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ABSTRACT

Over the past several years, we have witnessed remarkable progress in
numerous computer vision applications, particularly in human activ-
ity analysis. Human action recognition, which aims to automatically
examine and recognize the actions taking place in the video, has been
widely applied in many applications. This paper presents a compre-
hensive survey of approaches and techniques in deep learning-based
human activity analysis. First, we introduce the problem definition
in action recognition together with its challenges. Second, we provide
a comprehensive survey of feature representation methods. Third, we
categorize human activity methodologies and discuss their advantages
and limitations. In particular, we divide human action recognition into
three main categories according to training mechanisms, i.e., supervised
learning, semi-supervised learning, and self-supervised learning. We
further analyze the existing network architectures, their performance,
and source code availability for each main category. Fourth, we provide
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a detailed analysis of the existing, publicly available datasets, includ-
ing small-scale and large-scale datasets for human action recognition.
Finally, we discuss some open issues and future research directions.

Keywords: Action recognition, supervised learning, self-supervised learning,
deep learning, deep neural networks.

1 Introduction

Human action recognition, which aims to automatically examine and recognize
the actions taking place in video, has been widely applied in many applications
such as identity recognition [81], video surveillance, environmental home
monitoring [2], human-machine interfaces [83], etc. Human action recognition
covers many main computer vision topics, including human detection in
video, human pose estimation, human tracking, and temporal data analysis.
Human activity in the real-world consists of simple limb movements to joint
complex movements of multiple limbs and the entire human body. Every
human action has a certain purpose; therefore, we can understand the action
and purpose of the person taking action through the human visual system.
However, using human labor to observe human actions in various real-world
situations is too expensive, even impossible. So, human action recognition
is one of the most fundamental research problems in computer vision and
machine learning. It has been studied for decades and is widely used in
many applications. Therefore, accurate and efficient human action recognition
remains a challenging research area in computer vision. This is due to their
prevalence in normal life, and recognized actions can be used for many other
tasks such as security surveillance, abnormalities detection, video retrieval,
etc. The goal of action recognition is to identify many different actions from
different data types. In the early days, most methods focused on using RGB
or optical-flow videos as input for action recognition. This is due to their
popularity and easy access. In recent years, many works have been proposed
using other data modalities such as skeleton, depth, audio, acceleration, etc.
That depends on the application scenarios and the distinct advantages of
different data types for action recognition.

There are many subtasks in human action recognition. For example, action
classification (classifying action from predefined categories), action detection
(determining the starting and end positions of actions), and action prediction
(predicting the future state of actions). However, the major difference between
action classification and action prediction lies in when to make a decision.
Specifically, action classification is to predict the action label after observing
the entire action execution. This task aims to focus on non-urgent scenarios,
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such as video retrieval, entertainment, etc. The study of this paper focuses on
action classification. This is one of the most fundamental research problems in
machine learning and computer vision and has attracted many researchers in
recent years. Many deep learning models have been built to solve this problem,
with various architectures like Conv2D network [50], Conv3D network [104],
and LSTM combined with Conv2D [50, 94]. In addition, some models used
more than one network (two streams) with two inputs to increase the model’s
learning ability. For example, the input is an image, and in Simonyan and
Zisserman [94], and in Joao and Andrew [48] the input is an RGB video clip,
and an optical follow clip, etc.

This work differs from several existing surveys for action recognition. For
example, [14] provided a review for human activity recognition based on
sensors such as accelerometer, gyroscope, magnetometer, electrocardiography,
etc. Sun et al. [99] used the approach based on data modalities to present
the review for action recognition such as RGB modality, skeleton modality,
depth modality, infrared modality, point cloud, event stream, etc, and [99] also
surveyed the action recognition problem via each stage such as preprocessing
technics, models building & training. Our objective in this paper is to discuss
state-of-the-art action recognition methods, especially with the modern deep
neural network (DNN) approaches. In this work, we summarize many recent
works and present a new survey of research on human action recognition
techniques. We divide the human action recognition techniques into three
groups based on training mechanisms, i.e., supervised learning semi-supervised
learning, and self-supervised learning. For each group, we discuss network
architectures, their advantages and limitations, and their performance. We
further provide the recent datasets that have been commonly used to evaluate
action recognition performance.

2 Human Action Recognition: Problem Definition and Challenges

2.1 Problem Definition

The goal of action recognition is to identify different actions from given videos
(a sequence of 2D frames) where the action may or may not be performed
throughout the entire duration of the video. The videos can be in RGB data,
depth data, optical flow data, skeleton data, etc. However, essentially a video
has spatial and temporal aspects. The spatial aspect is the individual frames
that contain the context of the video, and the temporal aspect is the ordering
of the frames, which contain the motion of the objects in the video. Sometimes,
with just one frame, we can easily identify the action from the given video
(e.g., applying lipstick, playing guitar, etc.). However, with more complex
actions (e.g., walking vs. running, high jumping vs. long jumping, etc.), we
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require more than one frame to identify it correctly. Therefore, information
on the temporal aspect is essential to differentiate between actions. Moreover,
we sometimes need long-duration temporal information, or even whole frames
from the video to correctly identify the action.

The action recognition problem in videos can be described as the following:
Given a set of N samples of the form {(Xi, yi)}Ni=1. In which, Xi is a video clip
where Xi = (x1, x2, . . . , xT ) being the input of length T with xj ∈ RH×W×C

represents the j th frame. H, W and C are the height, width, and channel
numbers, respectively. yi is its corresponding label. We train a deep neural
network F(Xi|θ) by predicting yi, and θ is the set of trainable parameters.
An overview of the action recognition system is shown in Figure 1. The tradi-
tional system usually contains three steps that include pre-processing, feature
extraction and classification (see Figure 1(a)). However, there are several
limitations to the traditional methods. First, these systems are built based
on many different components, e.g., pre-processing, feature extraction, and
classification, so the performance of these systems depends on the performance
of each component and the relationship among components. Second, the next
component’s input is from the previous one’s output, so it is tough to train
the model in parallel. Finally, the cohesion of independent components often
does not perform well compared to end-to-end models.

Figure 1: An overview diagram of the action recognition system. There are two phases in
this system, including the training phase and the testing phase. Training phase aims to
learn a recognition model that is able to distinguish various human actions defined in the
training dataset. Testing phase utilizes the trained recognition model to recognize an action
given a video.

To address these above limitations of the traditional systems, deep learning-
based methods have been proposed as an end-to-end trainable model. Moreover,
these deep models can train in parallel on GPUs via several python libraries
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such as Tensorflow, Pytorch, Keras, MXNet, etc. As a result, deep learning-
based methods have quickly become state-of-the-art techniques for machine
learning and artificial intelligence. An action recognition system based on deep
learning is illustrated in Figure 1(b).

2.2 Challenges

In this section, we list some of the difficulties in deep learning-based action
recognition. At least one of the challenges outlined below can significantly
affect the performance of the whole recognition model.

Lack of Long-range Temporal Information. The frame rate of a video,
denoted by FPS (frame per second), is the number of frames appearing per
second of one video. Frame rate refers to how fast successive images make a
video movement. The frame rates for a normal video are in the 25–30 FPS.
Hence, a 10-second video has around 250-300 frames. However, we cannot put
all frames of a video into a model for training. Instead, we select a small part,
including continuous frames (e.g. 16 frames), to represent the entire video.
This is also suitable for recognition systems in real-time. There is an issue
here of whether a video clip with 16 frames is good enough to represent the
entire video? There is an issue here of whether a video clip with 16 frames is
good enough to represent the entire video. For example, with the “long jump”
action performed by a human, we can see that the human performs various
continuous sub-actions such as running, jumping, and landing. Therefore, if
we choose the first 16 frames in the video, then the network model may confuse
the “running” action. This is a huge challenge for deep models during the
training because, in many cases, the actions appear only at a certain point in
the video instead of always being repeated over and over again in the entire
video (see Figure 2(a)). A simple solution for this challenge is to calculate
averaging predictions over sampled clips. However, the long-range temporal
information was still missing in learned features.

