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ABSTRACT

We previously proposed the virtual microphone technique to improve
speech enhancement performance in underdetermined situations, in
which the number of channels is virtually increased by estimating ex-
tra microphone signals at arbitrary positions along the straight line
formed by real microphones. The effectiveness of the interpolation of
virtual microphone signals for speech enhancement was experimentally
confirmed. In this work, we apply the extrapolation of a virtual mi-
crophone as preprocessing of the maximum signal-to-noise ratio (SNR)
beamformer and compare its speech enhancement performance (the
signal-to-distortion ratio (SDR) and signal-to-interference ratio (SIR))
with that of using the interpolation of a virtual microphone. Further-
more, we aim to improve speech enhancement performance by solving a
trade-off relationship between performance at low and high frequencies,
which can be controlled by adjusting the virtual microphone interval.
We propose a new arrangement where a virtual microphone is placed
at a distance from the reference real microphone proportional to the
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wavelength at each frequency. From the results of our experiment in
an underdetermined situation, we confirmed speech enhancement per-
formance using the extrapolation of a virtual microphone is higher
than that of using the interpolation of a virtual microphone. Moreover,
the proposed wavelength-proportional interpolation and extrapolation
method improves speech enhancement performance compared with the
interpolation and extrapolation. Furthermore, we present the directivity
patterns of a spatial filter and confirmed the behavior that improves
speech enhancement performance.

Keywords: Virtual microphone, underdetermined situation, speech enhance-
ment, beamforming, array signal processing.

1 Introduction

Signal processing using a microphone array includes various techniques such
as blind source separation [5, 11, 12, 19, 20, 25, 28, 33], direction of arrival
(DoA) estimation [3, 27, 30, 31, 40, 43, 44], and speech enhancement using
a beamformer [9, 13, 17, 18, 37, 46, 47]. Basically, the performance of
these techniques depends on the number of microphones. In other words,
performance may degrade when the number of microphones is smaller than
that of sound sources, which is called an underdetermined situation. On
the other hand, portable recording devices such as smartphones and voice
recorders, which usually have a small number of microphones, are widely used.
Consequently, these techniques are prone to face an underdetermined situation
in real environments. Several methods such as time–frequency masking [1,
4, 6–8, 24, 38, 39, 49, 53, 54], multichannel Wiener filtering [10, 14, 15, 41]
and multichannel non-negative matrix factorization [36, 42] are effective in
an underdetermined situation, although these methods tend to increase the
distortion or computational complexity when trying to achieve high separation
performance.

A simple solution to the above problem is to increase the number of
microphones. However, this requires costly special equipment, such as a
synchronized A/D converter, and a large amount of wiring. For this reason, we
previously proposed the virtual microphone technique, in which the number
of microphones is not actually but virtually increased [22, 26, 32, 52]. In this
technique, additional observed signals, namely, virtual microphone signals,
are estimated at arbitrary positions along the straight line formed by real
microphones. Signal processing using a virtually extended microphone array
is possible by using virtual microphone signals in addition to real microphone
signals. The virtual microphone technique can be viewed as the time-frequency
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switching beamformers [50, 51] which utilises the sparseness of the speech
signals. Deep neural network-based virtual microphone technique, which used
convTasnet, has also been proposed [35, 45].

The virtual microphone technique involves the interpolation and extrapola-
tion of a virtual microphone depending on its position. In our previous studies,
the interpolation was mainly used for speech enhancement [26, 52] and the
extrapolation was mainly used for sound image localization [22, 32]. Thus,
we apply the extrapolation of a virtual microphone to speech enhancement
and compare its speech enhancement performance with that of using the
interpolation of a virtual microphone.

