Super-
vised Machine Learning models. Their results show a significant improvement
in the number of labeled data used. The accuracy achieved is 0.994 by using a
small number of labeled data, only 20% compared with existing research. This
advantage of the Transformer architecture makes it more suitable in malicious
DoH tunneling detection because, in practice, labeling a large amount of
encrypted network traffic is very complex and requires a lot of resources [14].

This research reiterates the importance of Internet security and the reality
that the Domain Name System is under constant attack and daily its vul-
nerability increases. The authors remind readers that the DNS is the ideal
target for most cyberattacks. There is no robust solution to this pressing
issue; however, DNS over HTTPS as well as DNS over TLS are introduced to
reduce the visibility of DNS requests. DNS over HTTPS has been designed to
mitigate the DNS security issues but it has its own drawbacks like bypassing
the local firewalls [15]. The authors present a Machine Learning approach to
detect DNS over HTTPS traffic and to filter it into Benign-DNS over HTTPS
traffic and Malicious-DNS over HTTPS traffic using ensemble machine learn-
ing algorithms. These are the Decision Tree, Logistic Regression, k-nearest
neighbor, and Random Forest. Several evaluation metrics are considered to
analyze the performance such as Precision, Recall, F1-score and confusion
matrix. The CIRA-CIC-DoHBrw-2020 dataset is used for analysis against
the machine learning algorithms. An ensemble learning-based RF classifier
emerges as the best-suited model with 100% accuracy. The k-nearest neighbor
and Decision Tree classifiers perform well, too.

Vekshin, Hynek, and Cejka explained that the new protocol DNS over
HTTPS (DoH) have been engineered to improve users’ privacy on the Internet
[16]. DoH is used instead of traditional DNS for domain translation with
encryption. This paper focuses on the possibilities of encrypted traffic analysis,
especially on the accurate recognition of DoH. The authors aim to evaluate
what information (if any) is gained from HTTPs extended IP flow data using
Machine learning. They evaluated five popular ML methods to find the best
DoH classifier.

Chalapathy and Chawla [4] surveyed deep learning for anomaly detection
and provide key insights into convolutional neural networks (CNNs) and
recurrent neural networks (RNNs). The authors found that the CNNs ability
to extract complicated hidden features from high dimensional data with



Malicious Network Traffic Detection for DoH using ML Algorithms 7

complex structure has enabled its use as feature extractors in outlier detection
for both sequential and image datasets. Recurrent Neural Networks are shown
to capture features of time sequence data. The reviewers explain the RNNs
limitations whereby these models fail to capture the context as time steps
increases. However, LSTM networks serve as an effective way to reduce these
drawbacks. RNNS comprise of memory cell that can store information about
previous time steps. The Gate Recurrent Unit (GRUs) are similar to LSTMs,
the only difference is that it uses a set of gates to control the flow of information,
instead of separate memory cells. In a nutshell, LSTM neural network-based
algorithms for anomaly detection have been investigated and reported to
produce significant performance gains over conventional methods.

3 Problem Description

Many researchers and data scientists are using anomaly detection algorithms
to mitigate harmful attacks against internet service providers and the like. A
recurrent enhanced neural network (RNN) is described in different contexts
and at different levels of abstraction. For example, it can be said that an RNN
is any neural network containing one or more recurrent (or cyclic) connections.
People always tend to use RNN for time series data. However, we argue that
a simple network architecture would be suitable for the application of the
DNS over HTTPS problem. In addition, we train a number of deep learning
models on the CIC-DoHBrw-2020 dataset, especially considering the computer
systems with limited resources.

When working with time series data we need to understand that it is a
series of data points ordered in time. There is a dimension which means
it adds an explicit order dependence between observations. In a normal
machine learning dataset, the dataset is a collection of observations treated
equally when predicting the future. Furthermore, the order of observations
provides a source of additional information that should be studied and used
in the prediction process. Our data is a time series network traffic records
captured by the Canadian Institute for Cybersecurity (CIC) at the University
of New Brunswick. It’s the first-ever released DNS over HTTPS (DoH) dataset
funded by CIRA’s Community Investment Program. Time series data is quite
challenging and difficult to train. The class imbalance problem is also another
crucial aspect to train a model. It can also affect the model’s performance.