Computational Cost. Computational cost and complexity of spatio-temporal
inputs are the main challenges in video understanding. With the skip con-
nection technique in [35], ResNet has avoided the vanishing gradient problem
without sacrificing network performance. Specifically, it helps upper layers
in the network achieve features not worse than the lower layers. Moreover,
with this architecture, the upper layers get more information directly from the
lower layers, so they will adjust the weight more effectively. After the ResNet
architecture, many variations of networks were introduced. Experiments show
these CNN models with a depth of up to thousands of layers. ResNet has
quickly become the most popular architecture in computer vision. However, the
models with thousands of layers mean the computational cost in the network
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Figure 2: The two main challenges in the action recognition problem. (a) is the lack of
temporal information when a clip with few frames represents the entire video. (b) are the
comparison of the number of parameters and computational cost between the 2D ResNet-50
network usually applied for images and the 3D ResNet-50 network usually adopted for
videos?

is huge. Besides, video input is larger than image input (due to videos having
extra time dimension), so Conv3D often has more parameters and computa-
tional costs than Conv2D. For example, ResNet2D-50 [35] with the input of
(224, 224, 3) has 24.3M parameters and 3.8 GFLOPs, but ResNet3D-50 [34]
with the input of (16, 224, 224, 3) needs 46.9M parameters and 64.1 GFLOPs
(in Figure 2(b)). The R(2 + 1)D-152 in [30] uses 118M parameters and 252
GFLOPs. As a result, model size and computational cost are one of the biggest
challenges when we train a deep neural network for action recognition. For
example, to train a 3D CNN model on the UCF101 dataset, we need three to
four days and at least two months to train on the Sports-1M dataset with the
same network architecture.

Except for these above challenges, the performance of an action recognition
system is also affected by several common challenges of this task such as
environmental conditions, video quality, camera motion, etc. [43].

2.3 Data Modalities

In the early days, most of the video understanding research focused on using
RGB or gray-scale videos because of their popularity and easy access. Recent
years have witnessed the use of other data modalities, such as infrared, point
cloud, event stream, skeleton, depth, radar, etc. as follows:

RGB/Grayscale Videos: RGB or grayscale videos, providing rich appear-
ance information, are the most popular data type. It has been used in most
computer vision tasks. However, it is captured in a daytime environment and
sensitive to viewpoint together with illumination.

Infrared: Infrared is a common data type for night-time environments;
however, it lacks color and texture information.
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Depth: While RGB provides rich appearance information, depth provides
geometric shape information. A combination of both RGB and depth has been
widely used in videos analysis recently.

Point Cloud: Point cloud includes both RGB and depth data and captures the
3D structure and distance information. This data kind is robust to viewpoint
and has been popularly used in robot navigation and autonomous driving
applications. However, this data is high complexity and sparse.

Event Stream: Event stream is specific data that contains both different
changing and RGB. It is acquired by event cameras when object moving with
high speed. Although this data kind is high-range dynamic and motion blur
free, it is sparse and its capturing devices are expensive.

Skeleton: Skeleton data is defined on body joint, thus providing structural
information of subject pose. Even though it does not provide any texture or
shape information, it is robust to viewpoint and background.

3 Background

Based on the learning paradigm, we split action recognition approaches into
two groups corresponding to traditional methods and modern methods.

3.1 Traditional Methods

The traditional methods are based on efficient spatio-temporal feature repre-
sentations and motion propagation across frames in videos such as HOG3D
[54], SIFT3D [91], ESURF [116], MBH [18], iDTs [111]. STIP-based [13, 61] is
one of the most common methods widely used for action recognition. STIP
methods extend the local feature detection technology from images to the 3D
spatio-temporal domain. The main advantage of spatio-temporal-based meth-
ods is that they do not require preprocessing such as background segmentation
or human detection. However, the features are sensitive to changes in camera
views. To eliminate the background motion and overcome differences in the
viewing angle, iDTs [111] uses key points or the joints in the human skeleton to
represent actions. However, this approach requires an accurate human skeleton
model, and accurate tracking of key points which are challenging problems in
computer vision. These traditional features are mainly used in classic machine
learning methods such as Boost, support vector machines, and probability
map models to recognize the action.
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Figure 3: Comparison between three different deep network architectures for action recogni-
tion. (a): Recurrent Neural Networks (e.g., LSTM); (b): convolutional networks Networks
(e.g., 3D CNN); (c): two-stream convolutional networks (e.g., RGB - optical flow).

3.2 Modern Methods

In recent years, DNNs have been successfully applied to computer vision.
Various DNN-based feature extractions have been proposed to address human
action recognition. Depending on network architecture, DNN-based feature
representations can be Recurrent Neural Networks [23], 3D Convolutional Net-
works Networks (3D-CNNs) [44], two-stream convolutional networks [94], etc.

Recurrent Neural Networks (RNNs): RNNs with Long Short-Term Mem-
ory (LSTM) implementation are believed to cope with sequential information
better, and thus many proposed methods [23, 79] attempted to incorporate
LSTM to deal with action recognition. This approach aims to utilize the
networks that have high performance in image classification to extract features
from independent frames. And then, add a recurrent layer such as an LSTM
to capture temporal ordering. Finally, a fully connected layer is added on
top for the model to classify (see Figure 3(a)). However, [23] concluded that
the LSTM is not as effective as the temporal pooling with feature maps from
convolution layers.

Convolutional Networks Networks (CNNs): 3D CNN was first intro-
duced by [44] to extract features from both the spatial and the temporal
dimensions by performing 3D convolutions, thereby capturing the motion
information encoded in multiple adjacent frames. Later on, C3D features, 3D
CNN architectures and their improvements [22, 34, 48, 85, 104, 107] have been
proposed. Recently, various 3D CNN-based networks have been proposed to
address this task and they are also demonstrated to be more efficient than
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LSTM networks [34, 48]. An overview of the 3D CNN architecture is shown in
Figure 3(b).

Two-stream Network: The two-stream network was first introduced by
[94], and then they have been improved in [27]. Two-stream networks explore
video appearance and motion clues with two separate networks. One network
exploits spatial information from individual frames, while the other uses
temporal information from optical flow. The two outputs of the network are
then combined via a latent fusion layer (see Figure 3(c)). With this approach,
we can significantly boost the performance of CNN models compared to
one-stream CNN i.e. conventional CNNs. However, this approach also has
several drawbacks. For example, the input of the spatial network is usually an
individual frame; therefore, it suffers from the problem of false label assignment.
Each frame’s ground truth is assumed the same as the video’s ground truth,
which may not be the case if the action happens for a small duration within
the entire video. Besides, training with a two-stream network requires a lot
of training time compared to a stand-alone network. Various two-stream
approaches have been proposed such as RGB - OF [48] or RGB - RGB [16] or
RGB - Audio [5, 52], etc.

4 Action Recognition Techniques

DNNs are typically trained under a supervised learning framework where a
model learns a single task using labeled data. Instead of relying solely on
labeled data, one can make use of unlabeled or related data to improve model
performance, which is often more accessible and ubiquitous. In this section,
we divide human action recognition techniques into three categories based on
the training paradigm including supervised learning, semi-supervised learning,
and self-supervised learning. Specifically, Section 4.1 presents the detail of
state-of-the-art supervised learning-based methods. The approaches based
on semi-supervised are discussed in Section 4.2. Next, the self-supervised-
based methods are introduced in Section 4.3. Finally, we survey several
other approaches for action recognition such as knowledge distillation in
Section 4.4.

