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ABSTRACT

With the rapid progress over the past five years, face authentication has
become the most pervasive biometric recognition method. Thanks to
the high-accuracy recognition performance and user-friendly usage, au-
tomatic face recognition (AFR) has exploded into a plethora of practical
applications over device unlocking, checking-in, and financial payment.
In spite of the tremendous success of face authentication, a variety of face
presentation attacks (FPA), such as print attacks, replay attacks, and
3D mask attacks, have raised pressing mistrust concerns. Even worse, as
attack techniques are getting more and more powerful and smart, FPA
is becoming increasingly realistic and advanced. Besides physical face
attacks, face videos/images are vulnerable to a wide variety of digital
attack techniques launched by malicious hackers, causing potential men-
ace to the public at large. Due to the unrestricted access to enormous
digital face images/videos and disclosed easy-to-use face manipulation
tools circulating on the internet, non-expert attackers without any prior
professional skills are able to readily create sophisticated fake faces,
leading to numerous dangerous applications such as financial fraud, im-
personation, and identity theft. Nowadays, face information has become
the dominant biometric trait of a person and unique non-verbal but
powerful FaceID. How to safeguard personal face information against
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both physical and digital attacks is of great importance. This survey
aims to build the integrity of face forensics by providing thorough anal-
yses of existing literature and highlighting the issues requiring further
attention. In this paper, we first comprehensively survey both physical
and digital face attack types and datasets. Then, we review the latest
and most advanced progress on existing counter-attack methodologies
and highlight their current limits. Moreover, we outline possible future
research directions for existing and upcoming challenges in the face
forensics community. Finally, the necessity of joint physical and digital
face attack detection has been discussed, which has never been studied
in previous surveys.

Keywords: Face attacks, digital face attack, physical face attack, face forensics

1 Introduction

Significant progress on face recognition techniques has been made since the
advent of Apple’s highly touted FaceID and the follow-up face authentication
works. Face recognition systems have pervaded into billions of people’s daily
lives over various applications such as device unlocking, log-in, and e-banking.
Consequently, face information nowadays has become the dominant biometric
trait of a person, a unique FaceID, and a vehicle itself of non-verbal but
powerful messages [201]. With the rapid proliferation of face multimedia
content circulating on social media platforms, unrestricted access to digital
media content has posed high level of risks over privacy leakage, identity
theft, and financial fraud. In spite of the achieved tremendous success on face
authentications, potential malicious face attacks, including digital and physical
attacks, have raised pressing security concerns to the public at large.

As shown in Figure 1, digital face attacks can be basically classified into four
categories: (1) identity swap; (2) face reenactment; (3) attribute manipulation;
and (4) entire face synthesis [43]. Identity swap [1, 19, 60] is actually not a new
problem. The first ever work on identity swap dates back to 1860, where Abra-
ham Lincoln’s head is stitched up with the body of southern politician John
Calhoun [41]. Heading to the era of artificial intelligence and deep learning,
deepfake techniques, employing powerful various generative models, are able
to create sophisticated fake faces with the target identity. Face reenactment
(a.k.a. expression edition) [195, 196] aims to transfer the source person’s facial
expression to the target one. Face2Face [195] and NeuralTextures [196] are
two of the most prominent facial expression editing techniques. Moreover,
attribute manipulation [38, 69] empowered by numerous image translation
methods [79, 250, 251] attempts to edit face attributes such as hair, glasses,
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Figure 1: Four digital face attack types and corresponding forgery regions. White pixels
indicate the forged region.

and skin color in face images/videos. Thanks to the recent advances of var-
ious generative models [61, 93, 94, 199, 200], entire face synthesis [87, 88]
can generate face pictures whose identity does not exist with a high level of
realism. Generally speaking, attribute manipulation and entire face synthesis
techniques tend to bring positive impacts to human lives, while identity swap
and face reenactment could easily cause disconcerting security problems. For
this reason, this survey mainly focuses on identity swap and face reenactment.

Based on the attack techniques and intents, physical face attacks (a.k.a.
Face presentation attacks (FPA)) can be broadly categorized into two clas-
sifications: impersonation and obfuscation. As shown in Figure 3(a)–(d),
impersonation attacks include typical print attack, replay attack, and 3D
mask attack, where attackers impersonate the target identity by covering the
whole face region to fool face recognition systems. Generally speaking, 2D
print and replay attacks can be easily launched by non-expert persons. In
turn, 3D mask attacks, including silicon masks, resin masks, plastic masks,
and mannequins, always demand advanced fabrication systems to capture the
target person’s 3D facial information, which requires great efforts and costs
[157]. On the other hand, more advanced FPA types have been subsequently
proposed, such as makeup attack, tattoo attack, funny glasses attack, and wig
attack, as shown in Figure 3(e)–(h). We cast these attacks as the obfuscation
attack, where attackers partially obfuscate the face region to hide the attacker’s
identity. Compared with the impersonation FPA, the latter is more realistic
and challenging to detect.

Malicious hackers can handily download the media content circulating on
the internet and launch two types of face attack: physical and digital face at-
tacks. Figure 2 illustrates the general pipeline. On the side of physical attacks,
numerous face presentation attacks, such as 2D print/replay attack, 3D mask
attack and makeup attack, can be easily launched to hack the face authentica-
tion systems over various application scenarios. On the other side, the attacker
can also employ off-the-shelf APPs (e.g., ZAO [4], Facebrity [2], and Reface
[3]) or disclosed face manipulation algorithms (e.g., Deepfakes [60]) to edit face
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Figure 2: Overview of physical and digital face attacks.

Figure 3: Typical face presentation attack (FPA) examples Heusch et al. [71]. The top row
shows the impersonation attacks: (a) print, (b) replay, (c) 3D mask, and (d) mannequin.
The bottom row presents the obfuscation attacks: (e) glasses, (f) makeup, (g) tattoo, and
(h) wig.

content fueled with targeted disinformation or misinformation. The generated
fake content can be released or disseminated to the social network platforms,
causing detrimental mistrust issues. Even worse, as the attack methodologies
are getting increasingly advanced, the produced fake faces are becoming more
and more sophisticated. Powerful as the attack technique is, there is a thin line
between bonafide and fake faces that can be hardly distinguished by human
naked eyes, and it is easy to cross over. To that end, the abuse of either
physical or digital face attacks will certainly lead to the tendency of reducing
the trust of digital media content and raising tangible concerns, in the long run.

