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ABSTRACT

A robust fake satellite image detection method, called Geo-
DefakeHop, is proposed in this work. Geo-DefakeHop is devel-
oped based on the parallel subspace learning (PSL) methodology.
PSL maps the input image space into several feature subspaces
using multiple filter banks. By exploring response differences of
different channels between real and fake images for filter banks,
Geo-DefakeHop learns the most discriminant channels based on the
validation dataset, uses their soft decision scores as features, and
ensemble them to get the final binary decision. Geo-DefakeHop
offers a light-weight high-performance solution to fake satellite im-
ages detection. The model size of Geo-DefakeHop ranges from 0.8K
to 62K parameters depending on different hyper-parameter settings.
Experimental results show that Geo-DefakeHop achieves F1-scores
higher than 95% under various common image manipulations such
as resizing, compression and noise corruption.
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1 Introduction

Artificial intelligence (AI) and deep learning (DL) techniques have made
significant advances in recent years by leveraging more powerful computing
resources and larger collected and labeled datasets. Geospatial science [14]
and remote sensing [27] benefit from this development, involving increased
application of AI to process data arising from cartography and geographic
information science (GIS) more effectively. Despite countless advantages
brought by AI, misinformation over the Internet, ranging from fake news [30]
to fake images and videos [8, 15, 24, 31, 38, 40], poses a serious threat to our
society.

Satellite images are utilized in various applications such as weather predic-
tion [37], agriculture crops prediction [22], flood and fire control [23]. If one
cannot determine whether a satellite image is real or fake, it would be risky to
use it for decision making. Fake satellite images may have impacts on national
security. For example, adversaries can create fake satellite images to hide
military infrastructure and/or create fake ones to deceive others. Though gov-
ernment analysts could verify the authenticity of geospatial imagery leveraging
other satellites or data sources, this would be prohibitively time intensive. It
would be extremely difficult for the public to verify the authenticity of satellite
images.

It becomes easier to generate realistically looking images due to the rapid
growth of generative adversarial networks (GANs). There are two ways to
generate fake satellite images. One is to leverage the base map of an input
satellite image to be produced by one GAN first. Then, a fake satellite image
can be generated by another GAN with the base map [7, 13, 39]. CycleGAN
belongs to this family. Another way is to generate fake satellite images directly
without a base map [2, 16–18, 29]. StyleGAN [17, 18] and Lightweight GAN
[25] belong to this family. Since generated satellite images are difficult to
discern by human eyes, there is an urgent need to develop an automatic
detection system that can find fake satellite images accurately and efficiently.

Little research has been done on fake satellite images detection due to the
lack of a proper fake satellite image dataset. The first fake satellite image
dataset was recently released by Zhao et al. [36]. To determine whether
a satellite image is real and fake, this work extracted handcrafted features
(such as spatial, histogram, and frequency features) and adopted the support
vector machine (SVM) classifier. It achieves an F1-score of 87% in detection
performance. We are not aware of any existing DL solution to this dataset.
Yet, there are DL-based fake image detection methods for other images. They
will be reviewed in Section 2.

Previous fake image detection work mainly focuses on a binarized decision
on whether an image is fake or authentic. However, a large satellite image
could be partially modified. It is crucial to generate a binary-decision map
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at the pixel level to identify the regions that have been altered. To meet
this requirement, we crop a satellite image into multiple blocks and analyze
discriminant features in different frequency components. Consequently, we can
obtain the image-level prediction result and the pixel-level prediction result
simultaneously. The latter can generate a heat map for partially altered satellite
images. This is the first unique feature of this current work. Furthermore,
different legitimate distortions could occur naturally or be added to fool fake
image detection algorithms. Thus, we consider various perturbations in our
experiment to ensure the robustness of our model for satellite images. This is
the second unique feature of our work.

A robust fake satellite image detection method, called Geo-DefakeHop,
is proposed here. It is based on one observation and one assumption. The
observation is that the human visual system (HVS) [11] has its limitation. That
is, it behaves like a low-pass filter and, as a result, it has a poor discriminant
power for high-frequency responses. The assumption is that GANs can generate
realistic images by reproducing low-frequency responses of synthesized images
well [9, 32]. Apparently, it is more challenging to synthesize both low and high-
frequency components well due to limited model complexity. If this assumption
holds, we can focus on differences between higher frequency components in
differentiating true and fake images.