4 Proposed Method

In this section, we first describe the data preprocessing, followed by the design
of the machine learning models.



8 Gonzalez Casanova and Lin

4.1 Data Preprocessing

First, we show the observations of the CIC-DoHBrw-2020 dataset. The nature
of the CIC-DoHBrw-2020 dataset results from the implementation of DoH
protocol within an application using five different browsers and tools and four
servers to capture Benign-DoH, Malicious-DoH, and non-DoH traffic. Non-
DoH traffic is generated by accessing a website handled by HTTPS protocol
and its labeled as non-DoH traffic whereas benign-DoH traffic uses the same
technique by browsing the web with Mozilla Firefox and Google Chrome. DNS
tunneling tools such as dns2tcp, DNSCat2 and Iodine are used to generate
malicious-DoH traffic. The scenario here is that such tools create tunnels
of encrypted data to send TCP traffic encapsulated in DNS queries using
TLS-encrypted HTTPS requests to special DoH servers. Four csv files are
provided as the dataset in this paper. There are a total of 1,167,136 data
instances in the dataset. The dataset is highly imbalanced. Table 1 shows the
count of each label in the dataset. Most of the data instances are “nonDoH”.
The anomalies only occupy 3.59% of the dataset. Readers are referred to the
CIC-DoHBrw-2020 dataset to find the feature names, types, and descriptions
of the dataset.

Table 1: Count of each label.

Label name Count
nonDoH 897,493
DoH 269,643
Benign 19,801
Malicious 249,836

4.1.1 Data Processing Pipeline

The data processing pipeline consists of the following crucial parts: (1) Fea-
ture Selection: to select appropriate features without fitting to some specific
environments or time period. (2) Missing Data Handling: to use the fillna()
mode method for columns separately. (3) Train-Test Split: to split the original
dataset into two parts, including the training set and test set. In this paper,
we split 20% of the dataset as the test set, and take the other 80% as the
training set. (4) Data Imbalance Handling: to balance the numbers of data
instances of different labels. (5) One Hot Encoding: to convert categorical
features to numerical features in order to facilitate machine learning methods.
(6) Feature Scaling: to scale and shift the feature values to some ranges that
are suitable for machine learning methods. In this paper, we use the min-max
scaling to transform the features by scaling each feature to [0, 1]. Detailed
descriptions of the critical parts of the data processing pipeline, including



Malicious Network Traffic Detection for DoH using ML Algorithms 9

the feature selection and the data imbalance handling, are provided in the
following subsections.

4.1.2 Feature Selection

Among all features in the CIC-DoHBrw-2020 dataset, we argue that the first
four features are environment-specific. Different network environments would
certainly have different IP addresses and port numbers. Moreover, it is very
easy for network attackers to modify IP addresses in network packets. On the
other hand, the time stamp feature and the duration feature are time-specific.
A model trained by using all the 34 features would not be generalized to
other network environments. Therefore, we drop the first six features in this
work. Note that by dropping these features it would lead to performance
degradation, since the test set to evaluate the model performance also comes
from the original dataset. A more accurate model is required to compensate
the performance degradation caused by the dropping of the features.

4.1.3 Handling Outliers

We observe the outliers in the data by using the visualization technique such as
box plots. Outliers are points that are outside of the minimum and maximum
values. We use the Interquartile range to measure the limits of the outliers
because the data doesn’t follow a Normal Distribution or it’s either right-
skewed or left skewed. The formula for the outlier boundary is calculated
using the following:

• Interquartile range (IQR) = Q3 (75th percentile) – Q1 (25th percentile)

• Lower boundary = First Quartile (Q1/25th percentile) – (1.5*IQR)

• Upper boundary = Third Quartile (Q3/75th percentile) + (1.5*IQR)

In this case, all the values smaller than the Lower boundary is assigned to the
value of the Lower boundary. The values greater than the Upper boundary is
assigned to the value of the Upper boundary.

4.1.4 Handling Multicollinearity

After finding the correlation among the features in the dataset, we found out
that some features were highly correlated. Thus, we did the Multicollinear-
ity handling of the dataset. Multicollinearity affects the learning of neural
networks, since the dependent variable is very less compared to the other
variables, the neural network will take more time to converge. Some literature
mentions that neural networks don’t suffer from multicollinearity because they
tend to be over-parameterized. Regardless of this, we applied the variance



10 Gonzalez Casanova and Lin

indicator factor (VIF) to see the results obtained by the traditional machine
learning models and deep learning models. As result, we dropped two more
features such as “PacketTimeMode” and “PacketTimeTimeStandardDeviation”,
because of NaN values in the former feature and very high VIF values in the
latter feature. We saw the VIF values in the other features lower significantly.
Consequently, we chose to use 26 features to build our models.