4.1 Supervised Learning

Supervised learning is a common machine learning technique to construct
a function from training data. The training data usually consists of pairs
of an input object (i.e., image, text, speech, etc.) and the ground truth
output (i.e., label, image, vector, etc.). The supervised learning-based methods
aim to predict a valid input object’s value after considering some training
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examples (i.e., input and output pairs corresponding). To this end, methods
have to generalize from sample data to predict the unresolved situations in
a “reasonable” way. Figure 4 shows the visual introduction to the supervised
learning strategy on action recognition.

Figure 4: Overview of the supervised learning methods for action recognition. In which, the
black line denotes the forward path and the blue line is the backward i.e., the backpropagation
step.

In the action recognition problem, given a set of N samples of the form
(X1, y1), (X2, y2), . . . , (XN , yN ) such that Xi is a video clip and yi is its label
(i.e., class). A model is built to learn a function F that maps F : Xi → yi.
The output of the F is corresponding to the probability distribution pi over
labels, where pi = F (Xi, θ

′) and θ′ is the set of trainable parameters. The
correctness of the prediction was measured using cross-entropy as follows:

L(yi, pi) = − 1

N

N∑
i=1

yi log(pi). (1)

Following the success of C3D, I3D networks, many new model architectures
have been proposed in recent years. The objective of the proposed models
is to achieve better performance and/or reduce computational costs. As
mentioned above, the computational cost is one of the biggest challenges in
the action recognition task; therefore, many researchers focus on reducing
the computational cost task for 3D CNNs. A new method was proposed to
explicitly factorize 3D convolution into two separate and successive operations,
a 2D spatial convolution and a 1D temporal convolution, and called (2 + 1)D
convolution [85, 106, 108]. The authors demonstrated that (2+1)D convolution
has more advantages than 3D convolution on action recognition. Inspired
by group convolution [58] and channel separation [37], [105] present a model
architecture named irCSN-152 and ipCSN-152 that based on ResNet-152. In
the ip-CSN (interaction-preserved channel-separated network), a 3 × 3 × 3
convolution is replaced by a 1 × 1 × 1 traditional convolution and a 3 ×
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3× 3 depthwise convolution. This block reduces significantly the number of
parameters and FLOPs compared to the traditional 3×3×3 convolution. In the
ir-CSN network (interaction-reduced channel-separated network), the authors
remove the extra 1× 1× 1 convolution. This yields the depthwise bottleneck
block. The experiments show that both ir-CSN and the ip-CSN outperform
deep 3D ResNet while significantly reducing parameters and FLOPs. Several
other methods are proposed to reduce the FLOPs, such as in [126], [60], etc.

Achieving state-of-the-art performance is the most important task in ac-
tion recognition. Most methods adopt the ResNet backbone as a standard
architecture to modify. For example, the STM network was introduced by [45].
In this network, the authors presented a method to enhance the ability to
learn Spatio-temporal and motion features from a video. To do that, the
authors proposed encoding these two features in a unified 2D framework. The
Channel-wise spatio-temporal Module (CSTM) is used to learn spatio-temporal
features and the Channel-wise Motion Module (CMM) is for encoding motion
features. These two modules are added to the original residual blocks in
the ResNet architecture. The experiment shows that STM performs a little
better than major proposed 3D CNN and 2D CNN-based methods. Inspired
by the evolutionary algorithms in the optimization field, such as the genetic
algorithm, [4] proposed a new method for finding video CNN architectures. In
their work, a novel evolutionary search algorithm is developed to automati-
cally explores different types of models and combine layers based on mutation
operations. And then, they obtain new architectures superior to manually
designed architectures. There are three mutation operations proposed in this
paper, including “Change Layer”, “Change Temporal Size” and “Add Layer”.
However, the crossover operator is not mentioned in this paper. To find good
architectures with state-of-the-art performance, the authors built a population
with 2000 different CNN architectures. Each newly generated child architecture
(from their parent) is trained for 1000 iterations.

The SlowFast network [16] is proposed as a variation of the 3D CNN
networks category. Two parallel pathways are utilized to capture a video
scene’s appearances and object motion in each pathway. Instead of using
two streams (one stream is RGB, and the other is optical flow), the SlowFast
network utilizes RGB for all streams. A slow pathway operates at a low frame
rate, capturing spatial semantics, and a fast pathway captures motion at fine
temporal resolution at a high frame rate. SlowFast network has been proposed
to tackle the action recognition and action spatial localization tasks and got
the highest scores in many benchmark datasets, e.g., Kinetics, Charades,
AVA, etc. Recently, various Transformer-based models have been proposed for
computer vision tasks such as A-ViT [120], Action Transformer [75], etc. With
their flexible attention mechanism, transformer-based models have achieved
impressive performance on many data types and they have quickly become a
promising approach in recent years.
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Unlike the aforementioned methods, knowledge distillation approaches aim
to learn a lightweight network, i.e., a student, such that it can mimic the
behaviors of the heavy network i.e., a teacher with high performance. With
useful information from the teacher, the student can learn more efficiently and
be more “intelligent”. Inspired by this motivation, one of the first knowledge
distillation works was introduced by [7] suggesting minimizing the ℓ2 distance
between the last layers of these two networks. Hinton et al. [36] later pointed out
that the hidden relationships between the teacher’s predicted class probabilities
are also significant and informative for the student. Then, the soft labels
generated by the teacher model are adopted as the supervision signal in
addition to the regular labeled training data during the training phase. In
addition to the soft labels as in [36]. Romero et al. [89] proposed the bridge
among the middle layers of the student and teacher networks and adopted the
ℓ2 loss to supervise the output of the student further. Several other aspects
and knowledge of the teacher network are also exploited later.

Diba et al. [19] proposed a new model named Temporal 3D ConvNet
(T3D). In this model, 3D dense blocks and Temporal Transition Layers (TTL)
are arranged alternately. The TTL layers use kernels with different sizes
for temporal dimensions to increase the ability to learn temporal features.
Additionally, the T3D model uses knowledge transferred from a pre-trained
2D ConvNet (DenseNet-169) on ImageNet. Like T3D, [20] proposed Spatio-
Temporal Channel Correlation (STC) model based on ResNet architecture,
and the authors also used the teacher models are 2D ResNet and ResNext
pre-trained on ImageNet. The main contribution of this method is to propose
STC blocks alternating 3D Residual blocks. The STC block behaves similarly
to the squeeze-and-excitation block in [38].

Crasto et al. [17] proposed a new approach named MARS. The authors
found that most state-of-the-art methods consist of a two-stream architecture
with 3D convolutions for action recognition. However, the cost of computing
optical flow and the cost of two-stream is huge. Therefore, it increases action
recognition latency. The authors introduced two learning approaches. The
first approach is Motion-Emulated RGB Stream (MERS). In MERS, a 3D
teacher network takes optical flow as input, and the other 3D CNN with RGB
input is the student network. The training phase is done in two steps. In step
1, the authors train the teacher to classify actions using optical flow clips and
freeze the network’s weights. The distillation progress from the teacher to the
student was performed using the MSE function through all the layers of the
student. In step 2, all the student layers have frozen their weights, and the
last layer is added to the top of the network for training with a cross-entropy
loss. The second approach is Motion Augmented RGB Stream (MARS). This
approach is nearly the same as MERS. In step 1, the authors also train the
teacher to classify actions using optical flow clips and freeze the network’s
weights. However, in step 2, to effectively leverage both appearance and motion
information, the authors combine the standard cross-entropy loss and MSE
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loss and backpropagate through all the network layers. The problem of pre-
computing optical flow has still a problem at large. To avoid flow computation
at the test phase, their main contribution is the knowledge distillation from
the flow stream (as the teacher) to the RGB stream (as the student). The
experiments show that this approach outperforms RGB or Flow alone and
preserves the performance of two-stream approaches.