This high-level idea can be implemented by a set of filters operating at all
pixel locations in parallel, known as a filter bank in signal processing. Each
filter offers responses of a particular frequency channel in the spatial domain
and these responses can be used to check the discriminant power of a channel
from the training data. To make the detection model more robust, we adopt
multiple filter banks, find discriminant channels from each, and ensemble their
responses to get the final binary decision. Since multiple filter banks are used
simultaneously, it is named parallel subspace learning (PSL). The proposed
Geo-DefakeHop offers a lightweight, high-performance and robust solution
to fake satellite images detection. Its model size ranges from 0.8K to 62K
parameters. It achieves an F1-score higher than 95% under various common
image manipulations such as resizing, compression and noise corruption.

The rest of this paper is organized as follows. Related work is reviewed in
Section 2. The Geo-DefakeHop method is presented in Section 3. Experiments
are shown in Section 4. Finally, concluding remarks are given in Section 5.

2 Related Work

2.1 Fake Images Generation

GANs provide powerful machine learning models for image-to-image translation.
It consists of two neural networks in the training process: a generator and
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a discriminator. The generator attempts to generate fake images to fool the
discriminator while the discriminator tries to distinguish generated fake images
from real ones. They are jointly trained via end-to-end optimization with an
adversarial loss. In the inference stage, only the generator is needed. Many
GANs have been proposed. One example is Cycle-consistent GAN (CycleGAN)
[39]. It has been applied to fake satellite image generation [36]. In this work,
we use StyleGAN2 [18] which is the most popular GAN on the internet and
Lightweight GAN [25] which is the newest GAN that could be trained efficiently
in one day to generate more fake satellite images (see Section 4.1).

2.2 Fake Images Detection

Most fake image detection methods adopt convolution neural networks (CNNs).
For example, Wang et al. [32] used the real and fake images generated by
ProGAN Karras et al. [16] as the input of ResNet-50 pretrained by the
ImageNet. Zhang et al. [35] generated fake images with their designed GAN,
called AutoGAN, and claimed that CNN trained by their simulated images
could learn artifacts of fake images. Nataraj et al. [28] borrowed the idea from
image steganalysis and used the co-occurrence matrix as input to a customized
CNN so that it can learn the differences between real and fake images. By
following this idea, Barni et al. [1] added the cross-band co-occurrence matrix
to the input so as to increase the stability of the model. Guarnera et al. [10]
utilized the EM algorithm and the KNN classifier to learn the convolution
traces of artifacts generated by GANs. Little research has been done to date
on fake satellite images detection due to the lack of available datasets. Zhao
et al. [36] proposed the first fake satellite image dataset with simulated satellite
images from three cities (i.e., Tacoma, Seattle and Beijing). Furthermore,
it used 26 hand-crafted features to train an SVM classifier for fake satellite
image detection. The features can be categorized into three types which are
spatial, histogram and frequency. Features of different classes are concatenated
for performance evaluation. In Section 4, we will benchmark our proposed
Geo-DefakeHop method with the method in [36] and CNN models with images
and spectrum as the input.

2.3 PixelHop and Saab Transform

The PixelHop concept was introduced by Chen and Kuo [6]. Each PixelHop
has local patches of the same size as its input. Suppose that local patches are
of dimension L = s1×s2×c, where s1×s2 is the spatial dimension and c is the
spectral dimension. A PixelHop defines a mapping from pixel values in a patch
to a set of spectral coefficients, which is called the Saab transform [21]. The
Saab transform is a variant of the principal component analysis (PCA). For
standard PCA, we subtract the ensemble mean and then conduct eigen-analysis
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on the covariance matrix of input vectors. The ensemble mean is difficult
to estimate if the sample size is small. The Saab transform decomposes the
n-dimensional signal space into a one-dimensional DC (direct current) subspace
and an (n− 1)-dimensional AC (alternating current) subspace. Signals in the
AC subspace have an ensemble mean close to zero. Then, we can apply PCA
to the AC signal and decompose it into (n− 1) channels. Saab coefficients are
unsupervised data-driven features since Saab filters are derived from the local
correlation structure of pixels.

2.4 Differences between DefakeHop and Geo-DefakeHop

The Saab transform can be implemented conveniently with filter banks. It has
been successfully applied to many application domains. Examples include [4,
20, 26, 33, 34]. Among them, DefakeHop [4] is closest to this work. There are
substantial differences between DefakeHop and Geo-DefakeHop. DefakeHop
was initially proposed to detect deepfake face videos. DefakeHop extracted
features from human eyes, nose and mouth regions. The purposes of DefakeHop
and Geo-DefakeHop are different. The former focuses on a binarized decision
on whether a face image is fake or authentic. A large satellite image could be
partially modified. The latter needs to generate a binary-decision map at the
pixel level to identify which regions are altered. The DefakeHop focuses on
the low-frequency signal because the high-frequency parts are destroyed by
the resizing, smoothing, and sharpening operation in the face swap process. In
the experiments of this work, we also show that if the image is perturbed by
resizing, compression, and noise corruption, more low-frequency components
are needed to keep good performance. Therefore, we claim that DefakeHop
performs well with the low-frequency signal only. In Geo-DefakeHop, we jointly
consider low- and high-frequency channels and select the most discriminant
channels to reduce the model size.

