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ABSTRACT

In this paper, we propose a better update algorithm for independent
low-rank matrix analysis (ILRMA). ILRMA has two types of parame-
ters, demixing vectors and non-negative matrix factorization parameters,
which are estimated by minimizing the same objective function. Al-
though many extensions of ILRMA have been proposed, the importance
of the order of parameter updates in ILRMA is not investigated suffi-
ciently. Because of the observation that iterative projection two (IP2)
shows a higher performance than IP1, we propose a repeated update
of demixing vectors with the source model fixed in one iteration; this
approximates a simultaneous update of all demixing vectors together.
We conducted music source separation experiments with more than 100
songs. The results showed that the proposed algorithm with the re-
peated update of demixing vectors outperforms the conventional ILRMA
regarding separation performance and convergence speed.
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1 Introduction

Blind source separation (BSS) aims to separate a mixture of multiple signals
into individual signals [2]. It has been applied in a vast number of applications,
such as multichannel audio processing [11], music information retrieval [1],
wireless communication systems [10], soundscape information retrieval [9], and
brain imaging [29].

Independent vector analysis (IVA) considers frequency-wise correlations
and avoids permutation ambiguity by assuming a multivariate distribution
of sources [3, 5]. The demixing matrices of IVA are estimated by updating
with the gradient descent method, which is sensitive to a step-size parameter
and may be unstable. Auxiliary-function-based IVA (AuxIVA) has been
proposed to improve convergence and performance [21]. AuxIVA estimates
demixing matrices faster and more stably than the conventional IVA with no
tuning parameters using the majorization-minimization algorithm [8]. Some
extensions of AuxIVA for online/real-time processing [27] and its application
to hearing aids [26] have been proposed. To further improve the source model,
AuxIVA was extended to independent low-rank matrix analysis (ILRMA) [7]
by exploiting a low-rank source model of nonnegative matrix factorization.
ILRMA models the spectrograms of separated sources more accurately and
thus achieves a higher separation performance than AuxIVA. Many extensions
to other source models of ILRMA were proposed [6, 14, 15]. Update rules
of demixing matrices and source models have been extended from IVA to
ILRMA.

Update rules of demixing matrices of AuxIVA have been extensively studied
in recent years. Iterative projection (IP) was initially proposed for AuxIVA
and updates each row vector of a demixing matrix (demixing vector) per
iteration [21]. The pairwise update rule called iterative projection 2 (IP2)
was also proposed and updates two demixing vectors simultaneously in each
iteration [20]. We refer to the original IP as IP1 to distinguish it from IP2
in this paper. As an alternative approach, iterative source steering (ISS),
which updates the entire demixing matrix using elementary row operations,
has been proposed [24]. ISS can eliminate matrix inversions and thus updates
more rapidly while keeping the same separation performance as IP1. All these
update methods are derived by minimizing the likelihood function of the input
mixture signal, leading to a system of quadratic equations called hybrid exact-
approximate joint diagonalization (HEAD) [30, 31] (also known as “sequentially
drilled” joint congruence (SeDJoCo) [28]). When the number of sources is
three or more, HEAD is still an open problem. IP2 can yield a global optimal
solution of HEAD only for two sources by solving a generalized eigenvalue
problem. IP1, IP2, and ISS are available for ILRMA because ILRMA includes
AuxIVA as a special case [7]. The original ILRMA employs IP1 to update
demixing vectors. ILRMA with IP2 or ISS has also been proposed [17, 18].
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Interestingly, it has been reported that IVA with IP2 [19] and ILRMA with
IP2 [18] showed a higher performance than those with IP1, even using the
same source model. These results imply that how to update the parameters
also contributes the better separation performance. Similarly, it has been
shown that a slower updating of source model parameters tends to improve
the separation performance [13].

Motivated by these studies, we here focus on the parameter updates in
ILRMA. The contribution of this study is summarized as follows:

1. We propose a new algorithm of ILRMA named ILRMA-Rep. It repeatedly
updates the demixing vectors by fixing the source model at each iteration.
It works as approximately updating all the demixing vectors at once.

2. We derive faster update rules of ILRMA-Rep based on the matrix inver-
sion lemma (MIL). Especially the update rule based on IP2 with MIL,
which we call IP2-MIL, is new and applicable to other BSS methods,
such as online AuxIVA.

3. We conducted simulated separation experiments with 144 music signals
to validate the efficacy of our proposed method. The results show that
the proposed methods improve the separation performance.