The actual microphone array has an optimal placement of microphone
for frequency. In general, at high frequencies, i.e., for a signal with a short
wavelength, a shorter microphone interval is advantageous for preventing
spatial aliasing and thus avoiding the degradation of speech enhancement
performance. Conversely, at low frequencies, i.e., for a signal with a long
wavelength, a longer interval is advantageous for obtaining a sufficient time
difference, or equivalently, a sufficient phase difference to construct a spatial
filter, which improves speech enhancement performance. This means that there
is a trade-off relationship between performance at low and high frequencies,
and it can be controlled by adjusting the microphone interval. To maximize
observed phase differences while avoiding spatial aliasing, a microphone should
be placed so that the microphone interval becomes half the wavelength at
each frequency. In actual microphone array, a nonuniform-spacing microphone
array has been used to deal with the trade-off relationship [16, 21, 29]. In this
technique, a number of microphones are placed at nonuniform intervals, and
signal processing is performed using a microphone pair with an appropriate
microphone interval for each frequency band. This allows the microphone
interval to be optimized for each frequency band, but inevitably requires
many microphones, increasing the cost. Therefore, it is difficult to implement
this technique on widely used small devices such as smartphones and voice
recorders. On the other hand, in the virtual microphone technique, the virtual
microphone can be placed at any position on the same straight line as the
real microphones by the interpolation and extrapolation. In addition, since
the virtual microphone signal is independently estimated at each frequency
bin, it is possible to change the position of the virtual microphone at each
frequency. On this basis, we propose a new technique of virtual microphones
that solves the trade-off relationship between performance at low and high
frequencies, namely, wavelength-proportional virtual microphone (WPVM)
technique [23]. Here, the virtual microphone is placed at a distance from the
reference real microphone proportional to the wavelength at each frequency
for speech enhancement, and both interpolation and extrapolation are used.

In this study, we evaluate speech enhancement performance using the maxi-
mum signal-to-noise ratio (SNR) beamformer [2, 46] by the virtual microphone
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technique, where we use the extrapolation of a virtual microphone and WPVM
technique. First, to examine the effectiveness and robustness against the direc-
tions of target and interferer sound sources, we perform speech enhancement
with the extrapolated virtual microphones and WPVM in various acoustic
environments. Next, we present the directivity patterns of spatial filters to
illustrate the effect of WPVM technique on filter design.

The structure of this paper is as follows. In Section 2, we explain the
virtual microphone technique. In Section 3, we propose WPVM technique.
In Section 4, we explain the maximum SNR beamformer. In Section 5, we
experimentally evaluate the performance of the extrapolation of the virtual
microphone and WPVM technique. Additionally, we present the directivity
patterns to confirm the behavior of those methods. Finally, the paper is
concluded in Section 6.

2 Virtual Microphone Technique

2.1 Preliminary

In this section, we introduce the virtual microphone technique involving
interpolation based on β-divergence [26, 52] and extrapolation of a virtual
microphone [22]. In this paper, the interpolation and extrapolation of a
virtual microphone, which are conventional methods using the same position
of the virtual microphone at all frequencies, are collectively referred to as the
fixed virtual microphone technique. In this technique, all microphone signals
are processed in the time–frequency domain. A virtual microphone signal
v(ω, t) is generated from the observed signals of two real microphones xi(ω, t),
where xi(ω, t) is the ith microphone signal (i = 1, 2) at angular frequency ω
in the tth time frame. The number of channels of the microphone array is
virtually increased by using virtual microphone signals in addition to the real
microphone signals. The arrangement of the real and virtual microphones is
shown in Figure 1, where α is a coefficient that determines the position of the
virtual microphone.

Figure 1: Arrangement of real and virtual microphones.
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In an environment where there are multiple sounds arriving from different
directions, the relationship between the microphone position and the observed
signal is generally complicated. In the virtual microphone technique, by
assuming W-disjoint orthogonality (W-DO)[53] for mixed signals, we can
simplify the model of the observed signal. W-DO indicates the strong sparsity
of a signal in the time–frequency domain, i.e., the component from a sound
source dominates one time–frequency slot. By assuming W-DO, even when
multiple sounds arrive, we can regard them as a single sound in each time–
frequency slot.