Furthermore, DefakeHop was designed using successive subspace learning
(SSL) while Geo-DefakeHop is developed with parallel subspace learning (PSL).
SSL and PSL are quite different.

In DefakeHop, SSL cascades several PixelHops and derives a deep and
global feature with a large receptive field. In Geo-DefakeHop, PSL does not
need global but local features since we need to make a decision at each pixel
location. Therefore, instead of cascading several PixelHops as done in SSL,
PSL extracts features parallelly with different filter shapes to get a rich feature
set.

We tailor DefakeHop to the context of satellite images and show that Geo-
DefakeHop outperforms DefakeHop by a significant margin due to a better
design in Section 4.
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Figure 1: An overview of the Geo-DefakeHop method, where the input is an image tile and
the output is a binary decision on whether the input is an authentic or a fake one. First,
each input title is partitioned into non-overlapping blocks of dimension 16× 16× 3. Second,
each block goes through one PixelHop or multiple PixelHops, each of which yields 3D tensor
responses of dimension H × W × C. Third, for each PixelHop, an XGBoost classifier is
applied to spatial samples of each channel to generate channel-wise (c/w) soft decision scores
and a set of discriminant channels are selected accordingly. Last, all block decision scores
are ensembled to generate the final decision of the image tile.

3 Geo-DefakeHop Method

Our idea is motivated by the observation that GANs fail to generate high-
frequency components such as edges and complex textures well. It is pointed
out by Frank et al. [9] that GANs have inconsistencies between the spectrum
of real and fake images in high-frequency bands. Another evidence is that
images generated by simple GANs are blurred and unclear. Blurry artifacts
are reduced and more details are added by advanced GANs to yield higher
quality fake images. Although these high quality simulated images look
real to human eyes because of the limitation of the HVS, it does not mean
that the high-frequency fidelity loss is not detectable by machines. Another
shortcoming of generated images is periodic patterns introduced by convolution
and deconvolution operations in GAN models as reported in Guarnera et al.
[10]. GANs often use a certain size of convolution and deconvolution filters
(e.g., 3× 3 or 5× 5). They leave traces on simulated images in form of periodic
patterns in some particular frequency bands. Sometimes, when GAN models
do not perform well, they can be observed by human eyes.

Being motivated by the above two observations, we proposed a new method
for fake satellite image detection as shown in Figure 1. It consists of four
modules:

1. Preprocessing: Input image tiles are cropped into non-overlapping blocks
of a fix size.
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2. Joint spatial/spectral feature extraction via PixelHop: The PixelHop
has a local patch as its input and applies a set of Saab filters to pixels of
the patch to yield a set of joint spatial/spectral responses as features for
each block.

3. Channel-wise classification, discriminant channels selection and block-
level decision ensemble: We apply an XGBoost classifier to spatial
responses of each channel to yield a soft decision, and select discriminant
channels accordingly. Then, the soft decisions from discriminant channels
of a single PixelHop or multiple PixelHops are ensembled to yield the
block-level soft decision.

4. Image-level decision ensemble: Block-level soft decisions are ensembled
to yield the image-level decision.

They are elaborated below.

3.1 Preprocessing

A color satellite image tile of spatial size 256 × 256 covers an area of one
kilometer square as shown in the left of Figure 1. It is cropped into 256
non-overlapping blocks of dimension 16 × 16 × 3, where the last number 3
denotes the R, G, B three color channels. Each block has homogeneous content
such as trees, buildings, land and ocean.

3.2 Joint Spatial/Spectral Feature Extraction via PixelHop

As described in Section 2.3, a PixelHop has a local patch of dimension L =
s1 × s2 × c as its input, where s1 and s2 are spatial dimensions and c is the
spectral dimension. For square patches, we have s1 = s2 = s. We set s to 2, 3,
4 in the experiments. Since the input has R, G, B three channels, c = 3.

The PixelHop applies L Saab filters to pixels in the local patch, including
one DC filter and (L− 1) AC filters, to generate L responses per patch. The
AC filters are obtained via eigen-analysis of AC components. The mapping
from L pixel values to L filter responses defines the Saab transform. Since the
AC filters are derived from the statistics of the input, the Saab transform is a
data-driven transform.