4.1.5 Handling Data Imbalance

As Table 1 shows, the CIC-DoHBrw-2020 dataset is highly imbalanced. We use
the resampling technique to deal with the data imbalance problem. The resam-
pling technique consists of removing instances from the majority class (under-
sampling) and adding more instances to the minority class (over-sampling).
The data imbalance handling is performed after the train-test split mentioned
above. In the second layer, the DoH set and non-DoH set are resampled to
161,796 data instances. In the second layer, the Benign set and Malicious set
are both resampled to 3,269 data instances.

4.1.6 Feature Scaling

As part of the data pre-processing implementation in our research, we use one
of the most common methods to feed the data to our machine learning models.
This is the feature scaling method such as Min/Max scaling. In our case, we
use normalization which is the rescaling of the data from the original range
so that all values are within the range of 0 and 1. This method is applied
to most of the statistical features except those time-series features such as
SourceIP, DestinationIP, SourcePort, DestinationPort, TimeStamp, and Dura-
tion. The statistical traffic features are FlowBytesSent, PacketBytesReceived,
PacketLengthVariance, PacketTimeVariance, to name a few. It’s important to
note that normalization can be useful, and even required in machine learning
when time series data has input values with differing scales.

4.2 Deep Learning-Based Classification Models for DoH Traffic

In this paper, we design the following five deep learning models:

• Fully Connected Convolutional Neural Network (FCN)

• Long Short-Term Memory (LSTM)

• Bi-directional Long Short-Term Memory (biLSTM)

• Gated Recurrent Unit (GRU)

• Deep RNN (deepRNN)



Malicious Network Traffic Detection for DoH using ML Algorithms 11

We use the grid search method to optimize the models’ corresponding hyper-
parameter combinations. Tables 2 to 11 show the summaries of our proposed
models after model selection and hyper-parameter tuning.

We use TensorFlow v2.4.1, pandas v1.1.5, and scikit-learn v0.24.1 to
preprocess the dataset and to implement our deep learning models.

5 Performance Evaluation

Among the four CSV files provided by the Canadian Institute of Cybersecurity
website, we use the DoH and nonDoH datasets as the training set in Layer 1,
and take the predicted DoH values to be used as data instances to align them
with the Benign and Malicious data instances for the training set in Layer 2.
We use the holdout validation set to get the training set, validation set and
the testing set. In addition, we run the model five times to get the average
result for each performance metric.

We use a confusion matrix to give us a better idea of each model’s perfor-
mance. The following four are the basic criteria that help us determine the
metrics we are looking for. These are the true positives, true negatives, false
positives and false negatives. In the confusion matrices the DoH class is repre-
sented by binary number 0, and nonDoH class by 1 in layer 1. In layer 2, the
benign class is represented by the binary number 0, and the malicious class by 1.
We also use the classification measure to help us achieve a better understanding
and analysis of each model and its performance. Precision is a measure of
correctness that is achieved in true prediction. It tells us how many predictions
are actually positive out of all the positive predicted. Out of all the predicted
positive classes, we predicted a high percentage correctly for each of our deep
learning models. Precision should be high; ideally 1. Recall is the measure of
actual observations which are predicted correctly. That is, how many observa-
tions of positive class are actually predicted as positive. Recall should ideally
be equal to 1. The F1 score sort of maintains a balance between the precision
and recall for a model. If the precision is low, the F1 score is low and if the
recall is low again your F1 score is low. The F1-score should be high; ideally 1.

We consider the following performance metrics:

• Confusion Matrix

• Recall

• Precision

• F1-Score

Figure 1 shows the confusion matrix of the testing set for the Fully Con-
nected Convolutional network in Layer 1. There are a total of 233,428 data



12 Gonzalez Casanova and Lin

Figure 1: FCN layer 1 confusion matrix.

instances used in the test dataset after applying the holdout validation set.
There are 54,083 data instances for DoH, and 179,345 data instances for
nonDoH. Out of the 233,428 data instances from the test dataset there are:
true negatives: 52,597, false positives: 1,486, false negatives: 320, and true
positives: 179,025. FCN results show in Table 13 that almost all the recall for
every class is high. The Recall is 0.992.

