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ABSTRACT

Although there are metrics to evaluate the performance of generative
models, little research is conducted on the quality evaluation of individual
generated samples. A lightweight generated sample quality evaluation
(LGSQE) method is proposed in this work. LGSQE trains a binary
classifier to differentiate real and synthetic images from a generative
model and, then, uses it to assign a soft label between zero and one
to a generated sample as its quality index. LGSQE can reject poor
generations and serve as a post-processing module for quality control.
Furthermore, by aggregating quality indices of a large number of gen-
erated samples, LGSQE offers four metrics (i.e., classification accuracy
(Acc), the area under the curve (AUC), precision, and recall) to eval-
uate the performance of a generative model as a byproduct. LGSQE
demands a significantly smaller memory size and faster evaluation time
while preserving the same rank order predicted by the Fréchet Inception
Distance (FID). Extensive experiments are conducted to demonstrate
the effectiveness and efficiency of LGSQE.
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1 Introduction

Image generative models have been widely used in various applications such
as image generation, image inpainting, image-to-image translation, etc. With
the advancement of generative models, measuring the quality of generated
samples is needed. The evaluation of generative models has been an active
research area. The methodology includes both subjective and objective ones.
Subjective evaluation, which involves human visual comparison, is laborious.
Furthermore, since an individual could be biased, getting a diversified group of
human subjects in the evaluation is essential. Developing specific algorithms
to compute objective measures is more economical and less subjective.

Quite a few quantitative metrics for generative models have been proposed
[5, 6]. Examples include the Inception Score (IS) [50], the Fréchet Inception
Distance (FID) [18], the Classifier two-sample test [40] and the Precision and
Recall (P&R) [49], etc. Each metric has its strengths and weaknesses. IS
can measure the quality and diversity of generated images but cannot detect
mode dropping. FID performs better in detecting mode dropping. It is closer
to human judgment and more robust to noise. Yet, its Gaussian assumption
might not hold in practice. P&R uses two metrics to evaluate the quality and
variety of generated data. It may fail to identify two identical distributions as
shown in [43]. It is also not robust to outliers. The two-sample test [40] trains
a binary classifier as a proxy to evaluate the quality of generated samples.
Nevertheless, its performance is poor due to a lack of discriminant features.

All above-mentioned evaluation methods share two common problems.
First, they apply to the whole generated dataset rather than an individual gen-
erated sample. If there is an effective and efficient mechanism to measure the
quality of a sample, one can reject samples of poor quality on the fly. Then, this
mechanism can serve as a post-processing step for quality control of generative
samples. Second, most quality evaluation methods demand high computational
complexity and a large model size. For example, many state-of-the-art meth-
ods use features from large networks (e.g., Inception-V3, VGG16, or ResNet)
trained on the ImageNet dataset. Their evaluation is biased towards ImageNet
and may not be generalized well to other datasets. Besides, large network
models are challenging to deploy in mobile/edge computing. Although improve-
ments have been made, e.g., [1, 19, 43], the two fundamental problems still exist.

We propose a lightweight generated sample quality evaluation (LGSQE)
method to address them in this work. LGSQE consists of three main modules.

1. Find simple yet effective representations for real/synthetic images from a
source dataset. LGSQE adopts the Successive Subspace Learning (SSL)
[11, 12] under the green learning (GL) [30] framework to find a rich set
of multi-scale spatial-spectral representations. SSL is an unsupervised
represenation learning tool.
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2. Select discriminant features from the representation set obtained in the
first module. We choose a subset of discriminant representations as
features based on a supervised feature learning method recently proposed
in [62]. Then, we feed these selected features into a binary classifier in
the third module.

3. Conduct binary classification. LGSQE trains a binary classifier to dif-
ferentiate real samples and synthetic samples generated by a generative
model. In the training stage, real and generated samples are labeled
“zero” and “one”, respectively. In the evaluation (or inference) stage, we
get a soft label for each sample with a value between zero and one. The
soft label of a generated sample serves as its quality index. Its quality is
good (or bad) if its soft label is farther away from (or close to) one.

By aggregating quality indices of a large number of generated samples,
LGSQE can offer quality metrics for their generative model as a byproduct.
Intuitively, a poorly-performing (or high-performing) generative model tends
to yield more (or less) bad samples. Since the distribution of generated data
from a poorly-performing generative model is very different from that of real
data, the test accuracy of the binary classifier should be higher. In contrast,
the test accuracy for an ideal generative model should be close to the chance
level (i.e. 0.5) for the whole dataset. To this end, we show that four metrics
of a binary classifier can be used as evaluation metrics for generative models.
They are: 1) accuracy, 2) the area under the curve (AUC), 3) precision, and
4) recall. Compared with the state-of-the-art FID metrics, the four LGSQE
metrics preserve the same rank order of performance while their evaluation
demands less time and lower memory requirement.