To counter various malicious physical face attacks and safeguard face recog-
nition systems, numerous traditional methods have been first proposed. These
methods mine informative artifacts via extracting hand-crafted features such as
histograms, gradients, and texture [21, 52, 96, 137, 157, 159]. With the advent
of deep learning, the accuracy of learning-based PAD methodologies [23, 82,
108, 130, 179, 227, 230, 241] significantly boosts. To overcome the overfitting
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problem of the data-driven models, some methods seek to employ auxiliary
modality information, such as remote physiological signals (rPPG) [115, 123,
130, 229], pseudo depth maps [15, 130, 211, 233, 234, 241], Near-infrared (NIR)
maps [124, 129, 189, 230], and Thermal maps [138, 175]. On the other hand,
great efforts have been dedicated to tackling the digital face attack problems
over the past five years. Most existing face forgery detection algorithms are
AI- or deep-learning based [39, 97, 139, 142, 165, 192, 243]. Apart from some
models focusing on distinguishing input face images/videos between real and
fake, some recent works [43, 76, 97, 206, 224] propose to localize forged regions
for fake face appearances. Unsurprisingly, most learning-based detectors suffer
significant performance drops when deployed to unforeseen datasets or attack
types. As such, [66, 114, 126, 135, 183, 244] designed more generalized face
forgery detection models that mine more inherent clues of fake media and
mitigate the severe domain gaps. Figure 4 shows the explosive increase of
published literature numbers for both digital and physical face attack detection
in recent years. It can be seen that significant efforts have been devoted to
the face forensics community, making it an active research area.

Figure 4: The growing trend in the number of papers in the digital face attack detection
and physical face attack detection fields [86, 231].

Compared with previous surveys, we note that this survey is unique and
superior in the following three aspects:

• We, for the first time to the best of our knowledge, aggregate and examine
the literature on both digital and physical face attacks into one survey.
We outline that the unified face attack detection would be a promising
research area in the face forensics community.
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• As shown in Table 1, this survey provides, by far, the latest and most
comprehensive overview of the face forensics literature (>250 research
papers) over attack types, datasets, and detection methodologies.

• This survey poses severe security, privacy, and explainability issues that
have been largely understudied in the existing literature. Based on
the outlined issues, we further suggest future research orientations to
facilitate the development of this community.

Table 1: Comparisons with prior survey papers.

Prior Ref. Physical Digital Unified
Surveys Timelines Scale #Dataset Attack Attack Attack

Souza et al. [185] 2018 98 9 ✓ - -
Raheem et al. [168] 2019 90 14 ✓ - -
Pereira et al. [161] 2019 57 7 ✓ - -
Jia et al. [80] 2020 74 10 ✓ - -
Safaa El-Din et al. [174] 2020 127 8 ✓ - -
Kotwal et al. [102] 2020 42 12 ✓ - -
Yu et al. [231] 2022 252 36 ✓ - -
Nguyen et al. [151] 2019 106 3 - ✓ -
Verdoliva [201] 2020 274 9 - ✓ -
Lyu [136] 2020 34 5 - ✓ -
Tolosana et al. [197] 2020 200 7 - ✓ -
Mirsky and Lee [143] 2021 192 3 - ✓ -
Ours 2022 253 32 ✓ ✓ ✓

This survey starts with reviewing the physical face attacks and digital face
attacks in Sections 2 and 3, respectively. We briefly discuss the importance of
the problem and concretely review related literature regarding attack types,
datasets, and detection methodologies. Then we analyze the existing security
issues and suggest possible future research directions to facilitate the devel-
opment of the face forensics community. Section 4 innovatively investigates
the unifying detection works against face spoofing and face forgery. We also
thoroughly analyze and discuss the motivations, benefits, and future research
of the unified face attack defense. Finally, we draw the conclusion in Section 5.

2 Physical Face Attacks

As automatic face recognition (AFR) systems have been prevalently deployed
in a wide variety of applications, face presentation attack detection (PAD)
has attracted extensive attention from both industry and academia. It is of
utmost necessity to safeguard AFR against malicious physical face attacks. In
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this section, we provide a comprehensive review on the literature of physical
face attacks. The main literature structure is illustrated in Figure 5.

Figure 5: Tree diagram of physical face attack paper structure.

2.1 Importance of the Problem

Physical face attacks, also known as face presentation attacks (FPAs), can
be deployed either as an obfuscation attack or as an impersonation attack,
where the former attempts to hide one’s identity and the latter aims at
impersonating the target person. Past decades have witnessed the rapid
proliferation of face authentication systems, and they have exploded into
various practical applications ranging from log-in, financial payment, check-in,
etc. FPA is getting increasingly notorious because it can easily bypass the
face authentication system. For example, Apple’s FaceID was hacked by a
3D mask FPA [5] in 2017 and caused disturbing security concerns. With
the rapid development of attack methods and fabrication techniques in this
era, FPAs tend to be more and more sophisticated and challenging. As such,
it is of great importance to design highly accurate and secure presentation
attack detection (PAD) models to safeguard face recognition systems against
FPAs. To better illustrate how current face recognition systems assemble
with face attack detection models, we present the relationship between face
recognition and face digital/physical attack detection in Figure 6. Generally
speaking, there are two popular schemes for deployed face recognition systems:
(a) parallel scheme and (b) serial scheme. For the parallel scheme, the face
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Figure 6: Illustration of the relationship between face recognition and face digital/physical
attack detection. (a) parallel scheme and (b) serial scheme.

recognition system and face attack detection model are employed to jointly
decide the authorization of the input face. In turn, the serial scheme first
feeds the input face into the face attack detection model. Once the attack is
detected, the input face will be rejected immediately. Otherwise, the face will
be delivered to the face recognition system for final decision-making.

2.2 Face Presentation Attacks and Datasets

Face presentation attacks can be generally divided into two categories: ob-
fuscation attacks and impersonation attacks. As shown in Figure 3(e)–(h),
obfuscation attacks such as glasses, makeup, tattoo, and wig attempt to hide
someone’s identity. On the other hand, impersonation attacks (Figure 3(a)–(d))
attempt to mimic the target person’s identity by copying the target person’s
face to specific mediums, such as paper, screen, and 3D mask. Over the
past fifteen years, substantial efforts have been devoted to building face anti-
spoofing (FAS) datasets for facilitating the algorithm design of presentation
attack detection. In Table 2, we comprehensively summarize the existing face
presentation attack databases in terms of modality, quantity, spoof medium,
and acquisition device. To fit the uncontrollable environmental variables (e.g.,
illumination, scene, acquisition device, spoof medium, etc.) in practical sce-
narios, face anti-spoofing (FAS) databases tend to be increasingly diverse.
On the other hand, scale is another pivotal factor of FAS databases, as most
deep learning-based methods demand large-scale training data to guarantee
high-level PAD performance when deployed in real-world applications. Besides
the RGB vision modality, more modalities such as depth map, near-infrared
(NIR), thermal map, flashing, and acoustic have been gradually incorporated
in lastly released databases. The additional modalities can serve as auxiliary
information to improve the generalization capability of PAD models. Due
to the two-player nature between FPA and PAD, novel presentation attacks
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with higher quality will be constantly proposed with the development of smart
attack algorithms and advanced fabrication techniques. As such, it is unsur-
prising that attack types tend to be more and more diverse in newly published
databases.