In this technique, the phase and amplitude of a virtual microphone signal
are estimated individually. Here, different models can be applied for the phase
and amplitude estimation, making the generation of the virtual microphone
signals simple. Additionally, this formulation naturally leads to the nonlinearity
of generation of virtual microphone signals, which is an essential property to
apply this technique as preprocessing in linear signal processing. Here, the
phase and amplitude of xi(ω, t) are respectively defined as

ϕi = ∠xi(ω, t) = tan−1 Im(xi(ω, t))

Re(xi(ω, t))
, (1)

Ai = |xi(ω, t)|. (2)

2.2 Estimation of Phase of Virtual Microphone Signal

When a sound wave arrives from a sufficient distance relative to the microphone
interval, the propagating wave can be approximated as a plane wave. In both
interpolation and extrapolation, we can estimate the phase ϕv of the virtual
microphone signal using the linear equation

ϕv = ϕ1 + α(ϕ2 − ϕ1)

= (1− α)ϕ1 + αϕ2. (3)

The phase has the value ϕi ± 2πn, where n is an arbitrary natural numbers.
Thus, the phase of the virtual microphone signal is estimated under the
assumption of

|ϕ1 − ϕ2| ≤ π. (4)

2.3 Estimation of the Amplitude of Virtual Microphone Signal

In the estimation of the amplitude of the virtual microphone signal, the
formulas are different for interpolation and extrapolation.

The physical modeling of the amplitude difference is not as simple as that
of the phase difference because the amplitude depends on the distance between
the source and the microphones in addition to the DOA. Thus, instead of
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interpolation based on some physical assumption, amplitude interpolation
based on β-divergence, which has simple processing and parameter adjustment,
was proposed [26].

β divergence is a widely used distance measure for nonnegative values
such as amplitude. For instance, β divergence is used as the cost function
for nonnegative matrix factorization (NMF). β divergence is equivalent to
Itakura-Saito divergence (β = 0), Kullback-Leibler divergence (β = 1), and
Euclidean divergence (β = 2). Note that β divergence also corresponds to the
far-field model (β = 2) and the near-field model. The β divergence between
the signal amplitude of a virtual microphone Av and that of the ith real
microphone Ai is defined as

Dβ (Av, Ai) =


Av (logAv − logAi) + (Ai −Av) (β = 1),
Av

Ai
− log

Av

Ai
− 1 (β = 0),

Aβ
v

β (β − 1)
+

Aβ
i

β
− AvA

β−1
i

β − 1
(otherwise).

(5)

Note that Dβ is continuous at β = 0 and β = 1. For β-divergence-based
interpolation, we derive the amplitude Av that minimizes the sum σDβ

of the
β divergence between the amplitude of a real microphones signal and a virtual
microphone signal weighted by the virtual microphone interpolation parameter
α,

σDβ
= (1− α)Dβ (Av, A1) + αDβ (Av, A2) , (6)

Avβ = argminAv
σDβ

. (7)

Differentiating σDβ
with respect to Av and setting it to 0, the interpolated

amplitude extended using β divergence is obtained as

Av =

exp ((1− α) logA1 + α logA2) (β = 1)(
(1− α)Aβ−1

1 + αAβ−1
2

) 1
β−1

(otherwise),
(8)

where 0 < α < 1.
The result of β-divergence-based interpolation is assumed to be the β − 1

norm of the vector
[
(1− α)x1, αx2

]T, which is composed of the amplitude
weighted by α. Therefore, taking the limits of β → +∞ and β → −∞,
the interpolation corresponds to the selection of the following maximum and
minimum values, respectively:

Av =

{
max (A1, A2) (β → +∞) ,

min (A1, A2) (β → −∞) .
(9)
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Note that the linear interpolation of the phase angle is defined in the
domain of arbitrary real numbers α, not only in the range 0 ≤ α ≤ 1. On the
other hand, the β-divergence-based interpolation of the amplitude is defined
only in the domain of 0 ≤ α ≤ 1 when β is set to β ̸= 1.

For the extrapolation, the conceivable amplitude of the virtual microphone
is more complex than that for the interpolation. When (8) is applied to ex-
trapolation, it may output unrealistic amplitudes such as a complex amplitude,
a negative amplitude, or an amplitude diverging to positive infinity except for
β = 1. Therefore, in this study, as the simplest way to avoid these problems,
we restricted to using the amplitude of the signal of a real microphone that is
closer to the position of the virtual microphone. Thus, the amplitude of the
extrapolated virtual microphone signal is [22, 32]

Av =

{
A1 (α < 0)
A2 (α > 1).