Girdhar et al. [31] proposed a distillation model based on ResNet archi-
tecture. In their model, ResNet50 pre-trained on image datasets as “teachers”
to train video models in a distillation framework without using labeled data.
This is an interesting approach to learning spatio-temporal representations
from unlabeled video data.

Self-knowledge distillation is a promising approach to replace the con-
ventional knowledge distillation approach. There is no teacher network in
self-knowledge distillation, therefore we can save a lot of training time due to
without training the teacher network. Moreover, we also avoid the problem
of the capacity gap between teacher and student networks [109]. For action
recognition, various self-knowledge distillation methods have been proposed
such as TY [109], SKD-SRL [110], SKD [25], etc.

We provide a summary of state-of-the-art methods based on supervised
learning for action recognition in Table 1. For each method, we briefly describe
its characteristics and performance in terms of accuracy.

4.2 Semi-supervised Learning

Semi-supervised learning is a kind of machine learning that uses both labeled
and unlabeled data for training - typically a small amount of labeled data
along with a large amount of unlabeled data. Semi-supervised learning is
the combination of unsupervised learning (without any labeled data) and
supervised (all data is labeled) (see Figure 5). Many researchers have found
that unlabeled data, when used in conjunction with a bit of labeled data, can
significantly improve the performance of the model. Besides, semi-supervised
learning helps the models reduce the dependence on labeled datasets. Further-
more, unlabeled data can be collected automatically without human labor,
so semi-supervised learning-based methods are always low-cost approaches.
While various semi-supervised learning-based approaches in the image domain
have been promising performances, the semi-supervised learning-based video
domain is still quite novel.

Iosifidis et al. [42] introduced traditional Action Bank for action represen-
tation. The authors then proposed an extreme learning machine algorithm
by combining geometric properties and discrimination criteria of the training
data representation in the ELM space. Inspired by FixMatch [97] in the image
domain, various SSL methods have recently been presented e.g., TCL [95],
VideoSSL [46]. In TCL, Singh et al. [95] proposed to maximize the similarity
among encoded representations of an input clip with different speeds and
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Table 1: A summary of supervised learning methods for Action Recognition. The column
“Performance” presents the top-1 accuracy of the best model in each method. The column
“Model size” shows the number of parameters and FLOPs of each model. In case the authors
didn’t provide information about model size in their paper, we denote by —. Moments
denotes the Moments in Time dataset and SS is the Something Something dataset.

Method Description Network Model
size Performance Code

BQN
[39]

- Focusing on busy mo-
tion in the input videos.
- Separating busy fea-
tures from quiet fea-
tures.
- Two networks have
been proposed for two
features types.

BQN
92M
241GFLOPs

77.3 (Kinetics400)
97.6 (UCF101)
77.6 (HMDB51)

Link

STAM
[92]

- Proposing two types
of transformer including
temporal transformer
and spacial transformer.

Transformer
96M
270GFLOPs

79.3 (Kinetics400)
97.0 (UCF101)
39.7 (Charades)

Link

En-VidTr
[124]

- Proposing two types
of transformer including
temporal transformer
and spacial transformer.

VidTr-M
98.1M
220GFLOPs

79.7 (Kinetics400)
96.7 (UCF101)
74.4 (HMDB51)

None

Omni-sourced
[24]

- Leveraging crawled
data.
- Adopt pre-trained mod-
els as a teacher.
- Training students with
teacher’s labels.

irCSN-152 —
83.6 (Kinetics400)
96.0 (UCF101)
71.1 (HMDB51)

Link

G-Blend
[114]

- Identifying causes for
performance drop on
multi-modal networks.
- Proposing a technique
to avoid overfitting on
these networks.

ipCSN-152
32.8M
110.1GFLOPs

83.3 (Kinetics400) Link

irCSN-152
[105]

- Design an architec-
ture named Channel-
Separated Convolutional
Network.
- Utilize Group convo-
lution to offer computa-
tional savings.

irCSN-152
29.6M
96.7GFLOPs

82.6 (Kinetics400) Link

ipCSN-152
[105]

- Design an architec-
ture named Channel-
Separated Convolutional
Network.
- Utilize Group convo-
lution to offer computa-
tional savings.

ipCSN-152
32.8M
108.8GFLOPs

79.2 (Kinetics400) Link

https://github.com/guoxih/busy-quiet-net
https://github.com/Alibaba-MIIL/STAM
https://github.com/open-mmlab/mmaction
https://github.com/facebookresearch/VMZ
https://github.com/facebookresearch/VMZ
https://github.com/facebookresearch/VMZ
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Table 1: Continued.

Method Description Network Model
size Performance Code

GB+DF+LB
[73]

- Focusing on improving
the last layers.
- Propose 3 classification
branches instead of using
the global average pool-
ing alone.

ResNet-152 —
53.4(SS V1)
78.8 (Kinetics400)

None

HATNet
[21]

- Fusing 2D and 3D ar-
chitectures into one.
- Training on HVU
dataset.

ResNet-50 —
77.6 (Kinetics400)
97.8 (UCF101)
76.5 (HMDB51)

None

CoST
[63]

- Proposing a novel op-
eration to learn features
using 2D Conv with
a weight-sharing con-
straint.

ResNet-101 —
31.5 (Moments)
77.5 (Kinetics400)

None

RNL-TSM
[40]

- Present region-based
non-local operations as
a self-attention.

ResNet-50
35.95M
41.16GFLOPs

49.47 (SS V1)
77.2 (Kinetics400)

Link

MSNet
[60]

- Learn correspondences
across frames and con-
vert them into motion
features.

ResNet-50
49.2M
67.6GFLOPs

55.1 (SSV1)
67.1 (SS V2)
76.4 (Kinetics400)
77.4(HMDB51)

Link

CMA
[15]

Propose a cross-
modality attention
operation.

ResNet-152 —
75.98 (Kinetics400)
96.5(UCF101)

None

FASTER32
[126]

- Leverages the video’s
redundancy to reduce
FLOPs.
- Combine an expen-
sive model that cap-
tures actions, and a
lightweight model that
captures scene changes.

ResNet-50
—

67.7GFLOPs

75.3 (Kinetics400)
96.9(UCF101)
75.7(HMDB51)

None

MARS
[17]

- Knowledge distillation
from the flow network to
the RGB network.

ResNeXt-101 —

74.9 (Kinetics400)
53(SS V1)
98.1(UCF101)
80.9(HMDB51)

None

STM
[45]

- Encode features in a 2D
framework.
- The Channel-wise Spa-
tio Temporal Module
presents the spatio-
temporal features.
- The Channel-wise Mo-
tion Module efficiently
encodes motion features.

ResNet-50
23.88M
32.93GFLOPs

73.7 (Kinetics400)
50.5(SS V1)
64.2(SS V2)
96.7(Jester)
96.2(UCF101)
72.2(HMDB51)

None

https://github.com/guoxih/region-based-non-local-network
https://github.com/arunos728/MotionSqueeze
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Table 1: Continued.

Method Description Network Model
size Performance Code

SlowFastNet
[16]

- Two streams with one
a low frame rate and the
other a high frame rate.

ResNet-101
—

234GFLOPs
79.8 (Kinetics400)
81.8(Kinetics600)

Link

EvaNet
[4]

- Finding video CNN ar-
chitectures based on an
evolutionary algorithm.

Inception Net —
77.4 (Kinetics400)
82.3(HMDB51)
31.8(Moments)

None

R(2+1)D
[106]

- Explicitly factorize 3D
Conv into two opera-
tions, a 2D Conv and a
1D Conv.

ResNet-34 —

75.4 (Kinetics400)
73.3(Sports1M)
97.3(UCF101)
78.7(HMDB51)

Link

P3D
[85]

- (2+1)D Conv uses
ReLU between the 2D
and 1D Conv in each
block.
- Using separate spa-
tial and temporal com-
ponents renders the op-
timization easier.