2.3 Overview of Presentation Attack Detection Methodologies

2.3.1 Face Liveness Detection Systems and Mobile Applications

Face liveness detection techniques have been widely deployed in real-world
applications. With various sensors (e.g., RGB camera, speaker, microphone,
accelerometer, etc.) assembled, most devices such as smartphones are able to
take advantage of multi-modality information captured by different sensors
to conduct more accurate and generalized PAD. Thanks to the pervasive
availability of speakers and microphones on mobile devices, acoustic signals
have been demonstrated to be effective in capturing biometric information
from users for various mobile-oriented applications. Recently, great efforts
[30, 99, 217, 246] have been devoted to devising acoustic-based face liveness
detection frameworks to perform more reliable PAD in practical scenarios.
EchoPrint [246], for the first time, incorporated both RGB vision modality
and acoustic modality to conduct the user authentication. However, face
anti-spoofing has been largely ignored in EchoPrint. Follow-up works such
as Echoface [30] achieved more than 96% accuracy by using acoustic signals
solely. Rface [217] demonstrated that radio frequency signals could identify
both 2D print/replay and 3D mask attacks with high-level accuracy. Moreover,
EchoFAS [99], designed a more advanced signal configuration and aggregated
CNN and vision transformer to achieve outstanding PAD performance.

Besides acoustic signal, some recent works [26, 49, 194] proposed to use the
flash to conduct a secure face liveness detection, based on the theory that the
reflection characteristics of bonafide and PAs are distinguishable. FaceRevelio
[50] demonstrated that varying illumination could enable reconstructing the
3D face surface of the input, thereby achieving robust and accurate face
liveness detection. Given the fact that dual-pixel sensors have been widely
built in mobile devices, Wu et al. [213] proposed to capture dual-pixel images
to reconstruct the depth map and subsequently distinguish the bonafide from
PAs. Chen et al. [33] used an RGB camera to conduct PAD by comparing the
rPPG maps of face and fingertip videos, which should be highly consistent
if they are captured from a live person. Apart from the sensors mentioned
above, the accelerometer and gyroscope have also been incorporated into face
liveness detection. FaceLive [117] employed accelerometer and gyroscope to
measure the movement data, and the head pose video was meanwhile recorded
by the built-in camera. Then the consistency between the two modality data
would be used to discriminate the bonafide from attacks.



12 Kong et al.

2.3.2 Presentation Attack Detection Methodologies

In this survey, we classify PAD methods into three categories: traditional hand-
craft methods, deep learning methods, and hybrid methods. Traditional hand-
craft methods attempt to extract hand-crafted features such as local binary
pattern (LBP) [11], scale-invariant feature transform (SIFT) [157], histograms
of oriented gradients (HoG) [42], speeded-up robust features (SURF) [21],
and difference of gaussian (DoG) [193] to perform face liveness detection. As
illustrated in Figure 7(a), deep learning methods, empowered by effective neural
network architectures, aim at directly extracting deep features from input face
images/videos for PAD. In turn, hybrid methods assemble handcrafted feature
extraction and deep feature extraction modules into one framework for final
decision-making.

Figure 7: (a) Deep learning methods for FAS. (b) Traditional handcrafted methods for FAS.
HFE indicates a variety of hand-crafted feature extraction algorithms.

Traditional Handcraft Methods. We illustrate the general pipeline of
handcraft method in Figure 7(b), where HFE indicates a variety of hand-crafted
feature extractors such as LBP [11], SIFT [157], HoG [42], SURF [21], and DoG
[193]. LBP [11] was taken as a local texture descriptor that assigned a binary
label to each pixel, and the binary number was determined by the values of
the central pixel and its neighbor pixels. SIFT [157] had been widely employed
to capture image representations in many computer vision tasks as it was
invariant to various image distortions, such as rotation, scale, translation, etc.
Besides, HoG [42] showed great superiority in capturing representative features
of images compared with previous edge and gradient based descriptors. SURF
[21] was a fast and efficient scale and rotation invariant descriptor. It could
effectively speed-up the computation and extract robust scale-independent
features to perform accurate face liveness detection. Moreover, the DoG [193]
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filter could effectively remove the noise in the high-frequency domain, hence
empowering high-performance face anti-spoofing.

Learning-based Methods. Thanks to the advent of deep learning, enor-
mous progress has been achieved in this research field. Early deep learning
attempts on FAS date back to 2014, where Yang et al. [220] first proposed to
design a convolutional neural network with some data pre-processing, such as
spatial and temporal augmentations, to achieve an outstanding FAS perfor-
mance. Presentation attack detection can be regarded as a binary classification
problem. Lucena et al. [134] found that pretraining the VGG16 [184] on
ImageNet [172] and transferring the learned knowledge to FAS could effectively
save computational resources and avoid the overfitting problem. With the
rapid progress in network architectures, more advanced networks such as the
siamese network [67] and transformer [59] have been applied to the FAS task.
Moreover, Chen et al. [29] designed a two-stream framework complementarily
combining RGB feature and multi-scale retinex (MSR) feature via an attention-
based fusion module and achieved outstanding generalization capability. Deb
and Jain [44] demonstrated that local face patches could effectively reflect
the inherent cues for more generalized detection. Similarly, Wang et al. [202]
designed PatchNet to mine informative local cues and proposed asymmetric
margin-based classification loss and self-supervised similarity loss to regularize
the patch embedding space. On the other hand, PAD against video replay
attacks plays a critical role in securing automatic face recognition systems. As
such, some methods proposed to employ LSTM [55, 218] and RNN [146] to
detect the temporal consistency. Yang et al. [221] exploited a novel spatial-
temporal network to capture subtle evidence in both spatial and temporal
domains.