The precision values for the DoH class and that for the nonDoH class are
high. Here we can see that the confusion matrix for the model in Layer 1 shows
high percentages of true negatives and true positives for the classes of DoH
and nonDoH, respectively. We can also see low percentages of false positives
and false negatives in the predictions indicating a good model performance.
Although the miss-classified portions are small, the vast amount of the nonDoH
data instances affects the precision values. The Precision is 0.991, and F1-Score
is 0.991.

Figure 2 shows the confusion matrix of the testing set for the Fully Con-
nected Convolutional network in Layer 2. In Layer 2, we can see the confusion
matrix indicating a good model performance due to the high percentages of
benign and malicious values correctly predicted. The total number of data
instances in the test dataset is 10,584 after using the holdout validation sets in
Layer 2. The number of true negatives: 883, false positives: 32, false negatives:
19, and true positives: 9,650. It can be seen in Table 15 that almost all the
recall for every class is high. The Recall is 0.975. The Precision is 0.976, and
the F1-Score is 0.975.

The Precision is 0.976, and the F1-Score is 0.975. The precision values for
the Benign class and that for the Malicious class are high. We can see a small
portion of miss-classified class data instances.



Malicious Network Traffic Detection for DoH using ML Algorithms 13

Figure 2: FCN layer 2 confusion matrix.

In working with the LSTM based algorithms (LSTM, biLSTM, GRU and
deepRNN), there are 107,858 data instances in the test datasets that is fed to
these models individually. Figure 3 shows the confusion matrix of the testing
set for the LSTM network model in Layer 1. We can see that the confusion
matrix for the model in Layer 1 shows high percentages of true negatives and
true positives for the classes of DoH and nonDoH, respectively. The LSTM
model predicted true negatives: 53310, false positives: 707, false negatives:
561 and true positives: 53,080. This indicates that the LSTM model performs
well against the dataset. We can also see low percentages of false positives and
false negatives in the predictions is indicating a good model performance. It

Figure 3: LSTM layer 1 confusion matrix.



14 Gonzalez Casanova and Lin

can be seen in Table 14 that almost all the recall for every class is high. The
Recall is 0.987. The Precision is 0.987, and the F1-Score is 0.987.

Figure 4 shows the confusion matrix of the testing set for the LSTM
network model in Layer 2. We can see the confusion matrix indicating a
good model performance due to the high percentages of benign and malicious
values correctly predicted. The test dataset contains 3,986 data instances
fed into the LSTM model in Layer 2. It can be observed that there are true
negatives: 1,746, false positives: 32, false negatives: 49, and true positives:
1,921. Table 15 shows that almost all the recall for every class is high. The
Recall is 0.922. The Precision is 0.924, and F1-Score is 0.918.

Figure 4: LSTM layer 2 confusion matrix.

Figure 5 shows the confusion matrix of the testing set for the bidirectional
Long-Short Term Memory (biLSTM) network model in Layer 1. We can see
that the confusion matrix for the model in Layer 1 shows high percentages
of true negatives and true positives for the classes of DoH and nonDoH,
respectively. Out of the number of test data instances in use, there are true
negatives: 53,608, false positives: 458, false negatives: 217, and true positives:
53,575. This indicates that the biLSTM model performs well against the
dataset. Table 14 shows that almost all the recall for every class is high. The
Recall is 0.994. The Precision is 0.994, and the F1-Score is 0.994.

In Layer 2 of the network, Figure 6 shows the confusion matrix of the
testing set for the bidirectional Long-Short Term Memory (biLSTM) network
model. In Layer 2, we can see the confusion matrix is indicating a good
model performance due to the high percentages of benign and malicious values
correctly predicted. The number of test data instances in use is 3,899. There
is a slight difference in the sample size for the biLSTM; however, it has to do
with the predicted values from Layer 1. There are true negatives: 1,928, false



Malicious Network Traffic Detection for DoH using ML Algorithms 15

Figure 5: biLSTM layer 1 confusion matrix.