We adopt overlapping patches with stride equal to one. Then, for a block
of spatial size 16 × 16, we obtain W ×H patches, where W = 17 − s1 and
H = 17− s2. As a result, the block output is a set of joint spatial/spectral
responses of dimension W ×H ×L. To give an example, if the local patch size
is 3× 3× 3 = 27, the block output is a 3D tensor of dimension 14× 14× 27.
They are used as features to be fed to the classifier in the next stage.
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3.3 Channel-wise Classification, Discriminant Channels Selection and
Block-level Decision Ensemble

For each channel in a block, we have one response from each local patch so
that there are W × H responses in total. These responses form a feature
vector, and samples from blocks of training real/fake images are used to
train a classifier, leading to channel-wise classification. The classifier can
be any one used in machine learning such as Random Forest, SVM, and
XGBoost. In our experiments, the XGBoost classifier [5] is chosen for its high
performance. XGBoost is a gradient-boosting decision tree algorithm that can
learn a nonlinear data distribution efficiently.

To evaluate the discriminant power of a channel, we divide the training
data into two disjoint groups: (1) data used to train the classifier, and (2)
data used to validate the channel performance. The latter provides a soft
decision score predicted by the channel-wise classifier. The channel-wise
performance evaluation reflects the generation power of a GAN in various
frequency bands. Some channels are more discriminant than others because of
the poor generation power of the GAN in that frequency band. This finding
matches to other general deepfake detector method where fake images contain
discrepancy from real images in frequency domain [9]. Selection of discriminant
channels is based on the performance of the validation data.

We use an example to explain discriminant channel selection. It is a
PixelHop of dimension 3× 3× 3, which has 27 channels in total. The x-axis of
Figure 2 is the channel index and the y-axis is the energy percentage curve
or the performance curve measured by the F1 score. A larger channel index
means a higher frequency component. In these plots, blue lines indicate that
energy percentage of each channel while red, magenta and green lines represent
the F1 scores of the train, validation and test data. We consider the following
four settings.

1. Raw Images
A higher frequency channel usually has a higher performance score as
shown in Figure 2(a). Low-frequency channels are not as discriminant
as high-frequency channels. It validates our assumption that the GANs
fail to generate high-frequency components with high fidelity.

Figure 2(a) shows that, when we classify a high-frequency channel (a
channel with a large index), its F1 score is higher than a low-frequency
channel (a channel with a small index). It indicates that the distributions
of real and fake images are more distinguishable in the high-frequency
channel. In other words, the fake image is not as close to the authentic
image in the high-frequency channels. It contains artifacts that can be
spotted more easily.
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2. Image Resizing
The input image is resized from 256 × 256 to 64 × 64. As compared
with the setting of raw images, the discriminant power of high-frequency
channels degrades a little bit as shown in Figure 2(b). This is attributed
to the fact that the down-sampling operation uses a low pass filter
to alleviate aliasing. Despite the performance drop of each channel,
the overall detection performance can be preserved by selecting more
channels.

3. Additive Gaussian Noise
Noisy satellite images are obtained by adding white Gaussian noise with
σ = 0.1, where the dynamic range of the input pixel is [0, 1]. Thus, the
relative noise level is high. We see from Figure 2(c) that low-frequency
channels perform better than high-frequency channels. This is because we
need to take the signal-to-noise ratio (SNR) into account. Low-frequency
channels have higher SNR values than high-frequency ones. As a result,
low-frequency channels have higher discriminant power.

4. JPEG Compression
The experimental results with JPEG compression of quality factor 75 are
shown in Figure 2(d). We see from the figure that the performance of
different channels fluctuates. Generally, the performance of low-frequency
channels is better than that of high-frequency channels since the responses
of high-frequency channels degrade due to higher quantization errors
in JPEG compression. However, We still can get discriminant channels
based on the performance of the validation data.

Generally, if only one PixelHop is used, we select several most discriminant
channels for ensembles. If multiple PixelHops are used simultaneously, we
select most discriminant channels from all PixelHops for ensembles.

The number of channels are also fine-tuned by the validation dataset to
find the optimal number of channels. All selections are based on the F1 score
performance of the validation dataset.

3.4 Image-level Decision Ensemble

In the last stage, we ensemble predicted scores of all blocks in one image tile.
Let Nch denote the total number of selected channels. Since each channel has
one predicted score from the previous step, each block has a feature vector
of dimension Nch. For each image, we concatenate the feature vectors of all
blocks to form one feature vector of the image. Since there are 256 blocks
in one tile, the dimension of the image-level feature vector is 256×Nch. An
XGBoost classifier is trained to determine the final prediction of each tile.
Nch is a hyperparameter that is decided by the performance of the validation
dataset.
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Figure 2: The channel-wise performance of four settings: (a) without perturbation, (b)
resizing, (c) adding Gaussian noise, and (d) JPEG compression. The channel 0 is DC
(Direct Current) and from the first channel to the 26th channel are corresponding to AC1
to AC26 (Alternating Current). The blue line is the energy percentage of each channel
and the red, magenta and green lines are the F1-score of the training, validation and
testing dataset. We observe that high-frequency channels without perturbation in 2(a) has
a higher performance. After applying resizing, adding Gaussian noise and compression, the
performance of high-frequency channels degrades as shown in 2(b), 2(c), and 2(d). The test
score and validation score are closely related, indicating that the validation score can be
used to select the discriminant channels.