(10)

2.4 Estimation of Virtual Microphone Signal

From the above, the virtual microphone signal v(ω, t, α) is represented as

v(ω, t, α) = Av exp (jϕv). (11)

When we need many virtual microphones, we can use an arbitrary number of
α values to generate the same number of virtual microphones.

3 Wavelength-Proportional Virtual Microphone

As mentioned in the introduction, there is a trade-off relationship between
performances at low and high frequencies in array signal processing techniques.
For example, at high frequencies and short wavelengths, a shorter microphone
interval prevents spatial aliasing. Conversely, at low frequencies and long
wavelengths, a longer microphone interval provides a sufficient phase difference
as spatial information.

In this paper, we propose a new arrangement, in which the position of
the virtual microphone is proportional to the wavelength at each frequency
[23]. We call the proposed technique the wavelength-proportional virtual
microphone (WPVM). The arrangement of real and virtual microphones is
shown in Figure 2.

In this method, the coefficient of the position of the virtual microphone α
is given by

α(ω) =
λ(ω)k

d
=

2πck

ωd
, (12)
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Figure 2: Arrangement of real microphones and a wavelength-proportional virtual micro-
phone.

where λ is wavelength, d is the distance between the real microphones, k is a
wavelength coefficient, and c is the speed of sound. The wavelength coefficient
k is the interval between reference microphone x1 and the virtual microphone
v relative to the wavelength λ(ω). This equation means that the virtual
microphone is placed at a position k times the wavelength corresponding to
the frequency to be processed; thus, the total length of the microphone array
including the virtual microphone is large at low frequencies and small at high
frequencies. For example, when k = 0.5, the position of the virtual microphone
is 42.5 cm at 400 Hz, 17 cm at 1 kHz, and 4.25 cm at 4 kHz. In this case, the
maximum phase difference between x1 and v is π, so spatial aliasing does not
occur at all frequencies.

4 Maximum SNR Beamformer

In this study, to evaluate the performance of the extrapolation of the virtual
microphone and WPVM technique, we carry out the extrapolation and WPVM
technique as preprocessing of the maximum SNR beamformer [2, 46]. The
advantage of this beamformer is that it does not explicitly require the direction
of sound sources.

In speech enhancement by a beamformer, the multichannel filter w(ω) is
constructed for the N -channel observation signals x(ω, t).

x(ω, t) = [x1(ω, t), · · · , xN (ω, t)]T (13)

w(ω) = [w1(ω, t), · · · , wN (ω, t)]T (14)

where T stands for the transposition of a vector. The sound y(ω, t) in which the
target sound is enhanced can be obtained by applying filter w(ω) to observed
signal x(ω, t) as follows:

y(ω, t) = wH(ω)x(ω, t). (15)
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The construction of the maximum SNR beamformer requires prior infor-
mation on the spatial covariance matrices of the target-active period RT(ω)
and target-inactive period RI(ω). From this information, the maximum SNR
beamformer constructs a filter so that the SNR, γ(ω), of the target to the
interference signal becomes maximum as follows:

γ(ω) =
wH(ω)RT(ω)w(ω)

wH(ω)RI(ω)w(ω)
. (16)

Although, a constructed spatial filter w(ω) has a scaling ambiguity in the
maximum SNR beamformer, a compensation method was proposed in [2].

When the virtual microphone technique is used, the observed signals
including virtual microphone signal and the constructed filters are

x(ω, t) = [x1(ω, t), · · · , xN (ω, t), xv(ω, t)]
T (17)

w(ω) = [w1(ω, t), · · · , wN (ω, t), wv(ω, t)]
T . (18)

Thus, the enhanced signal can be obtained by (15). The virtual microphone
technique can be similarly applied to other microphone array signal processing
techniques as well as the maximum SNR beamformer.

5 Experiment

In the experiment, we compared speech enhancement performance of the maxi-
mum SNR beamformer using the extrapolation of the virtual microphone with
that using the interpolation. Furthermore, we also evaluated the enhancement
performance with the WPVM technique.