ResNet-152 —

77.4 (Kinetics400)
93.7(UCF101)
66.4(Sports1M)
75.12(ActivityNet)
80.8(ASLAN)

Link

I3D
[48]

- Repeat 2D filters in
the pre-trained Incep-
tion Net.

Inception-V1
25M
—

74.2 (Kinetics400)
93.4(UCF101)
66.4(HMDB51)

Link

Figure 5: Overview of the semi-supervised learning methods for action recognition. In
which, the black line denotes the forward path and the blue line is the backward i.e.,
backpropagation.

https://github.com/facebookresearch/SlowFast
https://github.com/facebookresearch/VMZ
https://github.com/ZhaofanQiu/pseudo-3d-residual-networks
https://github.com/deepmind/kinetics-i3d
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otherwise. Moreover, the authors introduced an efficient group-contrastive loss
to distinguish a couple of motion representations with pace-invariance that
extremely boosts action recognition performance. In VideoSSL, [46] utilized a
pre-trained model on ImageNet to guide the training of the 3D CNN model
via pseudo-labels of unlabeled examples.

We provide a summary of state-of-the-art methods based on semi-supervised
learning for action recognition in Table 2. For each method, we briefly describe
its characteristics and performance in terms of accuracy and the percentage of
labeled data used for the training stage.

Table 2: A summary of semi-supervised learning methods for Action Recognition. The
column “Performance” presents the top-1 accuracy of the best model in each method. The
percent (%) after each dataset denotes the percent of labeled data used for training. *
denotes that these methods were re-implement for video domain by [46].

Method Description Network Performance Code

VideoSSL
[46]

Utilizing a pre-trained
network on ImageNet to
guide the training of the
3D CNN.

3D ResNet-18
47.6 (Kinetics100 - 5%)
32.4 (UCF101 - 5%)
32.7 (HMDB51 - 40%)

None

TCL
[95]

Proposing two types of
loss including Maximize
Instance Agreement and
Maximize Group Agree-
ment.

TSM ResNet-18
29.81 (SS-V2 - 5%)
30.28 (Kinetics400 - 5%)
93.29 (Jester - 5%)

Link

FitMach*
[97]

The pseudo-labels from
weakly-augmented data
are utilized to guide the
training for a strongly-
augmented version of the
same data.

3D ResNet-18
40.5 (Kinetics100 - 5%)
27.1 (UCF101 - 5%)
32.9 (HMDB51 - 40%)

None

S4L*
[121]

The combination of
the self-supervised and
semi-supervised learning
method.

3D ResNet-18
33.0 (Kinetics100 - 5%)
22.7 (UCF101 - 5%)
29.8 (HMDB51 - 40%)

None

MT*
[6]

Calculating the average
of model weights over
training steps that helps
to generate a more ro-
bust model compared to
using the final weights.

3D ResNet-18
27.8 (Kinetics100 - 5%)
17.5 (UCF101 - 5%)
27.2 (HMDB51 - 40%)

None

PL*
[62]

The prediction from a
sample is reused to guide
itself.

3D ResNet-18
27.8 (Kinetics100 - 5%)
17.6 (UCF101 - 5%)
27.3 (HMDB51 - 40%)

None

4.3 Self-Supervised Learning

Unlike supervised learning, in self-supervised learning, most methods require
a data pair xi, zi where zi is automatically generated for a pre-defined pretext

https://cvir.github.io/TCL/
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Figure 6: Overview of self-supervised learning-based methods for action recognition. There
are two tasks in self-supervised learning including the pretext task and the downstream task.
For the pretext task, the network is trained with pseudo-labels generated without human
labor. For the downstream task, the network is transferred to address this task with labeled
data.

task without involving any human annotation. Figure 6 shows an overview of
self-supervised learning-based methods. In which, a deep network as a feature
extractor is used to learn spatio-temporal features from the input video via
pretext tasks. After the self-supervised training finished, the learned visual
features can be further transferred to the downstream tasks i.e., the target
task (in this case is action recognition).

There are many pretext tasks have proposed such as video rotation pre-
diction [47], frame order verification [76], solving video jigsaw [3], video clip
order prediction [118], motion and appearance statistics prediction [113], video
playback rate perception [119], contrastive learning [84], etc.

Misra et al. [76] proposed a model that allows verifying temporal order.
With the input being a tuple of frames’ order, their model predicts whether
the frames’ order is correct or not. The authors proposed a ConvNet model to
perform this pretext task. The objective of the model is not only to solve the
temporal order verification task but also to learn spatio-temporal features from
input videos. Fernando et al. [28] presented a self-supervised CNN called O3N
based on odd-one-out learning. The input of the network is a tuple of related
videos where one of the videos has the wrong temporal order while the other
ones have the correct temporal order. The goal of O3N is to predict an odd
video, i.e., the video with the wrong temporal order from these input videos.
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A model based on deep reinforcement learning is introduced by [8]. The
authors observed that there has been unused potential in self-supervision
based on ordering. The diverse permutations will affect CNN differently.
How can we find permutations that have higher utility for improving a CNN
representation than the random set? The authors presented a reinforcement
learning algorithm that helps to create permutations in the training phase.
To learn the function for proposing permutations, the authors simultaneously
train a policy and self-supervised network by utilizing the improvement over
time of the CNN network as a reward signal.

Kim et al. [53] have shown ambiguity in time direction when we hardly
distinguish between a “catch” or a “throw” action from given shuffled frames.
The authors introduced a self-supervised task called Space-Time cubic puzzles.
Given a randomly permuted sequence of 3D spatio-temporal pieces cropped
from a video clip. The 3D CNN is used to learn both spatial and temporal
relations from frames of the input video and predict their original arrange-
ment. Through performing Space-Time cubic puzzles, the 3D CNN increase
significantly the video representation and achieve state-of-the-art performance
compare to other self-supervised methods of action recognition.

Far apart from the previous methods, [113] presented a self-supervised
spatio-temporal representation learning for videos. Inspired by the success
of two-stream approaches in video classification, based on regressing both
motion and appearance statistics along spatial and temporal dimensions, the
authors proposed to learn visual features from given only the input video
data. A C3D network was introduced to learn visual features along spatial and
temporal dimensions by predicting several numerical labels generated through
the characteristics of video such as the region with the largest motion and its
direction, the most diverged region in appearance and its dominant color, and
the most stable region in appearance and its dominant color.

Caron et al. [10] found that a randomly initialized AlexNet achieves 12% in
terms of accuracy on ImageNet while the chance is at 0.1%. This means that
a randomly initialized network is intimately tied to its convolutional struc-
ture, which gives a strong prior to the input signal. The authors presented
a new approach for self-supervised learning named Deep Cluster. Thus, we
can use labels obtained from a randomly initialized network to kick-start the
process, which can be refined later. Inspired by Deep Cluster, [5] propose a
novel self-supervised method that leverages unsupervised clustering in one
modality (e.g., audio) as a supervisory signal for the other modality (e.g.,
video). The authors presented three approaches for training video models from
self-supervised audio-visual information including Multi-Head Deep Cluster-
ing (MDC), Concatenation Deep Clustering (CDC), and Cross-Modal Deep
Clustering (XDC). For the two first methods, the pseudo-labels from the
second modality are complemented by the pseudo-labels generated in the first
modality. In the third approach i.e., XDC, the audio clusters drive the learning
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of the video representation and vice versa. The authors showed that XDC
outperforms large-scale fully-supervised pretraining for action recognition on
the same architecture.