The integration of the above-mentioned three modules was applied to the
object classification task in [60]. Yet, it has never been applied to quality
evaluation of a generated sample, neither quality evaluation of a generative
model. The novel application of existing tools to an important problem in the
new context is the main contribution of our work. Besides, we need to show
the effectiveness and efficiency of this new methodology in this application. To
this end, we conduct extensive experiments to demonstrate the effectiveness of
LGSQE. Furthermore, we report the model size and computational complexity
to show the efficiency of LGSQE. Since no pretraining by another larger dataset
(say, ImageNet) is needed, LGSQE has a small model size. The dataset chosen
as the generation target (e.g., CIFAR-10, Celeb-A, LSUN etc.) is used to train
LGSQE from scratch. Thus, LGSQE is dataset-specific.

The rest of this paper is organized as follows. Related work is reviewed in
Section 2. The LGSQE method is detailed in Section 3. Experimental results
are presented in Section 4. Concluding remarks and future research directions
are given in Section 5.
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2 Related Work

With the advancement of powerful deep-learning-based (DL-based) generative
models, the performance evaluation of different generative models has received
much attention. The focus has been on analyzing the gap between actual and
synthetic data distributions. Besides assessing the synthesizing capability, it is
desired that the evaluation tool can guide the design of more powerful models.

Many quantitative metrics for generative model evaluation have been
proposed in the last 7-8 years. Yet, we see little work that leverages developed
metrics to improve generative models. Furthermore, little research has been
conducted on the quality evaluation of individually generated samples.

In this section, we first provide a general review to various evaluation
metrics on generative models in Section 2.1. Then, we present classification-
based quality metrics which was investigated by a few researchers in Section 2.2.
Finally, the development of green learning is examined in Section 2.3 since it
is highly related to tools adopted by the proposed LGSQE method.

2.1 DMetrics for Generative Model Evaluation

The Inception Score (IS) [50] is one of the early-developed metrics. It exploits
the Inception-Net pre-trained on ImageNet to calculate the KIL-divergence
between the conditional label distribution p(y|z) and the marginal one p(y)
obtained from all samples, where x and y denote embeddings and labels,
respectively. It has several limitations. First, since IS is susceptible to model
overfitting [59], it may not generalize well. Second, it is inefficient in dealing
with diversity between different modes, known as “mode collapse”. To mitigate
that, a Modified Inception Score was proposed in [17]. Third, as IS is pre-
trained on ImageNet; it may measure image quality object-wise (rather than
realistic-wise). Fourth, IS is sensitive to image resolution. Furthermore,
rigorously speaking, IS is not a proper distance metric.

The Fréchet Inception Distance (FID) [18] is a popular metric. It employs
Inception-V3 to map samples onto an embedding space, where joint Gaussian
distributions model real and synthetic samples. FID is computed between
the two Gaussians to measure their similarity. Notably, IS measures the
quality and diversity of generated samples, while FID measures the distance
between distributions. FID improves over IS in intra-class mode dropping and
diversity handling between models. The metric has been further enhanced in
[37] by introducing the Class-Aware Frechet Distance (CAFD) to increase its
robustness. Yet, FID has its weakness. When their dimension is high, the
log-likelihood distributions between real and synthesized samples are difficult
to capture FID, and several other qualitative ones were compared in [53],
which pointed out the weakness of the log-likelihood metric. Moreover, the
Gaussian distribution assumption may not be valid [41].
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A high-performance evaluation metric should measure the closeness of real
and generated samples and the diversity of generated models. The precision-
recall metric with a reference data manifold was introduced in [41] to unify
these two aspects. Precision quantifies the former, while recall captures the
latter. Yet, the metric is impractical in real applications since the reference
manifold is not available in most cases. A way to quantify the tradeoff between
precision and recall was proposed in [49]. Limitations of the precision-recall
metric, such as failure to realize the match between identical distributions and
robustness to outliers, were discussed in [43]|, where more reliable density and
coverage metrics were proposed. On top of precision and recall, authenticity
was added to form a three-dimensional metric in [1], which can characterize
the generalization power of generative models better.

2.2 Classifier-based Metrics

The idea of classifier-based evaluation can date back to [40] and [19]. It
employs a classifier to check whether one can differentiate real and synthetic
samples easily. The classifier plays the role of a discriminator and its error
rate is used for performance assessment. To give an example, the two-sample
test [40] uses the k-nearest neighbor (KNN) classifier or the neural network
classifier with one hidden layer trained on deep-layer embeddings of a DNN
classifier (e.g., ResNet). An alternative is to evaluate class-conditional gen-
erative models as presented in [46]. The classifier is trained on synthetic
data and used to predict labels of real data to yield the Classification Accu-
racy Score (CAS). Gu et al. [15] use multiple binary classifiers as a regressor
to assess the quality of generated images. Their method can measure the
quality of individual samples using the classifier’s probability prediction as
a quality index. However, their method requires generated images at dif-
ferent iterations of a complex CNN network, which are difficult to obtain
and computationally expensive. In addition, their evaluation method may
fail in the presence of complicated data distributions. The major difference
between LGSQE and prior art in classification-based quality metrics is that
LGSQE does not employ embeddings from DNNs as features for the clas-
sifier. It uses a more intuitive and explainable data processing pipeline to
obtain features, leading to a lightweight and mathematically transparent
solution.