3.5 Visualization of Detection Results

An attacker may stitch real and fake image blocks to form an image tile so
as to confuse the ensemble classifier. This can be handled by a visualization
tool that shows pixel-wise prediction scores. That is, we use a heat map to
display XGBoost prediction scores for each pixel, which is the center of of
a block. Since we would like to have the pixel-wise prediction, these blocks
are overlapping ones with stride equal to one. Furthermore, we can plot the
heat map for each channel using the prediction score of each channel. Several
examples are given in Table 1. The table has four columns. The first column
shows real satellite images. The second column shows edited images, parts of
which are replaced by the fake images. The third column gives the ground truth
labels, where the dark blue and the yellow indicate the real and fake regions,
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Table 1: Visualization of original real images (the first column), partial real/partial fake
(PRPF) images (the second column), the ground truth (the third column, where dark blue
and yellow denote real and fake regions, respectively) and heat maps (the four column,
where cold and warm colors indicate a higher probability of being real and fake in the
corresponding location, respectively.)

Original PRPF Groundtruth Heat map

respectively. Finally, the fourth column shows the prediction results. Cold
and warm colors mean a higher probability of being real and fake, respectively.
Our model can highlight the position of the fake area even for a small fake
region as shown in the last row of Table 1.

To gain more insights, we show channel-wise Saab features and channel-wise
heat map for DC, AC1, AC11 and AC26 frequencies of a PixelHop of dimension
3× 3× 3 in Table 2, where DC and AC1 are low-frequency channels, AC11 is
a mid-frequency channel and AC26 is a high-frequency channel. By comparing
the four heat maps, we see that A26 has the strongest discriminant power,
AC11 the second while DC and AC1 have the least discriminant capability.
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Table 2: Visualization of absolute values of Saab filter responses and the detection heat
maps for DC, AC1, AC11 and AC26 four channels, where DC and AC1 are low-frequency
channels, AC11 is a mid-frequency channel, and AC26 is a high-frequency channel. Cold
and warm colors in heat maps indicate a higher probability of being real and fake in the
corresponding location, respectively. The ground truth is that the whole image is a fake one.

Index Name Input image Saab features Heat map

0 DC

1 AC1

11 AC11

26 AC26

4 Experiments

4.1 Datasets

The UW Fake Satellite Image dataset released by the University of Washington
[36] is the first publicly available dataset targeting at authentic and fake
satellite image detection. Its authentic satellite images are collected from
Google Earth’s satellite images while its fake satellite images are generated
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Table 3: The statistics of three fake satellite image datasets, where C-GAN, S-GAN and
L-GAN denote CycleGAN, StyleGAN2 and Lightweight GAN, respectively.

UW/C-GAN USC/S-GAN USC/L-GAN
No. of Real 8,046 32,184 32,184
No. of Fake 8,046 32,184 32,184
Image sizes 256× 256 128× 128 128× 128

by CycleGAN. The base map used to generate fake satellite images are from
CartoDB [3]. There are 4032 authentic color satellite images of size 256× 256
and their fake counterparts in the dataset. The images are captured at a zoom
level of 16, which is equivalent to the scale of 1:8000. It covers the three cities
of Tacoma, Seattle and Beijing.

To demonstrate the generalizability of our detection method, we use Style-
GAN2 [19] which is the most popular GAN on the internet and Lightweight
GAN [25] which is the newest GAN that could be trained efficiently in one day
to generate more fake satellite images. To reduce the training complexity, we
crop images into non-overlapping sub-images of size 128×128. For each city, we
train two GAN models. Thus, three are six GAN models in total: StyleGAN2-
Beijing, StyleGAN2-Seattle, StyleGAN2-Tacoma, Lightweight GAN-Beijing,
Lightweight GAN-Seattle and Lightweight GAN-Tacoma. The number of fake
satellite images generated by each GAN model is the same as that of authentic
images. The numbers of real and fake satellite images are summarized in Table
3. Each GAN model is trained on Nvidia V100 GPU for 150,000 steps with
random translation and cutout as the augmentation. Each StyleGAN2 model
takes 48 hours to train while each Lightweight GAN demands 24 training
hours. We call them USC Fake Satellite Image datasets. The two datasets as
well as trained GAN models are released in the GitHub.1