Contrastive learning is an approach to formulate the task of finding similar
and dissimilar things for a CNN model. Using this approach, we can train a
deep neural network to classify between similar and dissimilar images or videos.
Inspired by contrastive learning and the success of contrastive learning methods
like SimCLR in the image field, [84] presented a self-supervised Contrastive
Video Representation Learning (CVRL) method to learn spatio-temporal
visual representations from unlabeled videos. The CVRL model is pre-trained
on the Kinetics600 and the Kinetics400 datasets. The authors studied data
augmentations involving spatial and temporal cues and proposed a spatial and
temporal augmentation method to impose strong data augmentation for video.
The experiments show that the CVRL achieves state-of-the-art performance on
the downstream task and semi-supervised learning. Especially, the performance
of CVRL achieves 72.6% in terms of accuracy approximates with supervised
learning models. This significantly closes the gap between unsupervised and
supervised video representation learning. Several other contrastive learning-
based methods have been proposed by [78], [100], [101], etc. A list of the video
feature self-supervised learning methods can be found in Table 3.

4.4 Other Approaches

Far apart from the aforementioned categories, various approaches have focused
on action recognition via weakly supervised learning. Weakly supervised
learning aims to train the models on huge volumes of samples. However,
different from fully-supervised video datasets that are labeled by humans, the
labels in datasets used in weakly supervised learning are usually generated from
hashtags, and noise labels of social media without human fine-tuning. With
this approach, our training dataset may be expanded to billion samples without
incurring high expensive annotation costs. The drawback of this approach is the
noise labels in many cases, not ground-truth labels, therefore it increases the
confusion of the models during training on these weakly supervised datasets.

IG-65M [30] is one of the most popular weakly supervised datasets for
action recognition. This dataset contains 65M videos collected from Instagram
with many different hashtags. Ghadiyaram et al. [30] proposed using IG-65M
to pre-training the networks and then these networks will be fine-turned on
fully-supervised datasets such as Kinetics, Sports-1M, Epic-Kitchens, etc. The
authors demonstrated that their approach has improved the state-of-the-art of
these action recognition datasets compared to the independent training i.e.,
only training on fully-supervised datasets.

To recognize the fine-grained actions, [65] proposed the new method namely
Hierarchical Atomic Action Network to conduct weakly-supervised fine-grained
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Table 3: A summary of methods on Self-Supervised Learning for Action Recognition as the
downstream task. We record the results on two standard datasets, including UCF101 and
HMDB51. All results are the top-1 accuracy, which corresponds to backbone architectures
in the column “Network.”

Method Description Network Pre-training
Dataset Performance Code

VideoMAE
[103]

Proposing data-efficient
learning via video recon-
struction using autoen-
coders as the pretext
task.

ViT-L Kinetics700
96.1 (UCF101)
61.1 (HMDB51)

Link

BraVe
[87]

Training the network to
learn features from a nar-
row view to the general
content of the input clip.

TSM-50x2 Kinetics600
93.1 (UCF101)
77.8 (HMDB51)

Link

MCN
[66]

Proposing multi-task
process between con-
trastive learning and
meta-learning.

3D ResNet-18 UCF101
84.8 (UCF101)
54.8 (HMDB51)

Link

CVRL
[84]

Contrastive learning
based on the SimCLR
method.

ResNet-50 Kinetics400
92.1 (UCF101)
65.4 (HMDB51)

None

AVID+CMA
[78]

Contrastive learning for
cross-modal discrimina-
tion of video from audio
and vice versa.

R2+1D-18 Audioset
91.5 (UCF101)
64.7 (HMDB51)

Link

XDC
[5]

- Based on Deep Cluster-
ing.
- Leverages unsupervised
clustering in audio as
a supervisory signal for
video and vice versa.
- The first self-
supervised method
outperforms large-
scale fully-supervised
pretraining.

R2+1D-18
Kinetics
Audioset
IG-65M

91.5 (UCF101)
63.1 (HMDB51)

None

PCL
[101]

- Combine Pretext
tasks with contrastive
learning, referred to
as Pretext-Contrastive
Learning.

ResNet-18 UCF101
82.3 (UCF101)
43.2 (HMDB51)

None

PRP
[119]

- Capture temporal res-
olution characteristics
within the video domain
in a self-supervised
manner.
- Introduce a motion at-
tention mechanism to fo-
cus on meaningful fore-
ground regions.

R2+1D-18 UCF101
72.1 (UCF101)
35.0 (HMDB51)

Link

https://github.com/MCG-NJU/VideoMAE
https://github.com/deepmind/brave
https://github.com/deepmind/brave
https://github.com/facebookresearch/AVID-CMA
https://github.com/yuanyao366/PRP
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Table 3: Continued.

Method Description Network Pre-training
Dataset Performance Code

DPC
[33]

- Learning spatio-
temporal features by
recurrently predicting
future representations.
- Predicting further into
the future with progres-
sively less temporal con-
text.

ResNet-34 Kinetics400
75.7 (UCF101)
35.7 (HMDB51)

Link

IIC
[100]

- Uses positive-negative
pairs to train with con-
trastive learning.
- Different modalities
of the same video are
treated as positives and
breaking temporal rela-
tions in the video or
other videos are treated
as negatives.

ResNet-18 UCF101
74.4 (UCF101)
38.8 (HMDB51)

Link

TCE
[56]

- Encoding videos such
that adjacent frames ex-
ist close to each other
and videos are separated
from one another.

ResNet-50 Kinetics400
71.2 (UCF101)
36.6 (HMDB51)

Link

VCP
[67]

- Randomly choose one
from 4 transformations
or keeping the original.
- Predict which is trans-
form applied to the input
clip.

ResNet-18 UCF101
66.0 (UCF101)
31.5 (HMDB51)

None

3D Cubic Puzzles
[53]

- Ambiguity in time
direction when hardly
distinguishing between
a “catch” or a “throw”
action from shuffled
frames.
- Introducing a pretext
task based on solving
Space-Time Cubic Puz-
zles.

ResNet-18 Kinetics400
65.8 (UCF101)
33.7 (HMDB51)

None

Video Clip Ordering
[118]

Learning the spatio-
temporal representation
of the video by predict-
ing the order of shuffled
clips from the video.

ResNet-18 UCF101
64.9 (UCF101)
29.5 (HMDB51)

None

Skip-Clip
[26]

- Training a deep model
for future clip order
ranking based on a con-
text clip.

ResNet-18 UCF101 64.4 (UCF101) None

https://github.com/TengdaHan/DPC
https://github.com/BestJuly/IIC
https://github.com/csiro-robotics/TCE
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Table 3: Continued.

Method Description Network Pre-training
Dataset Performance Code

3D RotNet
[47]

- A set of rotations are
applied to all videos as
a pretext task and a
model is defined to pre-
dict these rotations.

ResNet-18 Kinetics400
62.9 (UCF101)
33.7 (HMDB51)

None

CMC
[102]

- Presenting a set of sen-
sory views of a video
clip.
- Based on contrastive
learning, A model is
built to maximize the
mutual information be-
tween different views of
the same scene.

CaffeNet UCF101
59.1 (UCF101)
26.7 (HMDB51)

Link

M&A
[113]

- Based on regressing
both motion and appear-
ance statistics along spa-
tial and temporal dimen-
sions.
- Predicting several nu-
merical labels generated
through the characteris-
tics of video such as the
region with the largest
motion and its direction,
etc.

C3D UCF101
58.8 (UCF101)
20.3 (HMDB51)

Link

Arrow of Time
[115]

- Learning to see the
arrow of time – to
tell whether a video se-
quence is playing for-
ward or backward.
- Focusing on the motion
cues in videos and using
the arrow of time to pre-
train action recognition
models.

AlexNet UCF101 55.3 (UCF101) None

Cross & Learn
[90]

- Information shared
across modalities has a
much higher semantic
meaning compared to
modality-specific infor-
mation.
- Present a self-
supervised method
for representation
learning utilizing two
different modalities
(RGB and flow).

CaffeNet UCF101
58.7 (UCF101)
27.2 (HMDB51)

Link

https://github.com/HobbitLong/CMC/
https://github.com/laura-wang/video_repres_mas
https://github.com/nawidsayed/Cross-and-Learn
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Table 3: Continued.