Figure 6: biLSTM layer 2 confusion matrix.

positives: 22, false negatives: 19, and true positives: 1,930. Table 15 shows
that almost all the recall for every class is high. The Recall is 0.990. The
Precision is 0.990, and the F1-Score is 0.990.

The third type of Recurrent Neural Network is the Gated Recurrent Unit
(GRU) model. Figure 7 shows the confusion matrix of the testing set for the
GRU network model in Layer 1. For the GRU model, we can see that the
confusion matrix for the model in Layer 1 indicates that out of the 107,858
test data instances, there are true negatives: 53,360, false positives: 534,
false negatives: 340, and true positives: 53,624. The confusion matrix shows
high percentages of true negatives and true positives for the classes of DoH
and nonDoH, respectively. This indicates that the GRU model performs well



16 Gonzalez Casanova and Lin

Figure 7: GRU layer 1 confusion matrix.

against the dataset. Table 14 shows that almost all the recall for every class is
high. The Recall is 0.992. The Precision is 0.992, and the F1-Score is 0.992.

Figure 8 shows the confusion matrix of the testing set for the GRU network
model in Layer 2. We can observe a sample number of 3,923 data instances
that is fed to the model. The confusion matrix is indicating a good model
performance due to the high percentages of benign (true negatives) and
malicious (true positives) values correctly predicted. Table 15 shows that
almost all the recall for every class is high. The Recall is 0.976. The Precision
is 0.976, and the F1-Score is 0.976.

The fourth type of Recurrent Neural Network is designed as a deep RNN.
Figure 9 shows the confusion matrix of the testing set for the deep RNN

Figure 8: GRU layer 2 confusion matrix.



Malicious Network Traffic Detection for DoH using ML Algorithms 17

Figure 9: deepRNN layer 1 confusion matrix.

network model in Layer 1. We can see that the confusion matrix for the model
shows high percentages of true negatives and true positives for the classes
of DoH and nonDoH, respectively. Out of the 107,858 test data instances,
there are true negatives: 53,490, false positives: 535, false negatives: 431,
and true positives: 53,402. This indicates that the deepRNN model performs
well against the dataset. It can be seen in Table 14 that almost all the recall
for every class is high. The Recall is 0.992. The Precision is 0.991, and the
F1-Score is 0.990.

Figure 10 shows the confusion matrix of the testing set for the deep RNN
network model in Layer 2. The sample number of data instances that is fed to

Figure 10: deepRNN layer 2 confusion matrix.



18 Gonzalez Casanova and Lin

the deepRNN is 3,996. We can see the confusion matrix is indicating a good
model performance due to the high percentages of benign (true negatives)
and malicious (true positives) values correctly predicted. The recall for every
class is high in Table 15. The Recall is 0.960. The Precision is 0.960, and the
F1-Score is 0.960.

Since our proposed models are simple, the training and inference of the
proposed methods are efficient. On our desktop computer with NVIDIA
GeForce RTX 1080Ti GPU, the training for each epoch costs only about 6 to
17 seconds. The generated models are not big in size, so these models could
be easily and quickly deployed into target devices.

6 Conclusion

In this paper, we investigate the CIC-DoHBrw-2020 dataset. We observe,
analyze and preprocess the dataset. In data preprocessing it is pivotal to
identify and correctly handle the missing values. We observe missing data
instances in the variable, “ResponseTimeTimeSkewFromMedian”, and we use
mode (simple interpolation) to replace the missing values. Categorical data is
encoded to numerical values using One Hot encoding which separate columns
for both DoH, nonDoH, benign-DoH, and Malicious-DoH in the respective
network layers. We solve the class data imbalance problem by applying the
under-sampling technique whereby we balance the uneven datasets by keeping
all of the data in the minority class and decreasing the size of the majority
class. The splitting of the data is done into two separate sets – training set
and test set, which is also known as the holdout validation method. The data
is split into an 80–20 ratio. The former is used for training and the latter is
used for testing. Last but not least, we apply feature scaling to standardize
the independent variables within a specific range using Min/Max scalar.