Generally speaking, binary supervision can easily cause severe overfitting
problems (i.e., lack generalization capability to unseen environments). To
mitigate the domain gap between training and testing data, many methods
seek to use auxiliary supervision in the training phase, such as the binary
mask [57, 73, 131, 132, 188, 232] and depth map [15, 24, 56, 124, 130, 152,
160, 182, 211, 230, 234]. Binary mask-based methods assigned 0/1 to each
pixel in bonafide/fake regions. The idea of the depth map is based on the
fact that live faces contain rich 3D facial structures while 2D FPA can barely
reflect depth information. Typically, Sun et al. [188] demonstrated that the
local label supervision scheme, including local depth map and local binary
label supervisions, is superior to the global binary supervision for FAS. George
and Marcel [57] conducted pixel-wise binary supervision at the feature level,
thereby achieving a more accurate and robust detection performance. Liu
et al. [131] designed a deep tree learning scheme with binary map supervision
for zero-shot face anti-spoofing. On the other hand, depth map supervision
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has been widely used in FAS since it can reflect rich intrinsic spoofing cues for
2D PAD. Liu et al. [130] designed a CNN-RNN framework and simultaneously
estimated depth and rPPG maps for FAS at the video level. Yu et al. [234]
proposed central difference convolutional operators and extended this work
by further incorporating central difference pooling [233] to estimate the depth
maps for PAD.

Moreover, since the reflection characterastics of PAs and bonafide are
discriminative, some works [92, 226, 239] seek to use auxiliary geometric
information such as reflection maps to conduct generalized face anti-spoofing.
Benefiting from the advances of FAS systems, abundant auxiliary modality
information is available in practical applications. For this reason, many
methods propose to conduct robust PAD via multi-modal fusion. Besides
RGB space, some detectors [20, 21, 103] demonstrated that HSV and YCbCr
could provide informative clues. Recently, researchers found that near-infrared
(NIR) modality [84, 103, 124, 129, 152, 182, 230, 238] contains abundant
discriminative and generalized information than RGB and depth data since
NIR measures the amount of heat radiated from a live face. Specifically, Liu
et al. [129] proposed a multi-modal two-stage cascade framework that fused
three modalities of RGB, depth map, and NIR to perform PAD. Liu et al. [124]
proposed a modality translation-based FAS method that translated the RGB
face image into more generalized NIR image, thereby achieving an excellent
generalization capability. Besides NIR modality, rPPG signals have also been
exploited in PAD since rPPG signals can reflect periodic heart rhythms of
input faces. Some models [115, 123, 130, 225, 229] attempt to incorporate
rPPG modality to mine inherent face spoofing cues and conduct more robust
FAS.

To further improve the generalization capability of PAD, researchers re-
cently turned to domain generalization and domain adaptation algorithms that
have been demonstrated effective in a wide variety of tasks, including computer
vision, natural language processing, and multi-modality problems. Domain
adaptation aims at learning a model on source domain data that can adapt
well to target domains with different data distributions. Recently, various
domain adaptation-based methods have been proposed for FAS [83, 108, 145,
204, 205, 207, 247]. Li et al. [108], for the first time, used the knowledge
of domain adaptation to tackle the FAS problem. The authors proposed to
minimize the Maximum Mean Discrepancy (MMD) to align the distributions
of training and test datasets in high-dimension feature space. Wang et al.
[205] designed an unsupervised adversarial domain adaptation framework to
learn domain-invariant features for robust FAS. To overcome the problem
that the target domain data is always unavailable in the training stage, Wang
et al. [207] designed a meta-learning based model that could adapt better to
target domains. On the other hand, domain generalization aims at learning a
robust model on source domains that can generalize well to unforeseen target
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domains. Due to the uncontrollable environmental variables (e.g., illumination,
capture device, and attack types), the trained PAD models tend to easily
suffer significant performance drops in practical applications. For this reason,
extensive efforts [17, 27, 58, 82, 109, 122, 127, 153, 162, 177, 203, 215] have
been devoted to domain generalization-based FAS methods in the recent few
years.

Typically, Jia et al. [82] proposed a single-side domain generalization model
to obtain compact and generalized features on the real side. Similarly, George
and Marcel [58] designed a multi-channel CNN and used a one-class classifier
to learn compact embedding for the bonafide class. Besides, Shao et al. [177]
proposed to use adversarial learning to align the feature distributions between
source and target domains. Wang et al. [203] used disentangled representation
learning to disentangle spoofing-related features from subject-related features
and achieved outstanding generalization performance. Chen et al. [27] designed
a two-branch framework to capture camera-invariant features for robust PAD.
Last but not least, more effective learning schemes such as zero-shot learning
[166], meta learning [24, 34, 131, 163, 179, 207], knowledge distillation [114,
121], and progressive transfer learning [167] have been deployed to PAD and
achieved promising generalization capability.

Hybrid Methods. Hybrid methods aim at taking advantage of discrim-
inative handcrafted features and powerful learning-based models for PAD.
These methods can be typically divided into three categories: (1) Extracting
handcraft features first and then feeding them forward to neural networks [90,
110, 112, 228]; (2) Using deep models to extract deep features first and subse-
quently extracting handcrafted features from deep features [14, 111, 178]; (3)
Handcraft features and deep features are fused together for final classification
[51, 169, 170, 181, 228]. To be more specific, Li et al. [111] demonstrated that
motion blurs could reflect informative clues for discriminating the bonafide
from replay attacks. They first extracted the motion blur indicator for each
input video and then applied 1D CNN to extract deep features. Besides,
TransRPPG [228] designed a novel transformer-based framework for 3D mask
PAD. TransRPPG first extracted the rPPG map from an input video and
then designed a two-branch ViT to extract rPPG and environmental features
for final decision-making. Feng et al. [51] proposed a neural network-based
method by synchronously aggregating the image quality and motion cues from
input face videos to conduct FAS.

For the second category, Shao et al. [178] proposed deep dynamic textures
for 3D mask FAS by using pre-trained VGG Net to extract deep features and
then applying optical flow [16] to form the deep dynamic texture features. Li
et al. [110] proposed to fine-tune the VGG-face model to extract deep features
and then used PCA [6] to overcome overfitting problems. Moreover, Rehman
et al. [170] combined deep features and HOG maps of input face images to
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perform PAD. Rehman et al. [169] designed a FAS framework that enhanced
discriminative features by aggregating deep features and LBP texture maps
of input faces. Overall, although some hybrid methods can benefit from the
advantages of handcrafted features and deep features, they still have obvious
drawbacks, such as needing expert prior knowledge for handcrafted feature
extraction. Thus, they cannot guarantee a global optimum for FAS.

2.4 Counter-Forensics Issues

The advent of effective detection tools always comes with more powerful attack
methods since attacks and defenses are in an arms race. Skilled attackers
are able to launch adversarial attacks to bypass PAD models. Herein, we
generally categorize them into two types: physical adversarial attacks and
digital adversarial attacks.