The FID score [12] is a commonly used metric to evaluate the fidelity
and variability of generated GAN images. Lower FID scores indicate better
generated GAN images of higher fidelity and variability. We report the FID
scores of UW/CycleGAN, USC/StyleGAN2 and USC/Lightweight GAN in
Table 4. It is apparent that StyleGAN2 and Lightweight GAN have lower FID
scores than CycleGAN. It implied that StyleGAN2 and Lightweight GAN are
more difficult to detect than CycleGAN. This is consistent with experimental
results given in Section 4.6. Note that CycleGAN does not have the FID for
Tacoma, since the dataset only contains fake images from Beijing and Seattle.

1https://github.com/hongshuochen/Geo-DefakeHop.

https://github.com/hongshuochen/Geo-DefakeHop
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Table 4: Comparison of FID scores of three fake satellite image datasets, where C-GAN,
S-GAN and L-GAN denote CycleGAN, StyleGAN2 and Lightweight GAN, respectively.
Lower FID scores indicate better generated images of higher fidelity and variability.

UW/C-GAN USC/S-GAN USC/L-GAN
Beijing 134.88 49.31 55.72
Seattle 174.78 47.11 41.87
Tacoma - 60.18 28.76

4.2 Experiment Settings

We compare the performance of Geo-Defakehop with two previous methods in
this section.

• Method by Zhao et al. [36]
The method extracted hand-crafted features (e.g., spatial, histogram and
frequency features) from satellite images and trained an SVM classifier
with these hand-crafted features to classify real and fake images.

• DefakeHop Chen et al. [4]
The method was first proposed to detect Deepfake face videos. We
tailored it to the fake satellite image detection problem by removing
frame and region ensemble modules.

It is worthwhile to point out that DefakeHop is built upon successive subspace
learning (SSL) while Geo-DefakeHop is based on parallel subspace learning
(PSL). SSL and PSL are two different designs.

For Geo-DefakeHop, we consider four PixelHop designs:

• PixelHop A: Selected discriminant channels from 12 filters of dimension
2× 2× 3,

• PixelHop B: Selected discriminant channels from 27 filters of dimension
3× 3× 3,

• PixelHop C: Selected discriminant channels from 48 filters of dimension
4× 4× 3,

• PixelHop A&B&C: Selected discriminant channels from PixelHops A, B
and C.

Adding more PixelHops could improve the performance since we increase
the diversity of the features. However, it is a trade-off between the model size,
computational complexity, and performance. In our experiment, we conducted
experiments with different numbers of PixelHops. We observed that adding
more PixelHops could slightly improve the performance but the model size
increases. Three PixelHops offer a good tradeoff.
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Table 5: Detection performance comparison with raw images from the UW dataset for
three benchmarking methods. The boldface and the underbar indicate the best and the
second-best results, respectively.

Method Features or Designs F1 score Precision Recall

Zhao et al. [36]

Spatial 75.81% 78.15% 73.61%
Histogram 78.99% 72.93% 86.16%
Frequency 65.84% 49.07% 100%

Spatial + Histogram 86.77% 82.78% 91.17%
Spatial + Frequency 77.02% 78.75% 75.36%

Histogram + Frequency 83.90% 78.36% 90.29%
Spatial + Histogram + Frequency 87.08% 82.73% 91.92%

DefakeHop [4] 96.89% 97.26% 96.53%

Geo-DefakeHop (Ours)

PixelHop A 99.88% 100% 99.75%
PixelHop B 100% 100% 100%
PixelHop C 99.88% 100% 99.75%

PixelHops A&B&C 100% 100% 100%

We compare the detection performance under six settings:

• Raw images obtained from the UW dataset;
• Image tiles being resized from 256× 256 to 128× 128 and to 64× 64;
• Image tiles corrupted additive white Gaussian noise with standard devi-

ation σ = 0.02, 0.06, 0.1;
• Image tiles coded by the JPEG compression standard.
• Split the dataset with 80-10-10, 40-10-50 and 10-10-80 setting.
• Image tiles generated by CycleGAN, StyleGAN2 and Lightweight GAN

We follow the same experimental setting as given in [36] and split the dataset
as 80-10-10. The model is obtained by the training set, fine-tuned on validation
set and evaluated on the test set. Training and test images go through the
same image manipulation conditions. As to the performance metrics, we use
the F1 score, precision and recall.

4.3 Detection Performance Comparison

We compare the performance of three detection methods under various condi-
tions in this subsection.