The post-processing part involves hyper-parameter tuning to help us find
a set of optimal parameters for the learning procedure to enable fast conver-
gence leading to a better performing solution. We design a fully connected
neural network model and four types of recurrent neural networks to solve the
network anomaly detection problem using CIRA-CIC-DoHbrw-2020 dataset.
These RNNs are the Long Short-Term Memory (LSTM), Gated Recurrent
Unit (GRU), Deep Recurrent Neural Network (deepRNN) and bidirectional
LSTM (biLSTM). As far as literature on intrusion network detection is con-
cerned, there are few journal papers that have been published studying this
dataset using the RNNs. We used 26 features of the 34 features that make
up the CIRA-CIC-DoHbrw-2020 dataset, and achieved good results with the
deep learning models. One of our contributions is the characterization of the
benign-DoH and malicious-DoH classes in Layer 2. We came up with the idea
to classify the DoH class and non-DoH class in Layer 1, and then only extract



Malicious Network Traffic Detection for DoH using ML Algorithms 19

the DoH predictions (only binary numbers, 0). In doing so, we pass the DoH
predicted values to Layer 2. To guarantee the body of the whole dataset,
we merge the DoH predicted values to the benign-DoH and malicious-DoH
datasets for alignment and correct indexing. We then split the data into a
ratio of 80–20, and feed the sample data to the deep learning models.

The proposed methods are simple and efficient, so that they could be
applied to systems with limited resources. The FCN and the RNNs models
perform very well against our dataset. The biLSTM outperformed all of
the other models in both layers. The GRU is the second-best performer
against the dataset in classifying DoH and nonDoH in Layer 1 as well as the
characterization of Benign-DoH and malicious-DoH in Layer 2. The FCN and
deepRNN models share third place in terms of good performance against the
dataset. The RNNs are designed to use sequential data such as our time-series
data. However, RNNs suffer from the gradient vanishing problem. To remedy
this, we use a specialized RNN known as the LSTM that can mitigate this
problem. We observe that our LSTM model learned very well, and predicted
excellent results. Our best model performer known as the bidirectional LSTM
show outstanding resilience in terms of aggregating input information in the
past and the future of the specific time in the LSTM model. The preservation
of information from both the past and future makes the biLSTM model
outstanding against our dataset. We also use a new generation of LSTM based
algorithms known as the Gated Recurrent Unit. The GRU shows excellent
performance due to the fact that it is a better version of the LSTM model. Last
but least, we implement a deep RNN whereby we stack the RNNs on top of each
other. We use an input layer, hidden layer and an output layer; thus, reducing
the complexity of our model. In this regard, we mitigate the exploding and
vanishing gradients. The deepRNN performed very well against our dataset.
Furthermore, it’s appropriate to mention that by cleaning and preparing our
dataset, we manage to acquire excellent results from our five models.

There exist several directions to further investigate into the network
anomaly detection problem. We can apply both the cross-validation (k-fold)
for the FCN, and Time-Series validation for the Recurrent Neural Network
models. Cross-validation provides the model the opportunity to train on
multiple train-test splits resulting in a better indication of how well our model
will perform on unseen data. On the other hand, the holdout validation is
dependent on just one train/test split. We can also design a hybrid deep learn-
ing model to effectively predict normal or malicious attacks to the internet
network environment.



20 Gonzalez Casanova and Lin

Table 2: FCN layer 1 model summary.

Layer 1
Layer (Type) Output shape Num. parameters
Input (InputLayer) [(None, 28)] 0
hidden1 (Dense) (None, 30) 870
dropout1(Dropout) (None, 30) 0
hidden2 (Dense) (None, 30) 930
Output (Dense) (None, 2) 62

Table 3: FCN layer 2 model summary.

Layer 2
Layer (Type) Output shape Num. parameters
Input (InputLayer) [(None, 28)] 0
hidden1 (Dense) (None, 30) 870
dropout1(Dropout) (None, 30) 0
hidden2 (Dense) (None, 30) 930
Output (Dense) (None, 2) 62

Table 4: LSTM layer 1 model summary.

Layer 1
Layer (Type) Output shape Num. parameters
lstm (LSTM) [(None, 20)] 3,920
dropout (Dropout) (None, 20) 0
dense (Dense) (None, 20) 420
dropout1(Dropout) (None, 20) 0
dense1 (Dense) (None, 2) 42

Table 5: LSTM layer 2 model summary.