2.3 Green Learning

Green learning (GL) [30] targets designing an efficient learning system with a
small model size and fast training/inference time. It is suitable for mobile/edge
computing. GL adopts a modularized design where each module is optimized
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independently for implementational efficiency. GL was originated from pio-
neering research in [27, 28], which attempts to analyze the roles of nonlinear
activation and convolution operations in neural networks. Afterward, several
joint spatial-spectral transforms such as Saak [29] and Saab transforms [31]
were proposed to extract image embeddings without backpropagation. Besides,
one can have multiple Saab transforms in cascade to build learning systems
such as Pixelhop [11], Pixelhop-++ [12], E-Pixelhop [61], etc. More recently, a
powerful feature selection tool called the Discriminant Feature Test (DFT) was
proposed in [62]. It builds a bridge from image embeddings to discriminant
features, which makes GL more mature.

Admittedly, many problems that DL solves well do not have a competitive
GL solution since GL is still in its infancy [30]. Yet, there are still a few
successful applications of GL. Examples include image classification [11, 12,
61], image enhancement [4], image quality assessment [42, 69], 3D medical
image analysis [38], point cloud classification, segmentation, registration [20-22,
36, 65-68], face biometrics [47, 48], texture analysis and synthesis [34, 35, 64],
deepfake image/video detection [7-9, 70], graph node classification [57, 58], etc.

3 Proposed LGSQE Method

Generated images have a wide range of resolutions. For example, image
resolutions for the 7 datasets in the experiments range from 32 x 32 to 256 x 256.
Here, we begin with images of lower resolutions and propose a basic LGSQE
solution in Sections 3.1-3.3. Then, we define four LGSQE metrics in 3.4.
Finally, we present an advanced LGSQE solution that handles images of higher
resolutions in Section 3.5. The basic LGSQE method consists of three modules
in cascade as shown in Figure 1. Each of them will be detailed below.

NxN /! . . . . e
Representation Learning Feature Extraction Binary Classifier
Saab Transform
Spectral Saab Feature
Abs. Max-poolingl N2 N?
Ny N,
’ ch | __ Global Saab Discriminant Classifi
y, Channel =, ~Channe LY o Feature Test assifier

il

Spatial Saab Feature I

Figure 1: An overview of the LGSQE method, which consists of three modules. Module 1:
Representation Learning, Module 2: Discriminant Feature Extraction and Module 3: Binary
Classification.
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3.1 Module 1: Representation Learning

In the first module, we find effective local and global representations of an
image that are potentially useful for real/generated image classification. For
the local representation, we extract blocks of dimension F' x F' x C' from input
images of size N x N x C with a stride of S pixels, where F' x F' is the filter
size and C is the spectral number, i.e., C' =1 for gray-scale images and C' = 3
for color images.

We apply the Saab transform [31] to the blocks and obtain a joint spatial-
spectral representation. The Saab transform is a variant of the Principal
Component Analysis (PCA) transform. It has two types of transform kernels:
1) the DC kernel, which gives the local average of pixels covered by the filter,
and 2) AC kernels, which are data-driven kernels obtained by PCA. The reason
to have two kernel types is that PCA can only be applied to zero-mean random
vectors. By removing the local block mean, the block residual can be treated
as a zero-mean random vector so that PCA can be applied.

The implementation of the Saab transform is summarized below.

1. Flatten the block of dimension F' x F' x C' into a long vector. The Saab
transform will generate one DC response and (F2C — 1) AC responses.
The DC response is obtained by applying the DC kernel to the block
elements. The DC kernel is the constant element vector of unit length.
The DC response is nothing but the block mean.

2. We obtain block residuals by removing block means. PCA is used to
derive the AC kernels. Kernels associated with larger eigenvalues extract
lower frequency components while kernels associated with smaller eigen-
values extract higher frequency ones. We can discard high-frequency com-
ponents with very small values for dimension reduction. Each component
extracted by a kernel is also called a channel. After the Saab transforms,
the total number of channels is usually less than K = F' x F' x C due to
dimension reduction. The spatial size of the Saab coefficients is equal to
N; x Ny, where Ny = (N — F)/S + 1.