As shown in Figure 8, physical adversarial attacks, including adversarial hat
[95], adversarial glasses [180], adversarial makeup [223], and adversarial sticker
[63], are capable of hacking face recognition systems under the black-box or
white-box setting. Even worse, these attack methods can easily bypass most
existing PAD models since the live persons are indeed actively present in front
of the devices. Thus, how to design more generalized FAS models to counter
the evasion of PAD remains an open problem.

Figure 8: Physical adversarial face attack samples: adv. hat [95], adv. examples [180], adv.
makeup [223], and adv. sticker [63].

Besides physical adversarial attacks, digital adversarial attacks also pose a
significant challenge in this research community. As illustrated in Figure 9,
although the existing spoofing detection model can effectively distinguish
bonafide from PAs, the expert attacker can launch adversarial attacks on input
media content to fool the detection model. With the rapid developments of
adversarial attack algorithms, more and more attack methods [9, 10, 235] on
spoof faces have been recently proposed to deceive existing FAS models, among
which [235] can even achieve a 100% attack success rate. There is no doubt
that these attack methods will cause severe security concerns and hazardous
crises. Therefore, it is non-trivial to develop a more secure and robust FAS
model to counteract the menace of these face adversarial attack techniques.
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Figure 9: The spoofing detection model can effectively discriminate bonafide from presenta-
tion attacks. However, expert attacker is able to apply adversarial attack technologies on
spoof images to nullify the detection model.

2.5 Future Research Directions

To date, there are still many open issues that need to be properly addressed
in the FAS research field. On the one hand, industry is now somewhat ahead
of academia. For instance, Apple FaceID takes advantage of the aggrega-
tion of three modules: a dot projector, a flood illuminator, and an infrared
camera to capture the 2D infrared face image and reconstruct the 3D facial
structure. However, in the research community, most existing FAS databases
are somewhat outdated. More advanced PA databases are expected in the
future. On the other hand, generalized PAD is a long-standing challenge
in this research area. Mining inherent spoof clues and designing more ef-
fective networks are necessary to empower the generalization capability. In
addition, the problem of privacy leakage during the face recognition process
has raised pressing concerns. Proposing privacy-reserved PAD methodolo-
gies is also of great importance to address the concerns and secure the user
privacy.

2.6 Discussion

In this section, we comprehensively reviewed the existing literature on PAD
in terms of face spoofing datasets, PAD systems, and PAD methodologies.
We further analyzed the existing security issues and main risks of adver-
sarial attacks. Moreover, we outlined promising future research areas in
physical face attacks to facilitate the development of both industry and
academia.
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3 Digital Face Attacks

The digital face attack on media content are actually not a new problem. The
first ever attempt at face identity swap dates back to 1860, where Abraham
Lincoln’s head is stitched up with the body of southern politician John Calhoun
[41]. Figure 12 depicts the tree diagram of literature structure on digital
face forensics. Previous works can be basically classified into five categories:
surveys, dataset papers, attack methodologies, detection methods, and other
works. Numerous existing survey papers have reviewed prior literature on
face forgery attacks and detection methodologies. However, these surveys
are somewhat outdated and uninspiring to neither industry nor academia.
Herein, we comprehensively review the forgery generation methodologies,
deepfake datasets, existing attack detection models, and counter-forensics
works. Moreover, we thoroughly analyze existing issues needed to be properly
addressed and propose possible future research directions.

3.1 Importance of the Problem

In recent years, falsified media content has become a vital problem on social
media platforms. Faces play a central role in human communication, as a
person’s face can emphasize a message or even convey a message in its own
right [53]. However, due to the unrestricted access to enormous face media
content on the network, face forgery attacks aim at manipulating pristine
face images/videos have posed pressing security risks to the public at large.
The situation gets even worse with the advent of AI and deep learning. The
fake faces generated by deep learning methods are referred to as Deepfakes
in face forensics community. Empowered by Deepfakes, the quality-level and
fidelity-level of fake multimedia content have been improved so rapidly that
human eyes can hardly identify the authentication. Due to the zero-barrier
accessibility of the high-performance face attack resources on some open
platforms (e.g., Github), non-expert persons without any prior professional
knowledge can readily use disclosed face forgery algorithms or APIs to create
sophisticated fake content for either entertaining or malicious purposes. In
this vein, these techniques could be easily fueled with targeted disinformation
or misinformation and cause harmful consequences over fraud, impersonation,
and rumor. For this reason, it is urgent to propose effective and robust face
forgery detection methods to build digital media integrity and safeguard social
platforms from face forgery attacks.

3.2 Digital Face Attack Methodologies

Digital face forgery can be generally classified into four categories: identity
swap, face reenactment, attribute manipulation, and entire synthesis. Figure 1
summarizes digital face attack types and the corresponding forgery regions,



Digital and Physical Face Attacks: Reviewing and One Step Further 19

where white pixels indicate the forged regions. Note that the manipulation
regions of identity swap and face reenactment are provided by the official
FF++ [171] dataset. Some works also define the manipulation region as the
absolute difference between the pristine images and the corresponding forged
ones. Generally speaking, Attribute manipulation and entire face synthesis
techniques tend to bring positive impacts to human lives, while identity swap
and face reenactment could cause disconcerting security problems [86]. For
this reason, this survey mainly focuses on identity swap and facial reenactment
(a.k.a. expression edition).

3.2.1 Identity Swap

The first ever work on identity swap dates back to 1860, where Abraham
Lincoln’s head is stitched up with the body of southern politician John Calhoun
[41]. A typical face swap pipeline is shown in Figure 10, which can be generally
divided into four components: face alignment, face warping, face replacement,
and post-processing. Heading to the era of deep learning, numerous learning-
based face swap frameworks have been designed that extensively boost the
quality of generated fake faces. Figure 11 illustrates a typical fake face
generation pipeline. In the training phase, two face auto-encoders that share
one identical encoder are trained for the source person and the target person.
The encoder learns the shared information from input faces, while two decoders
are responsible for capturing the specific information for the two identities
[98]. As such, in the inference stage, the source face is firstly fed forward
to the encoder and subsequently passed to the target person’s decoder to
produce the forged face. With the advent of powerful generative models, such
as autoregressive models [199, 200], generative adversarial networks (GANs)
[61], and variational autoencoders (VAEs) [93, 94], generative networks have
become the main-stream deepfake generation architectures. Over the past
three years, numerous terrific deepfake generation methodologies have been
proposed to generate forgery face images with high-level quality and realism
[31, 54, 113, 133, 154, 216, 253].