Layer 2
Layer (Type) Output shape Num. parameters
lstm1 (LSTM) [(None, 30)] 7,080
dropout2 (Dropout) (None, 30) 0
dense2 (Dense) (None, 30) 930
dropout3 (Dropout) (None, 30) 0
dense3 (Dense) (None, 2) 62



Malicious Network Traffic Detection for DoH using ML Algorithms 21

Table 6: biLSTM layer 1 model summary.

Layer 1
Layer (Type) Output shape Num. parameters
bidirectional (Bidirectional) [(None, 1, 60)] 14,160
dropout2 (Dropout) (None, 1, 60) 0
bidirectional1 (None, 60) 21,840
dense(Dense) (None, 2) 122
Activation (Activation) (None, 2) 0

Table 7: biLSTM layer 2 model summary.

Layer 2
Layer (Type) Output shape Num. parameters
bidirectional2 (Bidirectional) [(None, 1, 60)] 14,160
bidirectional3 (Bidirectional) [(None, 60)] 21,840
dense1 (Dense) (None, 2) 122
Activation1 (Activation) (None, 2) 0

Table 8: GRU layer 2 model summary.

Layer 1
Layer (Type) Output shape Num. parameters
gru (GRU) [(None, 1, 30)] 5,400
dropout (Dropout) (None, 1, 30) 0
gru1 (GRU) [(None, 30)] 5,580
dropout1(Dropout) (None, 30) 0
dense (Dense) (None, 2) 62

Table 9: GRU layer 2 model summary.

Layer 2
Layer (Type) Output shape Num. parameters
gru2 (GRU) [(None, 1, 30)] 5,400
gru3 (GRU) [(None, 30)] 5,580
dense1 (Dense) (None, 2) 62

Table 10: deepRNN layer 1 model summary.

Layer 1
Layer (Type) Output shape Num. parameters
simplernn (InputLayer) [(None, 1, 30)] 1,770
simplernn1 (Dense) [(None, 1, 30)] 1,830
simplernn2 (Output) (None, 2) 66



22 Gonzalez Casanova and Lin

Table 11: deepRNN layer 2 model summary.

Layer 2
Layer (Type) Output shape Num. parameters
simplernn3 (InputLayer) [(None, 1, 20)] 980
simplernn4 (Dense) [(None, 1, 20)] 820
simplernn5 (Output) (None, 2) 46

Table 12: Layer 1 training model results.

Layer 1 training
Models Precision Recall f1-score Time
FCN 0.993 0.993 0.993 04:39.4
LSTM 0.988 0.988 0.988 25:22.7
biLSTM 0.995 0.995 0.995 15:18.8
GRU 0.992 0.992 0.992 10:22.4
deep RNN 0.993 0.993 0.993 10:36.3

Table 13: Layer 1 testing model results.

Layer 1 testing
Models Precision Recall f1-score Time
FCN 0.991 0.992 0.991 00:16.5
LSTM 0.987 0.987 0.987 00:29.5
biLSTM 0.994 0.994 0.994 00:03.7
GRU 0.992 0.992 0.992 00:30.3
deep RNN 0.991 0.992 0.990 00:03.3

Table 14: Layer 2 training model results.

Layer 2 training
Models Precision Recall f1-score Time
FCN 0.982 0.982 0.982 00:40.9
LSTM 0.926 0.920 0.920 01:56.5
biLSTM 0.999 0.998 0.998 00:42.8
GRU 0.984 0.984 0.984 00:41.5
deep RNN 0.964 0.964 0.964 00:38.4



Malicious Network Traffic Detection for DoH using ML Algorithms 23

Table 15: Layer 2 testing model results.

Layer 2 testing
Models Precision Recall f1-score Time
FCN 0.976 0.975 0.975 00:01.6
LSTM 0.924 0.922 0.918 00:00.8
biLSTM 0.990 0.990 0.990 00:01.5
GRU 0.976 0.976 0.976 00:01.5
deep RNN 0.960 0.960 0.960 00:01.8

References

[1] A. Bagnall, J. Lines, J. Hills, and A. Bostrom, “Time-series Classifica-
tion with COTE: The Collective of Transformation-based Ensembles,”
Telecommunication Systems, 2016, 1548–9.

[2] Y. M. Banadaki, “Detecting Malicious DNS Over HTTPS Traffic in
Domain Name System Using Machine Learning Classifiers,” Journal of
Computer Sciences and Applications, 8, 2020, 46–55.