The features extracted from the one-stage Saab transform are called the
Hop-1 Saab coefficients. Hop-1 Saab coefficients only provide a local view
with a small receptive field. Besides, they are spatial correlations among
local-frequency Saab coefficients. Thus, it is desired to conduct the second-
stage Saab transform. Generally, we can obtain fine-to-coarse hierarchical
features by constructing multi-stage Saab transforms in cascade. The absolute
max-pooling can be employed between two consecutive Saab transforms to
enlarge the receptive field. The multi-stage transform leads to successive
subspace learning. The multi-stage Saab transform can be further simplified
using the channel-wise Saab transform (c/w Saab). That is, since there is little
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correlation between different channels, we can conduct the Saab transform for
an individual channel in the spatial domain only. The input to a regular Saab
transform is a 3D tensor (2D spatial plus 1D spectral dimensions) while the
input to a ¢/w Saab transform is a 2D tensor (2D spatial dimension).

3.2 Module 2: Discriminant Feature Extraction

Further dimension reduction at the expense of marginal performance degrada-
tion is required to reduce the number of model parameters and, eventually, the
overall computational cost. Hence, we apply the Discriminant Feature Test
(DFT) [62]. DFT independently computes the discriminant one-dimensional
(1D) features and keeps only the most discriminant features for the evaluation
module. Specifically, in computing the discriminant power of i*" 1D feature, we
assign the ground truth labels to samples and compute the feature value range
of [f! min fi 0z)- We partition the range into two non-overlapping subsets S%
and S% and search for the optimal partition point with the smallest weighted
entropy of S% and S% as the DFT loss for a certain feature dimension. The
entropy of the left partition is defined by

C
Hi, == pjlog(p} ), (1)

c=1

where t is the splitting point and p’ . is the probability of samples with class
c over all samples in the left partition. The entropy of right partition H Rt
can be computed similarly. The DFT loss for the ¢ — th feature is defined by

L = min H? 2
pFr = 1in H, (2)

where T is the set of partition points ¢, H; indicates the weighted average of
entropy in left and right partitions. A lower DFT loss means higher class purity
in the subsets, representing a stronger discriminant power. We iteratively
apply the DFT to all features to obtain the DFT loss. We sort the features by
their DFT loss in ascending order to draw the DFT loss curve. Figure 2 shows
the DFT loss curve for MNIST and CIFAR-10 datasets. An obvious elbow
point exists in each curve. We select the feature dimensions based on the
elbow point as it minimizes the number of kept dimensions while maximizing
the classification performance since other dimensions beyond that point are
considered less discriminant. According to the curve, we select the first 400 and
800 features for MNIST and CIFAR-10 datasets respectively. We select the
feature dimensions for other datasets in the same manner. Notice that we select
the features according to their discriminant power. Therefore, depending on
their discriminant nature, they may contain low or high-frequency components.
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Figure 2: Feature selection curves of MNIST and CIFAR-10 datasets.

3.3 Module 3: Binary Classification

Real/generated data are partitioned into two disjoint sets - one for training
and the other for testing. A binary classifier is trained on the union of real
and generated training data, where real and generated samples are assigned
with labels “0” and “1”, respectively. Minor data imbalance is acceptable since
it can be easily handled in most binary classifiers. The binary classifier will
assign a soft score of 0 < d < 1, on each of the tested samples. Usually, we
choose a threshold, denoted by 0 < ¢ < 1, and make a hard decision depending
on whether 0 < d <t or 1> d >t The sample is claimed to be “real” (or
zero) for the former and “generated” (or one) for the latter. In this work, we
adopt the XGBoost(eXtreme Gradient Boosting) classifier [10] due to its high
performance and reasonable model size.

3.4 LGSQFE Quality Metric

LGSQE can serve as a quality metric for an individual sample or for a generative
model with respect to a dataset as elaborated below.

Sample-based Quality Assessment. The soft label indicates the prob-
ability of the sample being assigned to the generated class. It serves as the
quality evaluation index of each generated sample. If the soft label of a gener-
ated sample is closer to zero, it has a higher probability of a real sample (than
that of a generated one). Its quality is good. On the other hand, if the soft
label is closer to one, it has a higher probability of a generated sample (than
that of a real one). Its quality is poor. The same argument applies to real
samples. If a real sample has a soft label closer to one, it is an outlier from
the distribution of real samples. It looks like a generated (or fake) one. For an
ideal generative model, the distributions of real and generated samples should
be the same. They are bell-shaped with peaks at 0.5. Then, classifier accuracy
is about the chance-level accuracy (i.e., 50%)
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Generative-Model-based Quality Assessment. We can evaluate the
effectiveness of a generative model by aggregating the quality assessment of
its generated samples of a sufficient amount. There are four commonly used
performance metrics of a binary classifier. They are accuracy (Acc), precision
(Pre), recall (Rec), and the area under the curve (AUC). Acc is the ratio of
“correct decision number” over the “total decision number”. There are two
types of errors: FP (false positive) and FN (false negative). Then, precision
and recall are defined by

TP TP

Pre— ——+ _ T
= Tp 1 PP T TP FN

(3)
One can draw the precision-recall curve by varying threshold ¢ from zero to
one and then calculate AUC. We choose t = 0.5 for the Acc metric.