Raw Images. We conduct both training and testing on raw images from
the UW dataset [36] and show the performance of the three methods in Table
5. As shown in the table, we see that PixelHop B and PixelHop A&B&C of
Geo-DefakeHop achieve perfect detection performance with 100% F1 score,
100% precision and 100% recall while PixelHop A and PixelHop B achieve
nearly perfect performance. Both Geo-DefakeHop and DefakeHop outperform
Zhao et al.’s [36] method in all performance metrics by significant margins.
There is also a clear performance gap between Geo-DefakeHop and DefakeHop.
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Image Resizing. The results are shown in Table 6. For image resized to
128×128, both PixelHop A and PixelHop A&B&C achieve perfect performance
with 100% F1 score while PixelHop B and PixelHop C achieve nearly perfect
performance. For image resized to 64 × 64, we see the power of ensembles.
That is, the F1 score, precision and recall of PixelHop A&B&C are all above
99%, which is slightly better than an individual PixelHop. Again, all four
Geo-DefakeHop settings outperform Zhao et al.’s [36] method by significant
margins. DefakeHop is slightly better than Zhao et al.’s [36] method but
significantly worse than Geo-DefakeHop.

Additive White Gaussian Noise. We test the detection performance
with three noise levels σ = 0.02, 0.06, 0.1 and show the results in Table 7. We
see from the table that, if authentic or fake satellite images are corrupted
by white Gaussian noise with σ = 0.02, 0.06 and 0.1, the F1 scores of Geo-
DefakeHop decreases from 100% to 99.01%, 96.59% and 96.10%, respectively.
In contrast, the F1 scores of DefakeHop are slightly above 90% and those of
Zhao et al.’s [36] method are around 80% or lower. Also, the ensemble gain of
multiple PixelHops is more obvious as the noise level becomes higher.

DefakeHop is affected much less than Geo-DefakeHop. It is because De-
fakeHop focus on the low-frequency components only.

JPEG Compression. Typically, QF is chosen from the range of [70,100].
In this experiment, we encode satellite images by JPEG with QF=95, 85 and
75 and investigate the robustness of benchmarking methods against these QF
values. The results are shown in Table 8. The F1 scores of Geo-DefakeHop
are 98.28%, 97.91% and 97.92% for QF = 95, 85 and 75, respectively. It is
interesting to note that hand-crafted feature performs better with a lower
quality factor. The possible reason might be JPEG compression suppresses
some noise information which derive a set of better hand-crafted features.

By comparing the three distortion types, the additive white Gaussian noise
has the most negative impact on the detection performance, JPEG compression
the second, and image resizing has the least impact. This is consistent with
our intuition. Image resizing does not change the underlying information of
images much, JPEG changes the information slightly because of the fidelity
loss of high-frequencies and the additive white Gaussian noise perturbs the
information of all frequencies.

4.4 Weak Supervision Setting

We consider the weak supervision setting by reducing the number of training
samples and increasing the number of test samples. That is, we split the
CycleGAN dataset based on two settings: 40-10-50 and 10-10-80, where
the first, second and third numbers indicate the percentages of training,
validation and test data samples. Furthermore, we include two general fake
image detectors based on the convolution neural networks in performance
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Table 9: Comparison of F1-scores of four detection methods under the weak supervision
data setting, where X-Y-Z means that X% of training, Y% of validation and Z% of test data
samples.

40-10-50 10-10-80
Zhao et al. 87.82% 86.62%
Wang et al. 100% 99.64%
ResNet18 99.85% 98.87%

ResNet18-FFT 99.98% 99.88%
Geo-DefakeHop 99.93% 99.67%

Table 10: Comparion of F1-scores of four detection methods on fake images generated
by CycleGAN, StyleGAN2, and Lightweight GAN, where all datasets are split with 10%
training, 10% validation and 80% test data.

CycleGAN StyleGAN2 LightweightGAN
Zhao et al. 86.62% 69.50% 69.75%
Wang et al. 99.64% 37.89% 11.55%
ResNet18 98.87% 98.46% 98.89%

ResNet18-FFT 99.88% 96.33% 96.45%
Geo-DefakeHop 99.67% 99.47% 99.80%

benchmarking. Motivated by [32] and [35], we use ResNet-18 pre-trained by
the ImageNet as the network structure. The optimizer is SGD optimizer and
the initial learning rate is 0.001 with momentum 0.9. The batch size is 32. We
update the model for 50 epochs and get the model with the best validation
score. We train two models: one with the original image as input and the other
with the 2D FFT spectrum as the input. They are denoted by ResNet18 and
ResNet18-FFT in Table 9. [32], ResNet18, ResNet18-FFT and Geo-DefakeHop
all have excellent detection performance under the weak supervision setting
against CycleGAN.