[3] V. Barnett and T. Lewis, Outliers in Statistical Data, Third Edition,
Wiley, 1994.

[4] R. Chalapathy and S. Chawla, “Deep Learning for Anomaly Detection:
A Survey,” 2019.

[5] V. Chandola, A. Banerjee, and V. Kumar, “Anomaly Detection: A
Survey,” ACM Computing Surveys, 41(3), 2009.

[6] L. FatimaEzzahra, D. Samira, D. Khadija, and H. Badr, “Intrusion
Detection Systems Using Long-Short Term Memory (LSTM),” Journal
of Big Data, 2021.

[7] K. Fazle, M. Somshura, D. Houshand, and C. Shun, “LSTM Fully Con-
volutional Networks for Time Series Classification,” 1, 2017, arXiv:1709.
05206v1.

[8] G. Fernandes Jr., J. J. P. C. Rodrigues, L. F. Carvalho, J. F. Al-Muhtadi,
and M. L. Proença Jr., “A Comprehensive Survey on Network Anomaly
Detection,” Telecommunication Systems, 70, 2019, 447–89.

[9] D. A. E. Haddon and H. Alhateeb, “Investigating Data Exfiltration
in DNS Over HTTPs Queries,” in In 2019 IEEE 12th International
Conference on Global Security, Safety, and Sustainability (IGGS3), 2019.

[10] N. Hoque, M. H. Bhuyan, R. Baishya, D. Bhattacharyya, and J. Kalita,
“Network Attacks: Taxonomy, Tools and Systems,” Journal of Network
and Computer Applications, 40, 2014, 307–24.

[11] M. Jafar, M. Al-Fawa’reh, Z. Al hrahsheh, and S. Jafar, “Analysis
and Investigation of Malicious DNS Queries Using CIRA-CIC-DoHBrw-



24 Gonzalez Casanova and Lin

2020 Dataset,” Manchester Journal of Artificial Intelligence and Applied
Sciences (MJAIAS), 2, 2021, 65–70.

[12] A. Lakhina, M. Crovella, and C. Diot, “Diagnosing Network-Wide Traffic
Anomalies,” SIGCOMM Computer Communication Review (CCR), 34(4),
2004, 219–30.

[13] M. MontaseriShatoori, L. Davidson, G. Kaur, and A. H. Lashkari, “De-
tection of DoH Tunnels using Time Series Classfication of Encrypted
Traffic,” in 2020 IEE International Conference of Dependable, Autonomic
and Secure Computing, International Conference of Pervasive Intelli-
gence and Computing, International Conference on Cloud and Big Data
Computing, International Conference on Cyber Science and Technology
Congress, 2020.

[14] T. A. Nguyen and M. Park, “DoH Tunneling Detection System for
Enterprise Network Using Deep Learning Technique,” Applied Sciences,
12(5), 2022.

[15] S. K. Singh and P. K. Roy, “Malicious Traffic Detection of DNS Over
HTTPS Using Ensemble Machine Learning,” International Journal of
Computing and Digital Systems, 11(1), 2022, 1061–9.

[16] D. Vekshin, K. Hynek, and T. Cejka, “DoH Insight: Detecting DNS Over
HTTPS by Machine Learning,” in Proceedings of the 15th International
Conference on Availability, Reliability and Security, ARES ’20, Virtual
Event, Ireland: Association for Computing Machinery, 2020.

[17] H. Wang, W. Sun, and P. X. Liu, “Adaptive Intelligent Control of
Nonaffine Nonlinear Time-Delay Systems with Dynamic Uncertainties,”
IEEE Transactions on Systems, Man, and Cybernetics: Systems, 47,
2017, 1474–85.

[18] K. Xie, X. Li, X. Wang, J. Cao, G. Xie, J. Wen, D. Zhang, and Z.
Qin, “On-line Anomaly Detection with High Accuracy,” IEEE/ACM
Transactions on Networking, 26(3), 2018, 1222–35.


	Introduction
	Related Work
	Problem Description
	Proposed Method
	Data Preprocessing
	Data Processing Pipeline
	Feature Selection
	Handling Outliers
	Handling Multicollinearity
	Handling Data Imbalance
	Feature Scaling

	Deep Learning-Based Classification Models for DoH Traffic

	Performance Evaluation
	Conclusion