For a specific dataset and a generative model, we use all four of them of
the binary classifier in Module 3 as the LGSQE quality metrics. The Acc and
AUC values of an ideal generative model are both equal to 0.5. It is the chance
level against a mixed real/generated dataset, where the distributions of real
and generated data in the feature space are completely interleaved and cannot
be separated. In contrast, if the Acc and AUC values of a generative model
are higher, the proposed LGSQE method can differentiate real and generated
samples more easily. It means that the generative model is poorer. Similarly,
a higher precision/recall value implies a poorer generative model.

It is worthwhile to point out that the precision and recall defined in [49] are
different from our definitions as given in (3). Precision and recall are viewed
as proxies of quality and diversity metrics, respectively, in [49]. Here, we take
real/generated samples as negative/positive classes to compute the precision
and recall values. The precision indicates the fraction of images predicted
as generated data that are truly generated images. The recall represents the
fraction of generated images successfully predicted as generated data.

3.5 Advanced LGSQE for Higher-Resolution Images

Images from the LSUN-Bedroom and the LSUN-Church datasets in Section
4 have a resolution of 256 x 256. Downsampling images to a smaller size
directly may lose important detail information. To address this problem, we
propose a two-scale processing pipeline to obtain high-resolution details and
low-resolution global layout information jointly as shown in Figure 3. We
downsample input images to 128 x 128 and feed them to two branches to extract
both local and global discriminant features that are powerful in differentiating
real and synthesized images.

o Features for Local Details. We use a sliding window of size 48 x 48 with
stride 40 to extract 9 overlapping subimages from each input image.
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These subimages are then fed to Module 1 and Module 2 as shown in
Section 3 to find 100 features for each subimage. Then, each image
contains 9 x 100 = 900 discriminant features, representing the local
detail information. The Saab transform parameters are F' =4, S = 3,
and C' = 3.

o Features for Global Layout. We downsample input images to 48 x 48
and feed them to another branch to derive 900 discriminant features
to capture the global information. The Saab transform parameters are
F=3 5=2 and C =3.

9 x 100 1800

Merge
— Classifier

48 >.<(’IE 900
Representation Learning Feature Extraction —
resize

Merging Strategy

9 x 100 900

256 X 256 1800

Figure 3: An overview of the advanced LGSQE method for higher-resolution images, which
comprises two branches with identical architecture. The features for local details and global
layout obtained from two branches are merged together by a merging strategy shown in the
lower right of the figure.

We concatenate local and global features together to form a new feature
set of 1,800 elements. We use them to train a binary classifier in Module
3 and apply the trained classifier in the evaluation stage. With this multi-
scale representation strategy, LGSQE can be applied to high-resolution image
datasets.

4 Experiments

In this section, we conduct experiments on seven datasets and compare the
results of various evaluation metrics to demonstrate the validity of the proposed
LGSQE method. At the same time, we conduct performance benchmarking of
several generative models.
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Experimental Setup

Datasets. We consider seven datasets and use them to train various generative
models. The first two are gray-scale images while the last five comprise color
images.

MNIST [32]. We generate the same number of training and test images
as the official MNIST dataset; namely, 60,000 training examples and
10,000 test examples. The Saab transform parameters are F' =5, S =2
and C' = 1. After removing Saab coefficients of extremely low energy, we
apply the DFT to 3,000 remaining representations, select 400 features
based on the elbow point of the DFT curve, and feed them to the binary
classifier in Module 3.

Fashion-mnist [56]. We adopt the same settings as those in MNIST.

CIFAR-10 [26]. Following the training/test split of the CIFAR-10 dataset,
we generate 50,000 training images and 10,000 test images. The hyper-
parameters of the Saab transform are F = 3, S =1 and C = 3 (see
Section 3.1). We remove Saab coefficients of extremely low energy values
(< 5 x 107%) and conduct DFT on 3,500 remaining representations.
Based on the elbow point of the DFT curve, we select 800 features and
feed them to the binary classifier in Module 3.

STL-10 [13]. To be consistent with evaluation results reported by other
papers, we use the Lanczos interpolation to downsample the resolution
of input color images from 96 x 96 to 48 x 48 in the STL-10 dataset.
We generate 50,000 training images and 10,000 test images. The Saab
transform parameters are ' = 3, S = 2, and C' = 3. We select 800
features based on the DFT curve and feed them into the binary classifier
in Module 3.

LSUN-Bedroom and LSUN-Church [63]. We use various generative
models to generate 10,000 training images and 2,000 test images.