The rest of this paper is organized as follows. We briefly summarize the back-
ground of the conventional ILRMA and its update rules in Section 2. Section 3
describes ILRMA with repeated updates of demixing vectors (ILRMA-Rep),
the proposed ILRMA updates with repeated updates of demixing vectors. We
evaluate the performance of ILRMA-Rep and compare it with that of the
conventional ILRMA with IP1, IP2, and ISS in Section 4. Finally, Section 5
concludes this paper.

2 Overview of Problem Formulation and Conventional ILRMA

2.1 Notations

In the rest of this paper, we use lower- and uppercase bold symbols for vectors
and matrices, respectively. Lowercase normal symbols denote vector entries or
scalars. For example, xkft denotes the kth entry of a vector xft. The transpose
and the conjugate transpose of a vector and a matrix are respectively denoted
as (·)T and (·)H. We denote C and R+ as the sets of all complex numbers and
non-negative real numbers, respectively. Unless specified otherwise, indices
f, t, and m always take the ranges from 1 to F, T , and M , respectively. Also,
we omit the bounds of sums or products over these indices when they span the
ranges. For example,

∑
k is the sum over all k in the range of k = 1, . . . ,K,

and
∑

ft is the double-sum over f = 1, . . . , F and t = 1, . . . , T . Similarly,
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{W f}f denotes the set of W f for all f ; {xkft}kft denotes the set of xkft for
all k, f , and t, for example.

2.2 Signal Model

We formulate the short-time Fourier transform (STFT) domain BSS as

xft = Afsft, (1)

where xft ∈ CM denotes the observed mixture signals recorded by M micro-
phones and sft ∈ CK denotes the source signals of K sources, respectively, at
frequency f and time t. Here, Af =

[
a1f . . . aKf

]
∈ CM×K is the mixing

matrix whose kth column vector akf corresponds to the steering vector from
source k to each microphne. The goal of BSS is to estimate the frequency-wise
demixing matrices,

W f =
[
w1f . . . wMf

]H ∈ CK×M , (2)

such that the estimated source is

yft = W fxft, (3)

given only mixture signals xft, where yft ∈ CK denotes the estimated signals.
The kth row vector of the demixing matrix wkf is called the demixing vector
for source k. We henceforth consider the determined situation, i.e., the number
of sources equals that of microphones M = K.

2.3 Independent Low-rank Matrix Analysis

We briefly summarize ILRMA as a maximum likelihood estimation problem.
The likelihood function is derived with the following assumptions.

1. All the sources are statistically independent; their joint distribution is
the product of their individual distributions.

2. The estimated signals follow this zero-mean multivariate complex Gaus-
sian distribution,

py(ykft) =
1

πrkft
exp

(
−|ykft|

2

rkft

)
, (4)

where rkft ∈ R+ is called the variance of the distribution corresponding
to the kth source in a time–frequency point f and t.
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3. The variance rkft is decomposed into L parts as

rkft =

L∑
l=1

bkflcklt, (5)

where bkfl and cklt ∈ R+ are called the basis and activity coefficients,
respectively. Henceforth, we call these coefficients the source model
parameters.

The kth estimated signal is denoted as ykft = wH
kfxft from (3). By using

these assumptions, we can determine the likelihood of the observation as

L(W) =
∏
ft

px (xft) (6)

=
∏
ft

py
(
yft

)
|detW f |2 (7)

=
∏
ft

(∏
k

py (ykft)

)
|detW f |2, (8)

where px is the probability density function of the observed signals and W is
the set defined as W = {W f}f . The determinant term is the Jacobian that
comes from the change of variable. The goal of ILRMA is to estimate W f by
minimizing the following function:

L+(W, B, C) =
∑
ft

[∑
k

(
|wH

kfxft|2

rkft
+ log rkft

)
− log|detW f |2

]
+ const.,

(9)

where B and C are the sets defined as {bkfl}kfl and {cklt}klt, respectively. The
aim of ILRMA is to estimate the demixing vectors wkf and the source model
parameters bkfl, cklt that minimize (9) with only the observed mixture xft.

2.4 Update of Source Model Parameters

We can derive the following multiplicative update rules of the source model
parameters by applying the auxiliary-function method to (9) [7]:

bkfl ← bkfl ·
∑

t |ykft|
2
cklt(

∑
i bkfickit)

−2∑
t cklt(

∑
i bkfickit)

−1 , (10)

cklt ← cklt ·
∑

f |ykft|
2
bkfl(

∑
i bkfickit)

−2∑
f bkfl(

∑
i bkfickit)

−1 . (11)

These update rules guarantee the convergence of (9).
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2.5 Update of Demixing Vectors

We summarized the well-used update rules of demixing vectors for AuxIVA
and ILRMA, which is based on our proposed method in the next section.