5.1 Experimental Conditions

The layout of the sound sources, which is set up to consider speech enhancement
in a conversational scene, is shown in Figure 3. One target speaker and two
interferers are assumed to be in the scene. Furthermore, two real microphones,
M1 and M2, and one virtual microphone, Mv, are assumed, as shown in the
figure. Other experimental conditions are listed in Table 1. The sampling
frequency is 8 kHz, so spatial aliasing would occur if the interval between the
two real microphones were longer than 4.25 cm. The interval between the
real microphones is 2.83 cm, thus there is no spatial aliasing between them.
We use four female speeches and four male speeches as a target source, and a
female speech and a male speech as each interference source. Half the speeches
are in Japanese and the other half are in English. In total, 32 (8 × 2 × 2)
combinations of target and interference speeches are used for the experiment.
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Figure 3: Layout of sound sources and microphones.

Table 1: Experimental Conditions.

Number of real microphones 2
Number of virtual microphones 1
Input SNR 0 dB
Sampling rate 8 kHz
Interval between real microphones 2.83 cm
Reverberation time TR 300 ms
FFT frame length/shift 1024/256 samples
Number of target speech types 8
Number of interference speech types 2

The target speaker is located in three directions, that is, at azimuth of 0◦
(front), −20◦ (left), and 20◦ (right), as shown in Figure 3. The same applies
to the two interferers. Therefore, a total of 27 (3×3×3) combinations of target
and interferer directions are examined. The observed signals are simulated
by convolving the speeches and a set of measured impulse responses in the
RWCP Sound Scene Database [34]. The impulse responses are measured in a
room (T60 = 300 ms).

In the experiment to compare speech enhancement performance between
the case of using interpolation and extrapolation, the coefficient of the position
of the virtual microphone α is varied from 0.1 to 30 (i.e., the interval between
M1 and Mv is varied from 0.283 cm to 84.9 cm), where 0 < α < 1 indicates
interpolation and α > 1 indicates extrapolation. α = 1 indicates that no
virtual microphone is used (i.e., only the two real microphones are used). In
the interpolation, since it has been experimentally confirmed that β = −20
provides the highest performance [26], we set β to −20. In the evaluation
of speech enhancement performance with the WPVM technique, to compare
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differences in performance owing to k, the wavelength coefficient k is set to
0.25, 0.5, 1, and 2. The SNR of the target signal to interference signals is
set to 0 dB. To evaluate speech enhancement performance, we use the signal-
to-distortion ratio (SDR) and signal-to-interference ratio (SIR) as objective
evaluation criteria [48]. A concise representation of the results is obtained by
averaging these criteria over 864 (32×27) trials for speakers and directions.

5.2 Results

Figure 4 shows the relationship between the coefficient of the virtual microphone
α and the SDR and SIR. Note that the horizontal axis has a logarithmic scale.

The curved line indicates speech enhancement performance using the fixed
virtual microphone technique, which uses the same value of α for all frequencies.
According to Figure 4, the SDR was improved by up to 1.5 dB compared
with that without the virtual microphone (α = 1) by using interpolation
(α < 1), whereas it was improved by up to about 2.5 dB by using extrapolation
(α > 1), i.e., the SDR is 1 dB higher when using extrapolation than when
using interpolation. Similarly, the SIR was improved by 2.5 and 4.5 dB by
using interpolation and extrapolation, respectively. From these results, it can
be seen that the extrapolation of the virtual microphone is more effective than
the interpolation.

5.3 Discussion

To clarify the reason underlying these results, we illustrate the directivity
patterns of the spatial filter of the maximum SNR beamformer. We focused
on a specific combination of directions of the target and interference sources:
0◦ for the target, 60◦ for interference 1, and −60◦ for interference 2. Speech
enhancement performance of each method is shown in Figure 5, and is similar
to that in Figure 4.

The other straight lines show the enhancement performance when using
WPVM technique with wavelength coefficient k. In the evaluation of WPVM
technique, for the SDR, it is confirmed that the performance is highest for
k = 0.5. Its performance was improved by up to 1.3 and 0.3 dB compared
with those of interpolation and extrapolation, respectively. In contrast, for
the SIR, the performance is highest for k = 1. Its performance was improved
by up to 3 and 1 dB compared with those of interpolation and extrapolation,
respectively. In contrast, the results for k = 2 and k = 0.25 were inferior to
that using the fixed virtual microphone technique for some values of α.