Celeb-A [39]. We downsample the resolution of input color images to
48 x 48 and generate 50,000 training images and 10,000 test images. The
Saab transform parameters are F' =3, S =2, and C = 3. We use DFT
to select 800 discriminant features for the binary classifier.

Generative Models. We adopt different generative models for different
datasets. They are summarized below.

e The generative models for MNIST and Fashion-MNIST include GAN [14],

WGAN [2] and WGAN-GP [16]. All models are trained from scratch.
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e The generative models for CIFAR-10 include DCGAN [45], StyleFormer
[44], StyleGAN2-ADA [24], Diffusion-StyleGAN2 [55] and StyleGAN-XL
[52]. We train DCGAN from scratch to obtain the generative model.
We use the weights from the official paper repositories for the remaining
models.

e The generative models for STL-10 include Styleformer, Diffusion-
StyleGANZ2, Diffusion-ProjectedGAN, and E2GAN [54].

e The generative models for Celeb-A include Styleformer and Diffusion-
StyleGAN2.

e The generative models for LSUN include Styleformer, Diffusion-
StyleGANZ2, Diffusion-Projected GAN, Projected GAN [51], StyleGAN
[25] and ProgressiveGAN [23].

Hyper-Parameters of XGBoost. We adopt the XGBoost (extreme
gradient boosting) classifier [10] in the third module. The maximum depth
of a tree is set to one to reduce the computational cost. Figure 4 shows
the classification accuracy as a function of the tree number for the XGBoost
classifier. A higher classification accuracy indicates a poorer generative model.
The accuracy increases with the tree number at the cost of higher complexity
and memory. To cut down the computational cost, we stop adding more trees
at the saturation point of the validation data. The chosen tree numbers for
MNIST, Fashion-mnist, CIFAR-10, STL-10, Celeb-A, LSUN-Bedroom and
LSUN-Church are 650, 650, 1250, 1250, 1250, 3000 and 3000 respectively.

4.2 Results and Analysis
4.2.1 Quality Evaluation of Generated and Real Samples

Figure 5 shows the soft label histograms of generated and real samples for
four datasets. Diffusion-StyleGAN2 is used to generate the synthetic images
on (a) and (b). WGAN-GP is used on (c) and (d). Since the performance of
WGAN-GP is not ideal, most samples have soft label values close to zero for
real and one for generated samples. Figure 6 shows the soft label histogram of
samples generated by Styleformer. The performance of Styleformer is better
than Diffusion-StyleGAN2 on the CIFAR-10 dataset and inferior on the STL-10
dataset since it has more samples of probabilities close to 0.5 (see Figure 5-a)
and more samples of probabilities close at the tails of the distribution (see
Figure 5(b)).

4.2.2  Visualization of Generated and Real Samples

Several generated image samples trained by the LSUN-bedroom and the LSUN-
church datasets are visualized in Figures 7 and 8, respectively. We also show
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Figure 4: The classification accuracy as a function of tree numbers in the XGBoost classifier
for four experiment datasets: (a) CIFAR-10, (b) STL-10, (c¢) MNIST, and (d) Fashion-mnist.

their associated LGSQE quality indices and the histogram of a large number
of generated samples. The former is assigned by the binary classifier. A
generated image has a quality index closer to zero if it appears to be a real one
viewed by human eyes. The latter indicates the capability of the corresponding
generative model. More high- and low-quality images generated by certain
generative models against the LSUN-church, LSUN-bedroom, Celeb-A and
MNIST datasets are given in Figures 11-18 in the Appendix. Each figure
contains 88 generated images. They are evaluated as high- or low-quality
images using the proposed LGSQE method.

4.2.3 LGSQFE as A Post-processing Tool

LGSQE can be used as a post-processing tool to boost the performance of
generative models and improve the performance of downstream tasks (e.g.,
semantic segmentation). By sorting the generated samples by their soft labels in
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Figure 5: The soft label histograms of generated and real samples on (a) CIFAR-10, (b)
STL-10, (c) MNIST, and (d) Fashion-mnist datasets, where the samples are generated by
Diffusion StyleGAN2 in (a) and (b) and WGAN-GP in (c) and (d).
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Figure 6: The soft label histograms of generated and real samples on (a) CIFAR-10 and (b)
STL-10 datasets with Styleformer as the generative model.

an ascending order and keeping certain percentages of the best quality samples,
which have the lowest LGSQE quality indices, one can lower classification
accuracy and FID scores of the kept samples against the real samples as shown
in Figure 9. We should emphasize that lower classification accuracy and smaller
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Figure 7: Generated LSUN-church samples from the ProgressiveGAN model and their
associated LGSQE quality indices, where a smaller quality index value indicates that the
sample is more like a real one. The histogram of a large number of generated samples is
also given to show the capability of the ProgressiveGAN model.
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Figure 8: Generated LSUN-bedroom samples from the ProjectedGAN model and their
associated LGSQE quality indices, where a smaller quality index value indicates that the
sample is more like a real one. The histogram of a large number of generated samples is
also given to show the capability of the ProgressiveGAN model.