Figure 10: Typical pipeline for face swapping [28].
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Figure 11: Deepfake content creation pipeline. (a) Training phase: two face auto-encoders
with one identical encoder and two specific decoders are trained under the supervision of
face reconstruction loss and (b) Inference phase: feed forward the source face to the encoder
and employ the target person’s decoder to produce the fake face.

3.2.2 Face Reenactment

Face reenactment is also known as the expression edition. Face2Face [195] is
one of the typical expression edition methods. It proposed a real-time face
reenactment method that could reenact the target video sequence of photo-
realistic quality by using a three-step solution. Follow-up works such as A2V
[191] designed a cross-modal framework that was able to generate high-quality
mouth texture with accurate lip sync. It employed a recurrent neural network
to learn the mapping from audio features to mouth shapes, thereby could syn-
thesize realistic speech videos. Tripathy et al. [198] achieved facial expression
transfer with a single source and target face images by using GANs. To further
improve the fidelity and quality levels of synthesized videos, many powerful
frameworks had been designed in recent two years. For example, Ha et al. [64]
designed three components: image attention block, target feature alignment,
and landmark transformer to fix the identity mismatch issue between the
target identity and the driver identity. Recently, 3DMM [209] attempted to
use a single source image and a driving video to synthesize the speech video.
Hyun et al. [78] further improved the quality of face reenactment in terms of
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appearance consistency and motion coherency in videos. The majority of the
following works focused on making generated videos look more natural and
realistic. Zhang et al. [236] demonstrated that audio not only had a high corre-
lation with lip motion but also had a low correlation with head movement and
eye-blinking. Moreover, Zhang et al. [236] further learned to render the head
pose and eye-blinking in the synthesized videos to make them more natural.

3.3 Digital Fake Datasets

Based on the release time, we summarize the existing face forgery datasets in
Table 3. According to the level of scale, quality, fidelity, and the real-world
application scenarios, we generally divide these datasets into three generations.
1st generation: UADFV [222], DF-TIMIT [100], and FaceForensics++ [171];
2nd generation: DFD [47], DFDC [47], and Celeb-DF [120]; 3rd generation: DF-
Forensics-1.0 [85], ForgeryNet [68], FFIW [248], KoDF [105], and FakeAVCeleb
[89]. The datasets are elaborated one-by-one as follows:

• UADFV [222] consists of 49 real videos and 49 fake videos, with 17.3k
frames manipulated. The deepfake videos are produced by using genera-
tive neural networks and post-processing algorithms.

• DF-TIMIT [100] contains 320 pristine videos and 640 deepfake videos
generated by faceswap-GAN [1] with 32 subjects. Fake videos are equally
split into high-quality(HQ) and low-quality(LQ) subsets, corresponding
to the face regions with different resolutions: 128 × 128 and 64 × 64.
Compared with UADFV, DF-TIMIT has a higher diversity and a larger
scale.

• FaceForensics++ [171] is one of the most pervasive digital face attack
datasets in the community. It composites of two forgery types: identity
swap and facial reenactment, with each one containing one traditional
and one deep learning-based attack, resulting in four automated face
manipulation methods: Deepfakes, Face2face, FaceSwap, and Neural-
Textures. FaceForensics++ covers three quality levels, and each level
contains 1,000 pristine videos and 4,000 manipulated videos.

• DFD [48]. Deepfake detection dataset (DFD) was released by Google/
Jigsaw in 2019. It consists of 363 real videos and 3,068 deepfake videos
with 28 consented subjects in various practical scenes.

• DFDC [47] includes 1,131 real videos and 4,113 fake videos, which are
generated by two face-swap algorithms. DFDC is of high diversity in
terms of scenes and actor characteristics.
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• Celeb-DF [120] has a higher level of quality and fidelity compared with
the datasets released earlier. It collects 590 real celebrity videos from
YouTube and generates 5,639 fake videos based on real videos.

• DF-Forensics-1.0 [85] is a large-scale deepfake dataset that contains
50,000 real videos and 10,000 forged videos generated by an end-to-end
automatic face swapping model. The dataset shoot videos from 100
paid actors of various ages, skin colors, nationalities, and genders. To
better imitate real-world scenarios and produce more challenging videos,
extensive perturbations are applied in this dataset.

• ForgeryNet [68] builds an extremely large forgery dataset with both
image- and video-level labels. ForgeryNet provides 221,247 videos shot
from more than 5400 subjects, and the fake videos are generated by
15 different manipulation algorithms. It synchronously facilitates the
development of four vital tasks in digital face forensics: image forgery
classification, spatial forgery localization, video forgery classification,
and temporal forgery localization.

• FFIW [248] constructs a large-scale and high-quality deepfake dataset
by designing a novel domain-adversarial quality assessment framework.
Meanwhile, it proposes a novel algorithm to tackle the multi-person
problem in face forgery detection. FFIW contains 10,000 real videos
and 10,000 fake videos, with an average of more than three faces in each
frame.

• KoDF [105] is a large-scale collection of deepfake and genuine videos on
403 Korean subjects. It contains 175,776 fake videos generated by six
synthetic methods.

• FakeAVCeleb [89] fills the gap that existing deepfake datasets either
contain deepfake videos or deepfake audios. FakeAVCeleb contains 19,500
fake videos, with both videos and audios manipulated.

3.4 Overview of Face Forgery Detection Methodologies

Face forgery detection methodologies can be generally classified into two
categories: frame-level (image-level) detection and video-level detection. The
former focuses on mining key spatial or frequency information to discriminate
real faces from fake ones. On the other hand, the video-level detection methods
can utilize the temporal-inconsistency features to distinguish the input video
clip between real and fake. We elaborate on the details of both frame-level
and video-level detection as follows.

Frame-level detection. As illustrated in Figure 12, we summarize frame-
level detection methodologies as the following five types: (1) DNN-based
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detection: DNN-based detection methods are data-driven methods, includ-
ing convolutional neural networks (CNN) [7, 39, 150, 192], recurrent neural
networks (RNN) [173], and vision transformer (ViT) [70]. Afchar et al. [7] de-
signed MesoNet and MesoInception4 to detect Deepfake and Face2Face videos
automatically. Besides, some generic networks such as Xception Net [39],
Efficient Net [192], and Capsule Net [150] have been demonstrated effective on
deepfake detection tasks. Follow-up architectures such as RNN [173] and ViT
[70] have been employed to further improve the forgery detection accuracy.
Tremendous progress has demonstrated that DNN-based methods are able to
achieve promising detection methods. However, they are vulnerable to adver-
sarial attacks and tend to suffer severe overfitting problems. (2) Hand-crafted
features such as the LBP map [210], color component [107], and DCT map
[165] have been taken as informative indicators for Deepfake detection; (3)
Spatial-based models are the most common forgery detection methods.