Method Description Network Pre-training
Dataset Performance Code

Geometry
[29]

- Extracting pixel-wise
geometry information as
flow fields and dispar-
ity maps from synthetic
imagery and real 3D
movies.
- Introducing a new type
of auxiliary supervision
based on exploring geom-
etry.

CaffeNet UCF101
55.1 (UCF101)
23.3 (HMDB51)

None

temporal action recognition. There are four hierarchy levels in their method
including clip level, atomic action level, fine action class level, and coarse
action class level. In which, the author proposed a self-supervised learning
approach to discover visual concepts. After completing learned atomic actions
by visual concepts, the authors further mapped to coarse and fine action labels
via the semantic label hierarchy. The experiment results have shown that the
Hierarchical Atomic Action Network achieved state-of-the-art performance on
several standard datasets.

In fully-supervised learning methods, all the action classes are known
a priori and available during both training and testing. However, these
methods are not suitable for many real-world applications, where several
action classes are not seen during training. Zero-shot learning (ZSL) has
been proposed to address this issue. Specifically, ZSL aims to recognize
videos in new classes that are unavailable during the training phase [70].
Generalized zero-shot learning (GZSL) introduced in [117] becomes harder
than ZSL because the test videos can belong to the seen or unseen classes.
To address the action recognition problem with GZSL, [70] introduced the
out-of-distribution detector. Specifically, the authors split the problem into two
partway separations i.e., seen and unseen action classes. The authors proposed
an adversarial network that trained on seen action classes to classify videos in
unseen action classes. Their approach has been conducted on several popular
datasets and the results have shown that their method achieved state-of-the-art
performance compared to other existing methods.

5 Datasets and Metrics

5.1 Datasets

There have more than 20 datasets that are used in action recognition. We
provide a summary of these datasets and their characteristics in Tables 4
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Table 4: A summary of common small-scale datasets from 2011 to now used for action
recognition.

Dataset Description #classes Samples Download

HMDB51
[59]

- At least 1s / video.
- Single activity /
video.

51 6,849 Link

UCF50
[88]

- Realistic videos from
Youtube.
- Single activity /
video.

50 6,676 Link

UCF101
[98]

- At least 1.06s/video.
- Single activity /
video.

101 13,320 Link

ActivityNet
[9]

- Large-scale video.
- 1.41 activity instance
/ video.

203 27,811 Link

Hollywood2
[72]

- 19.7s/video on aver-
age action videos and
scene videos.

22 3,669 Link

MSR-Action3D
[64]

An action dataset of
depth sequences cap-
tured by a depth cam-
era.

20 — Link

MSR-Daily Activity 3D
[112]

- A daily activity
dataset captured by a
Kinect device camera.
- An activity is per-
formed in either “sit-
ting on sofa” or “stand-
ing” pose.

12 320 Link

ASLAN
[55]

- Focus on action simi-
larity. 432 3,697 Link

RGBD-HuDaAct
[80]

- Synchronized color-
depth video streams
30s-150s/video.

16 1,189 Link

Charades
[93]

- Video action classifi-
cation performance 6.8
actions/video.

157 9,848 Link

and 5. We categorize all datasets into two types. The first one is a group of
small-scale datasets that include less than 100K sample videos in each dataset
(see Table 4), and the other type is the group of large-scale datasets that
includes greater than 100K videos (see Table 5).

https://serre-lab.clps.brown.edu/resource/hmdb-a-large-human-motion-database/
https://www.crcv.ucf.edu/data/UCF50.php
https://www.crcv.ucf.edu/data/UCF101.php
http://activity-net.org/
https://www.di.ens.fr/~laptev/actions/hollywood2/
https://sites.google.com/view/wanqingli/data-sets/msr-action3d?authuser=0
https://sites.google.com/view/wanqingli/data-sets/msr-dailyactivity3d?authuser=0
https://talhassner.github.io/home/projects/ASLAN/ASLAN-main.html
http://adsc.illinois.edu/sites/default/files/files/ADSC-RGBD-dataset-download-instructions.pdf
https://prior.allenai.org/projects/charades
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Table 5: A summary of common large-scale datasets from 2011 to now used for action
recognition.

Dataset Description #classes Samples Download

Kinetics400
[51]

- Last around 10s
/video.
- Single activity /
video.

400 273K Link

Kinetics600
[11]

- Last around 10s
/video.
- Single activity /
video.

600 435K Link

Kinetics700
[12]

- Last around 10s
/video.
- Single activity /
video.

700 643K Link

Kinetics700-2020
[96]

- Last 10s around
/video.
- Single activity /
video.

700 648K Link

Human3.6M Dataset
[41] - 3D human poses. 17 3.6M Link

Sports-1M
[50]

- Single action/video.
- YouTube videos con-
tain 6 different types
of bowling, 7 different
types of American foot-
ball, and 23 types of bil-
liards.

487 1.1M Link

Youtube-8M
[1]

- Provide pre-
computed and com-
pressed features based
on a Deep CNN pre-
trained on ImageNet.

3862 6.1M Link

Something-Something
[32]

- Video prediction
tasks.
- 6.8 actions/video.

174 220K Link

HACS
[125]

- 2-second clip annota-
tions. 200 890K Link

Moments in Time
[77] - 3s/video. 339 1M Link

HVU-Dataset
[21]

- Holistic video under-
standing (multi-label &
multi-task video).

3,142 572K Link

https://deepmind.com/research/open-source/kinetics
https://deepmind.com/research/open-source/kinetics
https://deepmind.com/research/open-source/kinetics
https://deepmind.com/research/open-source/kinetics
http://vision.imar.ro/human3.6m/description.php
https://cs.stanford.edu/people/karpathy/deepvideo/
http://research.google.com/youtube8m/
https://20bn.com/datasets/something-something
http://hacs.csail.mit.edu/
http://moments.csail.mit.edu/
https://holistic-video-understanding.github.io/
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Table 5: Continued.

Dataset Description #classes Samples Download

Jester
[74] - 3s/video on average. 27 148K Link

IG65M
[49]

- Weakly supervised
dataset. 400 65M None

VideoLT
[123]

- Large-scale long-
tailed video recogni-
tion.

1,004 256K Link

Small-scale Datasets: Most of the datasets are published before 2016 and
in RGB format. Several datasets with other formats such as depth sequences
captured by a depth camera in MSR-Action3D and RGBD-HuDaAct datasets.
In small-scale datasets, the most common datasets are HMDB51, UCF50,
UCF101, and ActivityNet. The HMDB51 dataset [59] is collected from various
sources, mostly from movies and a small proportion from public databases such
as the Prelinger archive, YouTube, and Google videos. The dataset contains
6,849 clips divided into 51 action categories, each containing a minimum of
101 clips. The actions categories can be grouped into five types: general facial
actions (laugh, chew, talk, etc.), facial actions with object manipulation (smoke,
eat, drink, etc.), general body movements (climb, backhand flip, handstand,
jump, stand up, etc.), body movements with object interaction (kickball, ride
a bike, shoot a gun, sword exercise, etc.), and body movements for human
interaction (kiss, shake hands, punch, etc.). The Two-stream model by [94]
has the best performance with 88% in terms of accuracy by using architectures
of discriminatively trained ConvNets for action recognition in video.