FID scores imply better quality of generated samples since generated and real
samples are difficult to separate.

4.2.4  Quality Evaluation of Generative Models

Apart from being used as a sample-based quality measure, LGSQE can provide
evaluation metrics for a generative model by aggregating the quality indices
from its generated samples. As discussed in Section 3.4, we use the classification
accuracy (Acc), AUC, precision, and recall as four LGSQE evaluation metrics
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Figure 9: The classification accuracy and the FID score are plotted as functions of the
percentages of kept samples in (a) and (b), respectively, where samples of the poorest quality
are removed first.

for generative models. Since FID is the most popular evaluation metric, we
compare the ranking of FID with those of four LGSQE metrics for MNIST,
Fashion-mnist, CIFAR-10, STL-10, LSUN-Church, LSUN-Bedroom, and Celeb-
A datasets in Tables 1-7, respectively. We arrange generative models based on
their FID scores from the largest to the smallest in each table, which correspond
to the weakest and the strongest generative models, respectively. As shown in
the five tables, the rankings offered by the FID scores of generative models
are consistent with those of the four metrics of LGSQE. These experiments
demonstrate the effectiveness of the proposed LGSQE method in measuring
the power of generative models.

Table 1: Comparison of 5 evaluation metrics (FID, Acc, AUC, Precision, and Recall) on 3
generative models (WGAN, GAN, and WGAN-GP) for the MNIST dataset.

MNIST dataset FID Acc AUC Precision Recall
WGAN 32.37 0.997 0.999 0.996 0.998
GAN 26.56 0.996 0.998 0.994 0.997
WGAN-GP 26.12 0.864 0.931 0.870 0.868

Table 2: Comparison of 5 evaluation metrics (FID, Acc, AUC, Precision, and Recall) on 3
generative models (GAN, WGAN, and WGAN-GP) for the Fashion-mnist dataset.

Fashion-mnist dataset FID Acc AUC Precision Recall
GAN 62.22 0.991 0.999 0.990 0.991
WGAN 26.58 0.926 0.980 0.920 0.931
WGAN-GP 15.19 0.915 0.969 0.917 0.913
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Table 3: Comparison of 5 evaluation metrics (FID, Acc, AUC, Precision, and Recall) on
5 generative models (DCGAN, Diffusion-StyleGAN2, StyleGAN2-ADA, Styleformer, and
StyleGAN-XL) for the CIFAR-10 dataset.

CIFAR-10 dataset FID Acc AUC Precision Recall
DCGAN 47.7 0.950 0.990 0.954 0.946
Diffusion-StyleGAN2 3.19 0.877 0.948 0.879 0.876
StyleGAN2-ADA 2.92 0.842 0.919 0.843 0.842
Styleformer 2.82 0.776 0.859 0.773 0.782
StyleGAN-XL 1.85 0.622 0.680 0.616 0.649

Table 4: Comparison of 5 evaluation metrics (FID, Acc, AUC, Precision, and Recall) on 4 gen-
erative models (E2GAN, StyleFormer, Diffusion-StyleGAN2, and Diffusion-Projected GAN)
for the STL-10 dataset.

STL-10 dataset FID Acc AUC Precision | Recall
E2GAN 25.4 | 0.989 | 0.999 0.985 0.993
StyleFormer 15.2 | 0.960 | 0.991 0.947 0.975
Diffusion-StyleGAN2 11.6 | 0.914 | 0.973 0.907 0.924
Diffusion-Projected GAN 6.91 | 0.871 | 0.946 0.846 0.906

Table 5: Comparison of 5 evaluation metrics (FID, Acc, AUC, Precision, and Recall)
on 5 generative models (StyleFormer, ProgressiveGAN, Diffusion-StyleGAN2, Diffusion-
ProjectedGAN, and Projected GAN) for the LSUN-church dataset.

LSUN-Church dataset FID Acc AUC Precision | Recall
StyleFormer 7.99 | 0.998 | 0.999 0.997 0.998
ProgressiveGAN 6.42 | 0904 | 0.971 0.912 0.893
Diffusion-StyleGAN2 3.17 | 0.892 | 0.963 0.896 0.887
Diffusion-ProjectedGAN 1.85 | 0.874 | 0.946 0.876 0.872
ProjectedGAN 1.59 | 0.861 | 0.946 0.876 0.840

Table 6: Comparison of 5 evaluation metrics (FID, Acc, AUC, Precision, and Recall)
on 5 generative models (ProgressiveGAN, Diffusion-StyleGAN2, Diffusion-ProjectedGAN,
ProjectedGAN, and StyleGAN) for the LSUN-bedroom dataset.