Figure 12: Tree diagram of digital face attack paper structure.

A wide variety of spatial-based features, such as local relations [32], pixel
region relations [176], and context discrepancies [155], have demonstrated their
effectiveness on different datasets. Besides, some prior arts [104, 116, 243]
proposed to use attention mechanisms and multi-instance learning to capture
informative clues in the spatial domain. (4) Frequency-based detection: F3Net
[142] mined rich artifacts in the frequency domain and performed robust and
accurate face manipulation detection. Miao et al. [142] extended this idea by
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designing hierarchical frequency-assisted interactive networks to conduct more
robust detection. Li et al. proposed a method that extracts frequency-aware
discriminative features supervised by single-center loss. (5) Biological signal-
based detection: some remote photoplethysmography (PPG) methods have
been proposed to expose manipulation in synthesized videos. We illustrate
classical face manipulation detection methods in Figure 13. The basic idea
of these methods is grounded on the fact that fake videos cannot replicate
the biological signal of synthesized faces. In this vein, DeepRhythm [164]
utilized dual-spatial-temporal attention to capture normal heartbeat rhythms
and detect deepfake videos. Similarly, [40] extracted ppg maps and computed
spatial coherence and temporal consistency to identify the authentication of
input videos.

Figure 13: Illustration of classical face digital attack detection methods. (a) hand-crafted
features; (b) spatial-based detection; (c) frequency-based detection; and (d) biological
signal-based detection.

Due to the two-player nature between face forgery and forgery detection,
attack techniques are getting smarter and smarter. Previous detection method-
ologies can achieve outstanding detection performance under intra-settings
while they are struggling in detecting unforeseen deepfake attacks or datasets.
It is of great significance to mitigate these domain gaps and propose more
robust and generalized detection models. As shown in Figure 14, there are
two general steps for generating manipulated faces. Given two input faces,
Step 1 applies face manipulation algorithms to alter the face content, and
Step 2 conducts various post processes like blending, color correction, and
other post-processing. Inspired by the fake face generation pipeline, face X-ray
[114] focused on the blending process, which employs ground-truth boundary
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Figure 14: The overview of face manipulation pipeline can be generally regarded as a
two-step process. Step 1 aims at applying various algorithms to modify the face content.
Step 2 conducts the blending, color correction, and postprocessing processes.

maps and binary labels to jointly supervise the training process. Luo et al.
[135] found that CNN-based models tend to overfit to training data. So they
proposed to use more intrinsic high-frequency noise features to conduct gen-
eralized face forgery detection. SPSL [126] observed that the up-sampling
operation is common in most manipulation techniques, and this operation
introduces unique forgery traces in the frequency domain. Shiohara and Ya-
masaki [183] further extended this idea by incorporating more common forgery
artifacts such as landmark mismatch, blending boundary, color mismatch, and
frequency inconsistency to further improve the generalization capability. On
the other hand, Zhao et al. [244] hypothesized that images’ distinct source
features could be preserved in manipulated faces. Based on this assumption,
they proposed to measure the consistencies of image patches and achieved
promising performance. Cao et al. [25] built an end-to-end reconstruction
architecture to learn the optimal forgery patterns. Zhu et al. [252] found
that decomposing an image into several constituent elements and utilizing
direct light and identity texture can remarkably extract subtle forgery patterns.
Moreover, lots of powerful learning regularities such as meta learning [186],
few-shot learning [101], contrastive learning [187], and neural coverage [208]
have been demonstrated effective for general forgery detection.

Besides forgery detection, forgery localization is another vital task in the
face forensics community. Localizing manipulated regions of forgery faces
can not only provide solid evidence for final decision-making but also unveil
the potential intents of attackers. Some methods such as multi-task [149],
DFFD [43], Detect and Locate [97, 140], and Fakelocator [76] have been
recently proposed. They can accurately localize forgery regions and identify
the authentication of input faces.

Video-level Detection. Most video-level detection methodologies capture
temporal inconsistency in fake videos and combine spatial artifacts to jointly
conduct the final decision-making. Generic neural networks such as 3DCNN
[237], LSTM [12, 72], RNN [37, 173], and ViT [91] have achieved impressive
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detection performance. Some methodologies focus on extracting hand-crafted
features like eye-blinking [118], head pose [222], face warping [119], and lip
movement [219]. Other models [62, 74, 75, 190] attempt to combine both spatial
and temporal artifacts in manipulated videos and perform a more accurate
deepfake detection. To defend against unforeseen attacks and datasets, more
generalized and robust detectors have been designed in recent three years.
DeepRhythm [164] demonstrated that the rppg maps could reflect heartbeat
rhythms, which can be further taken as a reliable and robust indicator for video-
level deepfake detection. Masi et al. [139] proposed a two-branch framework
to capture the intrinsic low-level artifacts while suppressing the high-level
semantic information in input videos. Haliassos et al. [65] only exploited
real talking faces to conduct a more robust and generalized detection in a
self-supervision manner. Lipforensics [66] focused on the irregularities in
mouth movement, which are common in most manipulated videos. Besides,
Temporal Coherence [245] proposed an end-to-end framework combining a
fully connected convolution network and a temporal transformer network for
extracting the temporal features and long-term temporal coherence. Moreover,
some multi-modal methodologies [98, 144, 249] jointly used visual and audio
information to achieve a variety of deepfake tasks.

3.5 Counter-Forensics Issues

Although existing detectors have shown effectiveness and robustness on various
face forgery datasets, they also stimulate the births of more powerful attacks.
Attacks and defenses are in an arms race of such typical two-player games. Thus,
it is unsurprising that adversarial attacks have recently fueled the face forensics
community. Most face forgery detectors are vulnerable to both black-box and
white-box adversarial attacks. Neekhara et al. [147] launched adversarial
attacks on deepfake detectors in a black-box setting. They demonstrated that
the designed universal adversarial perturbations could be flexibly deployed on
face images and bypass forgery detectors. Hussain et al. [77] proposed that
adversarial perturbations could fool DNN-based detectors and the produced
adversarial videos were robust to video and image compression. Jia et al. [81]
proposed a meta-learning framework to generate more imperceptible adversarial
samples by injecting adversarial perturbations into the frequency domain.
Adversarial attacks have posed pressing new challenges for both industry and
academia. They demand more powerful and robust face forgery detectors to
properly counteract the potential risks caused by counter-forensics issues.