2.5.1 Sequential Update of Demixing Vector: Iterative Projection One (IP1)

We calculate the derivative of (9) with respect to wkf (k = 1, . . . , K) to
derive the update rules of demixing vectors. Then, we obtain the following
system of quadratic equations:

wH
mfUkfwkf =

{
0 (m ̸= k)

1 (m = k)
(m, k = 1, . . . , K), (12)

where Ukf ∈ CK×K is called the weighted covariance matrix defined as

Ukf =
1

T

∑
t

xftx
H
ft

rkft
.

This system of quadratic equations is called hybrid exact-approximate joint
diagonalization (HEAD) [28, 30, 31]. When K = 2, the closed-form solution
of (12) can be derived by solving a generalized eigenvalue problem [19, 25].
However, for K ≥ 3, the closed-form solution of the HEAD problem has not
yet been found. Instead, we minimize the objective function (9) with respect
to only one demixing vector wkf while keeping the others fixed. The resulting
update rule is given by

wkf ← U−1
kf W

−1
f ek, (13)

wkf ←
wkf√

wH
kfUkfwkf

. (14)

It is referred to as IP1 [21]. Algorithm 1 summarizes the conventional ILRMA
with IP1.

2.5.2 Pairwise Update Rules of Demixing Vectors: Iterative Projection Two (IP2)

The closed-form solution of HEAD is available for two sources by solving the
following generalized eigenvalue problem:

U2fwkf = λkfU1fwkf (k = 1, 2), (15)

where λ1f and λ2f (λ1f ≥ λ2f ) are the corresponding eigenvalues of w1f

and w2f . Therefore, the two demixing vectors w1f , w2f can be updated
simultaneously [20, 32].
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Algorithm 1: Conventional ILRMA with IP1.
Input :Observed signals xft (∀f, t)
Output :Estimated signals yft (∀f, t)
Set the number of iterations Nitr
Initialize demixing matrices W f (∀f)
Initialize source model parameters bkfl, cklt, (∀k, f, t, l)
yft ←W fxft, (∀f, t)
for nitr = 1, . . . , Nitr do

for k = 1, . . . ,K do

bkfl ← bkfl

∑
t|ykft|2cklt(

∑
i bkfickit)

−2∑
t cklt(

∑
i bkfickit)

−1 (∀l, f)

cklt ← cklt

∑
f |ykft|2bkfl(

∑
i bkfickit)

−2∑
f bkfl(

∑
i bkfickit)

−1 (∀l, t)

rkft ←
∑

l bkflcktl (∀f, t)
Ukf ← 1

T

∑
t

1
rkft

xftx
H
ft (∀f)

wkf ← U−1
kf W

−1
f ek

wkf ←
wkf√

wH
kfUkfwkf

end
yft ←W fxft (∀f, t)

end

For K ≥ 3, the joint update method for two demixing vectors in the case
of three or more sources has been proposed [19]. This method was originally
proposed for AuxIVA and achieved a higher separation performance with fewer
iteration steps. We obtain the following system of 2K quadratic equations by
calculating ∂L+/∂wmf = 0 and ∂L+/∂wnf = 0 for all k ̸= m, n and m ≠ n:

wH
mfUmfwmf = 1, wH

mfUnfwnf = 0, (16)

wH
nfUmfwmf = 0, wH

nfUnfwnf = 1, (17)

wH
kfUmfwmf = 0, wH

kfUnfwnf = 0. (18)

The pairwise update rule of wℓ (ℓ = m, n) is derived by solving (16)–(18) as
follows [19];

P ℓf ← U−1
ℓf W−1

f

[
em en

]
, (19)

Zℓf ← P H
ℓfU ℓfP ℓf , (20)

wℓf ←
P ℓfzℓf√
zH
ℓfZℓfzℓf

, (21)
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where zℓf is the eigenvector of Zℓf (see [20] for details). Note that the choice
of the two indices m and n is arbitrary as long as m ̸= n.