LSUN-Bedroom dataset FID Acc AUC Precision | Recall
ProgressiveGAN 8.34 | 0.894 | 0.962 0.894 0.893
Diffusion-StyleGAN2 3.65 | 0.876 | 0.948 0.873 0.880
StyleGAN 2.65 | 0.867 | 0.944 0.866 0.869
ProjectedGAN 1.52 | 0.845 | 0.925 0.852 0.835
Diffusion-ProjectedGAN 1.43 | 0.824 | 0.910 0.818 0.833
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Table 7: Comparison of 5 evaluation metrics (FID, Acc, AUC, Precision, and Recall) on 2
generative models (Styleformer and Diffusion-StyleGAN2) for the Celeb-A dataset.

Celeb-A dataset FID Acc AUC Precision Recall
StyleFormer 3.66 0.975 0.997 0.955 0.998
Diffusion-StyleGAN2 1.69 0.942 0.946 0.944 0.987

—e— Styleformer
0.65 Diffusion StyleGAN2

0.0 02 0.4 0.6 0.8 10
Sample Percentage for Training

Figure 10: Training on a partial dataset for LGSQE.

4.2.5 Weak Supervision

The behavior of the LGSQE metric is relatively stable against the number of
training samples. We show the classification accuracy metric of LGSQE as
a function of the percentages of the total samples for two generative models,
Styleformer and Diffusion-StyleGAN, with respect to the CIFAR-10 dataset
in Figure 10 (a). The accuracy metric remains at the same level from 20%
to 100% of samples. It means that LGSQE can provide the same evaluation
performance with only 20% training samples. Such a phenomenon is observed
for all generative models in all datasets. For comparison, since other evaluation
metrics rely on features extracted from complex networks such as Inception-V3,
more generative samples are needed to avoid over-fitting. Furthermore, since
the filters used in LGSQE are directly obtained from the evaluation dataset,
they do not have any bias with a pre-trained dataset such as the ImageNet.

4.8 Comparison of Model Sizes and Evaluation Time

In this subsection, we examine the efficiency of generative model quality
evaluation methods by comparing their model sizes (in terms of the number
of model parameters) and computational complexity (in terms of floating-
point operations per pixel, or FLOPs/pixel). Most state-of-the-art evaluation
methods extract features from large networks pre-trained by the ImageNet
(e.g., Inception-v3, VGG-16, or ResNet-34). We compare the computational
complexity and the model sizes of the entire LGSQE method and the feature
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Table 8: Comparison of computational complexity and model sizes of LGSQE and pretrained
networks used for feature extraction in DL-based evaluation metrics.

No. of
Complexity FLOPs/pixel | Parameters
VGG-16 102.97K 138.36 M
Inception-V3 22.37K 25M
ResNet-34 24.45K 21.8M
MNIST / Fashion-mnist 137.82 0.95M
. CIFAR-10 142.30 2.89M
Entire LGSQE | g1y 10/ Celeb-A 69.46 3.17M
LSUN 69.62 3.76M

extraction modules of DL-based methods in Table 8. We see a huge gap in
both computational complexity and model sizes. Clearly, LGSQE is much
more efficient.

We also measure the evaluation time with a computer with Intel(R) Xeon(R)
CPU E5-2620 v3 at 2.40 GHz without code optimization. It is not surprising
that LGSQE is much faster than other methods. Take the CIFAR-10 dataset
as an example. It takes 122 minutes for the FID computation on 10,000 pairs
of actual and generated images. In contrast, it takes LGSQE 2-3 minutes to
achieve the same task.

5 Conclusion and Future Work

A lightweight quality evaluation method for generated samples and generative
models, called LGSQE, was proposed in this paper. Compared with deep-
learning-based evaluation metrics, LGSQE offers discriminant features that
can accurately differentiate generated from real samples. LGSQE is more
transparent to users due to its modularized design. Users can adjust hyper-
parameters to fine-tune each module. Furthermore, it has a smaller model size
and shorter evaluation time. In the future, we would like to use LGSQE as a
discriminator to boost the performance of light-weight generative models such
as NITES [34], TGHop [35], PAGER [3], and GENHOP [33].
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Appendix

Figure 11: Illustration of 88 high-quality images generated by Diffusion-Pojected GAN
trained on LSUN-church.
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Figure 12: Tllustration of 88 low-quality images generated by Diffusion-Pojected GAN trained
on LSUN-church.
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Figure 13: Illustration of 88 high-quality images generated by Pojected GAN trained on

LSUN-bedroom.
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Figure 14: Illustration of 88 low-quality images generated by Pojected GAN trained on
LSUN-bedroom.
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Figure 15: Illustration of 88 high-quality images generated by Diffusion-StyleGAN2 trained

on CelebA.
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Figure 16: Illustration of 88 low-quality images generated by Diffusion-StyleGAN2 trained

on CelebA.
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