For the same combination of directions as above, the directivity patterns
of the maximum SNR beamformer obtained by using interpolation and ex-
trapolation, and WPVM technique are respectively shown in Figures 6 and 7,
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Figure 4: Relationship between coefficient of virtual microphone α and average speech
enhancement performance.

where the values of α with the best enhancement performance were selected
for interpolation and extrapolation.

According to Figure 6 (a), the spatial filter with the interpolated virtual
microphone (α = 0.4 at all frequencies) has nulls in the frequency range from
1 to 4 kHz and no nulls at frequencies below 1 kHz. This means that sounds
below 1 kHz cannot be sufficiently suppressed. According to Figure 6 (b),
the spatial filter with the extrapolated virtual microphone (α = 13 at all
frequencies) has many sharp nulls, which implies the occurrence of spatial
aliasing. As a result, sounds from various directions, such as those near the
target source, are suppressed in addition to the interference sound. However,
unlike in interpolation, nulls exist even at frequencies below 1 kHz, which means



Wavelength-Proportional Virtual Microphone 13

Figure 5: Relationship between coefficient of virtual microphone α and speech enhancement
performance in the situation where 0◦ for target, 60◦ for interference 1, and −60◦ for
interference 2.

that sounds below 1 kHz can be appropriately suppressed. In general, human
speech has more energy at low frequencies than at high frequencies. Since the
beamformer with extrapolation can improve the performance at low frequencies
by widening the microphone interval, we conclude that the extrapolation
contributes to the improvement of speech enhancement performance.

For the beamformer with WPVM technique (Figure 7), four sharp nulls
are found in the directivity pattern for k = 2 (Figure 7 (a)). This indicates the
occurrence of spatial aliasing at all frequencies. On the other hand, two fuzzy
nulls are found in the directivity pattern for k = 0.25 (Figure 7 (d)), which
indicates that the phase difference between each microphone is too small at all
frequencies to construct a spatial filter with sharp nulls. In contrast, two nulls
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Figure 6: Directivity patterns of beamformer with fixed virtual microphone.

are clearly observed for k = 0.5 (Figure 7 (c)). Moreover, two belt-shaped nulls
are clearly observed for k = 1 (Figure 7 (b)) indicating that no spatial aliasing
occurs. As the reason for the improved speech enhancement performance, by
using an appropriate k, it is possible to maximize the observed phase difference
within a range where spatial aliasing does not occur, thereby making it possible
for the beamformer to generate sharp nulls. As a feature of the directivity
patterns for WPVM technique, similar directivity is found at all frequencies,
indicating that it has directivity characteristics independent of frequency.

For these results, the nulls tend to slightly deviate from the direction
of the interference sound sources. We attribute this to the effect of room
reverberation, which is known to introduce bias.
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Figure 7: Directivity patterns of beamformer with fixed virtual microphone.
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Summarizing this discussion, when the microphone interval is small, an
insufficient phase difference between microphones exists at low frequencies,
resulting in nulls not being properly generated. In contrast, when the micro-
phone interval is large, spatial aliasing occurs at high frequencies. WPVM
technique using an appropriate wavelength coefficient k can cope with these
two problems; thus, this method shows the highest performance.

6 Conclusion

In this paper, we applied extrapolation of a virtual microphone with the
maximum SNR beamformer to speech enhancement in an underdetermined
situation, and confirmed that its speech enhancement performance is better
than that with interpolation of a virtual microphone. In addition, we proposed
a new arrangement where a virtual microphone is placed at a distance from the
reference real microphone proportional to the wavelength at each frequency.
The advantages of this method are that no spatial aliasing occurs and the
phase difference between microphones is sufficient to construct a spatial filter
at all frequencies by setting an appropriate wavelength coefficient k.

In the experiment, we evaluated speech enhancement performance on the
basis of the SDR and SIR in an underdetermined situation. By comparing the
proposed method with the conventional method, we found that the SDR was
improved by about 1.3 dB and the SIR by about 3 dB. These results indicate
that the proposed WPVM technique is effective for speech enhancement using
the maximum SNR beamformer in an underdetermined situation.
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