2.5.3 Iterative Source Steering (ISS)

Instead of estimating the demixing vector wkf in IP1, ISS [24] updates the
entire demixing matrix by estimating a new vector vkf =

[
v1kf . . . vKkf

]T,

W f ←W f − vkfw
H
kf , (22)

where the update rule that minimizes (9) with respect to vmkf is given by

vmkf =


1− (wH

kfUkfwkf )
− 1

2 (m = k),

wH
mfUmfwkf

wH
kfUmfwkf

(m ̸= k).
(23)

Furthermore, from the demixing model ykft = wH
kfxft, the following are the

inverse-free update rules of vkf and the output estimated signal yft:

vmkf =

∑
t

ymfty
∗
kft

rmft∑
t
|ykft|2
rmft

, (24)

yft ← yft − vkfykft. (25)

3 Repeated Update of Demixing Vectors for ILRMA

3.1 Our Motivation and Approach

IVA with IP2 [19] and ILRMA with IP2 [18] showed a higher performance
than those with IP1. These results imply that the performance will be
further improved if more demixing vectors, ideally all of them, are updated
simultaneously such as

W f ← argmin
W f

L+(W, B, C). (26)

However, it leads to the HEAD problem and no closed-form solution has yet
been found for K ≥ 3 as mentioned in the previous section.

Instead of solving the HEAD problem in a closed-form manner, we propose
an “approximately” simultaneous update of demixing vectors by simply re-
peating the demixing vector updates with IP1, IP2, or ISS several times while
keeping the source model parameters fixed. Since each update reduces the
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objective function of (9), it is expected that the demixing matrix converges
the solution of the HEAD problem by repeating the demixing matrix update.

We can see this as follows. From (12), we rewrite the HEAD problem as

W f

[
U1fw1f . . . UKfwKf

]
= EK , (27)

where EK is the K ×K identity matrix. Therefore, we can check how close
the demixing matrix is to the solution of HEAD by visualizing the left side of
(27). Figure 1 shows one example of convergence to the solution of HEAD by
iteration steps. Each colormap shows the element-wise absolute value of the
left-hand side of (27). The initial demixing matrices were set to the identity
matrices. The weighted covariance matrices were set to the random Hermitian
matrices. As shown in Figure 1, the repeated updates of demixing vectors
considerably improve the estimated solution of HEAD. This example implies
that a set of repeated updates of demixing vectors can work as a simultaneous
update of demixing vectors.

Figure 1: Convergence of demixing vectors to the solution of HEAD by repeated updates.
The ideal solution is the identity matrix; only the diagonal elements are bright, and the
others are dark. This figure shows an example of convergence for four sources. Each column
shows element-wise absolute values of the demixing matrices after applying each update
method.

The outline of the proposed procedures is summarized in Algorithm 2. We
call this algorithm ILRMA-Rep. Figure 2 illustrates how the demixing vectors
and the source model parameters are updated.

3.2 Efficient Algorithm for Repeated Update

Updates of demixing matrices with IP1 or IP2 include a matrix inversion.
It could cause a large computational complexity for repeating the update of
demixing vectors. However, the matrix inversion lemma (MIL) is available
to reduce complexities because the covariance matrices are fixed within each
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Algorithm 2: Proposed ILRMA-Rep.
Input :Observed signals xft (∀f, t)
Output :Estimated signals yft (∀f, t)
Set the update method of demixing vectors
Set the number of iterations Nitr
Set the number of “repeats” Nrep
Initialize demixing matrices W f (∀f)
Initialize source model parameters bkfl, cklt, (∀k, f, t, l)
yft ←W fxft, (∀f, t)
for nitr = 1, . . . , Nitr do

for k = 1, . . . ,K do

bkfl ← bkfl

∑
t|ykft|2cklt(

∑
i bkfickit)

−2∑
t cklt(

∑
i bkfickit)

−1 (∀l, f)

cklt ← cklt

∑
f |ykft|2bkfl(

∑
i bkfickit)

−2∑
f bkfl(

∑
i bkfickit)

−1 (∀l, t)

rkft ←
∑

l bkflcktl (∀f, t)
Ukf ← 1

T

∑
t

1
rkft

xftx
H
ft (∀f)

end
for nrep = 1, . . . , Nrep do

switch update method of demixing vectors do
case IP1 do

for k = 1, . . . ,K do
Update wkf by (13) and (14)

end
case IP2 do

for (m,n) = (1, 2), . . . , (K − 1,K) do
Calculate Pmf and P nf by (19)
Calculate Zmf and Znf by (20)
Update wmf and wnf by (21)

end
case ISS do

for k = 1, . . . ,K do
for m = 1, . . . ,K do

Calculate vkmf by (23)
end
Update W f with vkf by (22)

end
end

end
end
yft ←W fxft (∀f, t)

end
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Figure 2: The diagram between conventional ILRMA (a) and proposed ILRMA-Rep (b) where
K = 3, for example. Blight boxes in each subfigure indicate the update of corresponding
parameters.