The UCF101 [98] is an action recognition dataset, including 101 action
categories. All videos from this dataset are real action videos, collected from
YouTube. UCF101 gives diversity in terms of actions, with 13,320 videos
containing large variations in camera motion, object appearance, pose, object
scale, viewpoint, cluttered background, illumination conditions, etc. The
videos in 101 action categories are grouped into 25 groups, where each group
can consist of 4-7 videos of an action. The same group videos may share
some common features, such as a similar background, similar viewpoints,
etc. R2+1D-BERT [49] has been the best method for UCF101 with an
average accuracy of up to 98.69%. In R2+1D-BERT, the authors combined 3D
convolution with late temporal modeling for action recognition by replacing
the conventional Temporal Global Average Pooling layer at the end of the
3D convolutional architecture with the Bidirectional Encoder Representations
from Transformers (BERT) layer to better utilize the temporal information
with BERT’s attention mechanism.

https://20bn.com/datasets/jester
https://videolt.github.io/
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The ActivityNet aims at covering a wide range of complex human activities
that are of interest to people in their daily lives. In version 2015, ActivityNet
provides samples from 203 activity classes with an average of 137 untrimmed
videos per class and 1.41 activity instances per video for 849 video hours. Videos
in ActivityNet are divided into five main groups, including eating and drinking
activities (549 videos); sports, exercise, and recreation (3485 videos); socializing,
relaxing, and leisure (1249 videos); personal care (844 videos); and household
activities (1075 videos). The model ranked first in performance ActivityNet,
is now W-TALC, a Weakly-supervised Temporal Activity Localization and
Classification framework using only video-level labels, [82] with a map of
93.2. This method can detect fine granularity activities and achieve better
performance than current state-of-the-art methods on ActivityNet.

Large-scale Datasets: Nowadays, social networks are increasingly popular,
with millions of images and videos uploaded every day. Therefore, collecting
images or videos from the internet isn’t effortless. But building huge annotated
datasets is extremely expensive in terms of time-consuming and labor-intensive.
One of the most common large-scale datasets is Kinetics with three versions:
Kinetics400 [51], Kinetics600 [11], and Kinetics700 [96]. The videos were
temporally trimmed and lasted around 10 s and 200–1000 clips for each action.
The total has 306,245 videos in Kinetics400 and 650,317 videos in Kinetics700.
Currently, OmniSource irCSN-152 [24] is known as the best model for Ki-
netics400 with an accuracy of 83.6% is 1.7% better than that of irCSN-152
[30] whose performance keeps the second rank and is 21.34% higher than the
least performance method by [17] for this dataset. Similarly, the LGD-3D
Two-stream model [86] has given the best performance for Kinetics600 with
the top-1 accuracy and top-5 accuracy of 82.7% and 96%, respectively. For
Kinetics700, the best performing model on this dataset is I3D [12]. It gave an
accuracy of over 81%.

Sport-1M is a large-scale annotation with 1,133,158 video URLs from
Youtube covering 487 sports labels. Despite only holding the second rank in
performing Kinetics400, irCSN-152 [30] has been the best method on Sport-1M;
the ratios of video top-1 accuracy and video top-5 accuracy are 75.5% and
92.7%, respectively. Following the Sport-1M, YouTube-8M [1] has published
and become the largest multi-label video classification dataset. There are
composed of more than 6 million videos and 3800 classes in this dataset. Each
class has at least 200 corresponding video examples, with an average of 3,552
training videos per class. To solve storage and computational bottlenecks
problems, the authors provide pre-computed and compressed features based
on a Deep CNN pre-trained on ImageNet to extract the hidden representation
immediately before the classification layer. The DCGN, a deep convolutional
graph neural network [71], gave the best performance on this dataset with
87.7% top-1 accuracy.



Deep Learning for Human Action Recognition: A Comprehensive Review 29

Something-Something [32] is another large-scale dataset with two versions.
Something-Something v1 includes 108,499 videos, where the training set is
86,017 videos, the validation set is 11,522 videos, and the other is the test set
without labels. In version two, the number of videos significantly increased,
with 220,847 videos in total. All versions include 174 classes, defined as caption
templates for videos. Whilst PAN ResNet101 model [122] has performed
best on Something-Something V1 with 55.3 and 82.8 of top-1 and top-5
accuracy. Komkov et al. [57] has provided the mutual modality learning
(MML) method for version 2 with the accuracy of 69.02% (top-1) and 92.7%
(top-5). One large-scale dataset with weak labels is introduced by [49] named
IG65M, which includes more than 65M videos from Instagram. To harness
millions of public videos from Instagram, the authors adopted the associated
hashtags as labels to train video classification models. Aside from those,
Human3.6M Dataset [41], Jester [74], HVU-Dataset [21], HACS [125], Moments
in Time [77] are the common large scale datasets that have been used in recent
years.

5.2 Metrics

Action recognition is about predicting action classes from videos; hence the
best performance is achieved when the disparities between the labels predic-
tion and ground-truth labels are minimal. The most straightforward way of
computing the disparity is to measure top-1 accuracy. Besides, model size
and computational cost are also considered, especially when implementing the
model on embedded or mobile devices with limited memory and speed. The
standard evaluation metrics used for action recognition are presented in the
following:

• Accuracy: Top-1 accuracy is a standard performance measure for multi-
class classification in action recognition. This measure is calculated as
the ratio between the number of correctly predicted scores per the total
number of points in the test set.

• #Params: The number of parameters or model size is the total of
parameters that are used in the model. This measure affects the ability
to save models in memory. Typically, the larger the number of parameters,
the more memory it takes.

• Computational cost: The complexity or computational cost, or the
number of float-point operations (FLOPs) is a measure of multiply-
adds in the model. It is an indirect metric and an approximation [69].
Typically, a deep learning model requires computation at millions of
FLOPs (MFLOPs) or billions of FLOPs (GLOPs). This measurement is
usually directly proportional to the running time.
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• Frame rate (FPS): is the frequency (rate) at which consecutive images
called frames are processed within 1 second and it is expressed by the
number of frames per second. Typically, a video with a higher FPS keeps
the motion smooth and the details crisp. In computer vision, FPS is
used to measure processing speed. Far apart from FLOPs, which is the
indirect metric of computation complexity, the frame rate is the direct
metric that includes speed and other factors such as memory access cost
and platform characteristics.

6 Discussion

Overall, most supervised learning-based methods toward becoming more and
more deep and complex. However, the performance of these methods depends
mainly on the availability of large-scale datasets. This is sometimes not
suitable in the case of amounts of labeled data being very small. Moreover,
labeling for a large annotation dataset usually takes extremely expensive in
terms of time-consuming and labor-intensive. Various semi-supervised and/or
self-supervised learning methods have been proposed recently to minimize
dependence on large-annotation datasets and avoid these limitations. Because
there are millions of images and videos uploaded every day. So, collecting these
unlabeled data is very simple and much less expensive than annotation data.
Through the above survey, we can see that semi-supervised and self-supervised
learning-based approaches are the two main state-of-the-art strategies that are
increasingly being improved. Besides, reducing the model’s complexity is also
a promising future approach, due to the final objective of an action recognition
system is to deploy it in real-time on edge devices. Therefore, how to train a
lightweight model that can run in real-time for action recognition on embedded
or mobile devices is also a novel approach that has recently gained interest.
To address this issue, several possible research directions may be of interest
such as knowledge distillation, self-knowledge distillation, few-shot/zero-shot
learning, contrastive learning, etc. For the problem of lack of long-range
temporal information, various promising approaches have been proposed and
improved such as using the slow pathway in SlowFastNet [16], combining other
data types like audio, optical follow [48], pose estimation [68], etc.

7 Conclusion

This paper presents a survey of literature on deep learning approaches for
action recognition. Although there have been many excellent studies on
human action recognition, there are many challenges existing such as lack of
long-range temporal information, computational cost, etc. In this work, we
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have reviewed human action recognition methods and provided comprehensive
feature representation from hand-designed-based to deep neural network-based.
As for the learning paradigm, we have reviewed three main strategies, including
supervised learning, semi-supervised learning, and self-supervised learning
together with the recent knowledge distillation. Besides the survey of new
techniques, we have also provided a summarized the existing datasets at both
large and small scales.
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