3.6 Future Research Directions

Extraordinary success in deepfake attacks and digital face forensics has been
achieved in the last few years. Nonetheless, there are still lots of issues that
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need to be addressed. Although accurate and secure, most of the deepfake
detectors lack explainability and interpretability, thus limiting their reliability
when deployed in practical scenarios. More explainability-related works are
expected in the future to better interpret why the decision is made by the
defense system, and then the decision can be adjusted accordingly. Besides
accurately detecting forgery faces, localizing forgery regions is another vital
task in this community. Forgery localization is able to provide evidence for
detecting deepfakes and unveil attackers’ intents. However, this task has been
largely understudied so far. On the other hand, due to the two-player nature
between face forgery and forgery detection, attack algorithms will be more and
more powerful, and the generated fake faces will get increasingly realistic. This
research field calls for more robust detection methods to counteract the menace
of unforeseen advanced attack methods and address the generalization issues.
Moreover, deepfake videos in the wild always involve both visual and audio
manipulation to make the fake videos look more realistic. As shown in Table 3,
only FakeAVCeleb [89] considers deepfake audio (a.k.a. audio manipulation).
To facilitate accurate deepfake detection in the wild, more visual-audio joint
deepfake datasets and multi-modal detectors are expected in future research
works.

3.7 Discussion

In this section, we comprehensively reviewed the existing digital face forgery
literature over several important tasks, including face forgery generation,
deepfake datasets, and face forgery detection methodologies. We thoroughly
analyzed the potential risks and dangerous consequences of digital face attacks
and adversarial attacks. Besides, we outlined the existing and upcoming
challenges in the face forensics community and suggested possible future
research directions for industry and academia.

4 Unifying Security Efforts Against Physical and Digital Face
Attacks

4.1 Importance of the Problem

Automated face recognition (AFR) systems have been pervasively deployed to
billions of human beings all around the world for various applications. It is
reported that the market of AFR will reach USD 3.35B by 2024 [8]. However,
as shown in Figure 15, AFRs are vulnerable to both physical and digital face
attacks. Malicious attackers can readily launch various physical attacks on
the image/video capture stage or hack the device with digital attacks. Most
current defense methods are only capable of detecting either physical or digital
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attacks, thereby requiring the attack type be known as a prior. Generalizing
to unknown attack types has been remained as an open issue in this research
community. Therefore, it is of utmost importance to propose generalized
and unified detectors for safeguarding AFR systems from various malicious
attacks. On the other hand, presentation attack detection and digital face
forgery detection are two highly related tasks. Training a unified detector can
be cast as a multi-task learning problem. Yu et al. [225] demonstrated that
the generalization capacities of models could be obviously improved via the
joint training scheme compared with single-task learning. Therefore, it is of
much necessary to devote more efforts to unifying security for AFR against
physical and digital face attacks, which have been barely studied in the existing
literature.

Figure 15: Overview of AFR process. Step 182 and step 183 are vulnerable to physical and
digital face attacks, respectively.

4.2 Overview of Joint Face Spoofing and Forgery Detection
Methodologies

Joint detection is a brand new task that requires more attention in this
community. DFFD [43] is the first attempt at unifying the detection over
four digital face attacks, including identity swap, face reenactment, attribute
manipulation, and entire face synthesis. On the other hand, Li et al. [106]
demonstrated that face liveness verification systems are vulnerable to not
only presentation attacks but also digital face attacks (Deepfake). Inspired
by these two arts, follow-up works [45, 141, 225] attempt to propose unified
detection to counteract physical face spoofing and digital face forgery. Mehta
et al. [141] proposed to use the cross asymmetric loss function to supervise
the training process and achieved promising attack detection performance
in three scenarios: ubiquitous environment, individual databases, and cross-
attack/cross-database. Deb et al. [45] cast the task of unified detection of
digital and physical face attacks as a multi-task problem and achieved a more
generalized defense for automatic face recognition. Yu et al. [225] firstly
built a benchmark for joint face spoofing and forgery detection. Then they
proposed a novel multi-modal framework that combined rPPG facial signals
and RGB face images and achieved the best detection performance. Yu et al.
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[225] demonstrated that joint training can greatly boost the generalization
capability as spoofing detection and forgery detection are two highly related
tasks.

4.3 Future Research Directions

By far, only few efforts have been dedicated to this unified detection task.
Although the benchmark on joint physical and digital face attack detection has
been built in [225], it only considered video-level detection. It is necessary to
benchmark the joint detection at the image-level because image-level attacks
are prominent in many real-world scenarios. Besides, standard protocols for
this task should be properly built in future works to facilitate the development
of new models. Apart from benchmarks and protocols, more generalized
features and intrinsic clues between these two highly-related tasks are expected
to be extracted to further improve the generalization capability. Last but
not least, the interpretability for why the generalization capability of joint
detectors boosts compared with the single-task learning scheme is still vague.
More explainability and interpretability works are expected in the future.

4.4 Discussion

We innovatively analyzed and discussed the pivotal joint detection problem
in this section, which, to the best of our knowledge, was never mentioned
in the existing surveys. The importance of this problem had been firstly
clarified to attract more attention to this research field. Then, we reviewed
early attempts on this joint face anti-spoofing and forgery detection task. We
analyzed the main drawbacks of these works and suggested promising areas
for future research. As clearly stated before, the joint detection task is largely
understudied so far. To fill this gap in the face forensics community, more
efforts regarding generalized unifying fake face detection are expected in future
research works.

5 Conclusion

Securing face data circulating on the internet and face recognition systems
deployed in real-world applications is becoming a significant necessity to the
public at large. Over the past decades, we have witnessed tremendous progress
in both face attacks and face forensics. For sure, attack and safeguard are
two players in a competitive arms race, and both of them are becoming more
and more mature. Generally speaking, attack samples tend to be increasingly
sophisticated and realistic, which demands powerful detection tools to coun-
teract the pressing menace. It also requires industry and academia to design
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robust models to defend against various unforeseen attacks. In this survey,
we have provided a comprehensive overview and concrete discussions on the
literature on both physical and digital face attacks. For each respective topic,
we have provided a clear problem definition and analyzed the importance of the
problem. On the other hand, the taxonomy of various attack methodologies
and associated databases have been listed. We presented numerous attack
detectors and analyzed their technique soundness, and also pointed out the
main drawbacks of existing works. More importantly, future research directions
have been highlighted in this survey for addressing unsolved problems that
remained in the face forensics community. One step further, at the end of
the survey, we extensively surveyed and analyzed the research works on joint
face spoofing and forgery detection and concluded with suggestions for future
research directions. We hope this survey can help facilitate the development
of the face forensics community and attract more attention to contribute to
face security.
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