4.5 Performance Benchmarking with Three GAN Models

Table 10 compares the detection performance of the same four detection meth-
ods against CycleGAN, StyleGAN2 and Lightweight GAN models under the
weak supervision setting of 10-10-80. As mentioned earlier, fake images gener-
ated by StyleGAN2 and Lightweight GAN have lower FID scores, indicating
that their generated images are more difficult to detect. We see significant
performance degradation of the method of [36]. ResNet18 still maintain high
performance. The F1-scores of ResNet18-FFT drop around 3% to 96% from
CycleGAN to StyleGAN2 and Lightweight GAN. Geo-DefakeHop can preserve
high detection performance with over 99% F1-scores against all three GAN
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Table 11: Model size computation of four Geo-DefakeHop designs for raw satellite input
images.

No. of No. of No. of c/w No. of ensemble Total
Selected Filter XGBoost XGBoost Model

System Channels Parameters Parameters Parameters Size

Pixelhop A 1 12 400 400 812
Pixelhop B 1 27 400 400 827
Pixelhop C 1 48 400 400 848
Pixelhop A&B&C 3 87 1,200 1,200 2,487

models. We also re-train the deep learning baseline model proposed by Wang
et al. [32]. It achieves high performance on CycleGAN. However, the perfor-
mance of StyleGAN2 and LightweightGAN drops a lot because the training
dataset is small and overfitting problem.

4.6 Model Size Computation

For a PixelHop of filter size s1×s2×c, it has at most Pmax = s1×s2×c filters.
For example, the size of PixelHop A is 2× 2× 3 and PA,max = 12. Similarly,
we have PB,max = 27 and PC,max = 48. However, we choose only a subset of
discriminant filters. They are denoted by PA, PB and PC , respectively. An
XGBoost classifier consists of a sequence of binary decision trees, which are
specified by two hyper-parameters: the max depth and the number of trees.
Each XGBoost tree consists of both leaf nodes and non-leaf nodes. Non-leaf
nodes have two parameters (i.e., the dimension and the value) to split the
dataset where leaf nodes have one parameter (i.e., the predicted value). We
have two types of XGBoost classifiers: (1) the channel-wise classifier and (2)
the ensemble classifier. For the former, the max depth and the number of
the trees are set to 1 and 100 respectively. Since each tree has one non-leaf
node and two leaf nodes, its model size is 4× 100 = 400 parameters. For the
latter, the max depth and the number of trees are set to 1 and 100×P , where
P = PA + PB + PC is the total number of selected discriminant channels of
all three PixelHops, respectively. The model size of the ensemble classifier
is 4 × 100 × P = 400P parameters. As an example, we provide the model
size computation detail in Table 11 for four Geo-DefakeHop designs with the
raw satellite images as the input. As shown in the table, PixelHops A, B, C
and A&B&C have 812, 827, 848 and 2,487 parameters, respectively. Since the
selected discriminant channel numbers of PixelHops A, B, C and A&B&C vary
with raw, resized, noisy and compressed input satellite images, their model
sizes are different. The model sizes are summarized in Table 12.
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Table 12: Summary of model sizes of four Geo-DefakeHop designs with different input
images.

Experiments PixelHop A PixelHop B PixelHop C A&B&C

Raw Images 0.8K 0.8K 0.8K 2.5K
Resizing 9.7K 20K 37K 61.7K
Noise 8.1K 13K 33K 38.5K
Compression 7.3K 19K 33K 37.4K

5 Conclusion and Future Work

A method called Geo-DefakeHop was proposed to distinguish between authentic
and counterfeit satellite images. Its effectiveness in terms of the F1 scores,
precision and recall was demonstrated by extensive experiments. Furthermore,
its model size was thoroughly analyzed. It can be easily implemented in
software on mobile or edge devices due to its small model size. As to future
extensions, two topics are described below. First, the UW Fake Satellite
Image dataset only contains the three cities of Tacoma, Seattle and Beijing.
A large-scale fake satellite image dataset with more cities can be constructed
to make the dataset more challenging. More manipulations such as blurring
and contrast adjustment can be added to test the limitation of the detection
system. Second, several frequency-aware GANs such as StyleGAN3 [17] were
recently proposed to enhance the high frequency components in synthesized
images. StyleGAN3 utilized Fourier features as input to define a spatially
infinite map. To solve the aliasing problem which is highly detrimental to
GAN, StyleGAN3 used a smaller cutoff frequency to suppress high frequency
components. Although StyleGAN3 can control high frequency components in
generated images with improved capability, some high frequency information
is still removed in the generating process. It is interesting to see whether
Geo-DefakeHop can exploit such small differences for effective fake satellite
images detection.
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