“repeat.” In this section, we derive an efficient algorithm for the repeated
update of demixing vectors.

MIL states that:

(X + ΨΩ)−1 = X−1 −X−1Ψ(EJ +ΩX−1Ψ)−1ΩX−1, (28)

where X is an invertible square matrix of shape K×K, Ψ and Ω are matrices
of shape K × J and J ×K (J ≤ K) respectively, and EJ is the J × J identity
matrix.

Let us consider avoiding the matrix inversion of IP1 included in (13). Let
Af = W−1

f and akf = Afek, if we update Af together with W f , (13) can
be easily calculated as ŵkf = U−1

kf akf where ŵkf denote the left side of (13).
Then, the point is how to update Af without the matrix inversion. We rewrite
(13) as

W f ←W f + ek(ŵkf − ŵkf )
H, (29)

Then, by using the matrix inversion lemma with Ψ ← ek and Ω ← (ŵkf −
wkf )

H in (28), we obtain the update rule of Af without matrix inversion.
Finally, the update rules without the matrix inversion are summarized as
follows.

ŵkf ← U−1
kf akf , (30)

ŵkf ←
ŵkf√

ŵH
kfUkf ŵkf

, (31)
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dkf := ŵkf −wkf (32)

Af ← Af −
akf

(
dH
kfAf

)
1 + dH

kfakf

, (33)

W f ←W f + ekd
H
kf . (34)

These update rules were first derived in the context of online BSS [27]. Hence-
forth, we call this version IP1-MIL.

Likewise, by setting Ψ ← [em en] and Ω ← [(ŵmf −wmf ) (ŵnf −wnf )]
H

in (28), the efficient update rule of IP2 is given by

P ℓf ← U−1
ℓf [aℓf anf ] (ℓ = m, n), (35)

Zℓf ← P H
ℓfU ℓfP ℓf (ℓ = m, n), (36)

ŵℓf ←
P ℓfzℓf√
zH
ℓfZℓfzℓf

, (ℓ = m, n), (37)

dℓf := ŵℓf −wℓf (ℓ = m,n), (38)

G := E2 +

[
dH
mf

dH
nf

] [
amf anf

]
, (39)

Af ← Af −
[
amf anf

]
G−1

([
dH
mf

dH
nf

]
Af

)
, (40)

W f ←W f + emdH
mf + end

H
nf , (41)

where E2 is the 2× 2 identity matrix. Note that G is a matrix of shape 2× 2
and thus the cost of its inversion is much less than those of W f and Ukf . To
the best of our knowledge, this is the first derivation of IP2 with the MIL.
Henceforth, we call this version IP2-MIL.

3.3 Complexity Analysis

This subsection outlines the time complexity of the demixing matrix update
method for each iteration and frequency bin. For IP1 and IP2, the calculation
of (W fUkf )

−1 in (13) and (19), respectively, takes O(K3) time at each source
k. For ISS by (23), the calculation of vkf takes O(K3) time. Therefore, the
total time complexity of updating the demixing matrix W f for all sources
k = 1, . . . ,K is O(K4) with these methods. In ILRMA-Rep, the covariance
matrices Ukf are fixed, and the repeat of demixing matrix updates takes
O(NrepK

4) time, where Nrep is the number of repeats. The use of MIL allows
for efficient updating of W−1

f . More specifically, O(K4) can be computed for
the first repeat only, and O(K3) for subsequent (Nrep − 1) repeats. Therefore,
the total time complexity of IP1-MIL and IP2-MIL for all the sources takes
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the time complexity of O(NrepK
3 +K4). Note that MIL cannot be applied to

ISS because W−1
f is not calculated in ISS. In addition, we have an alternative

for ISS using (24) instead of (23). As for ISS by (24), the calculation of vkf

takes O(TK) time, and the total time complexity of updating the demixing
matrix W f for all sources k = 1, . . . ,K is O(TK2). From this, ILRMA-Rep
using ISS by (24) takes O(NrepTK

2) in total. Repeating the update by (24)
should take more time than ISS by (23) because T ≫ K2 in most cases for
normal BSS. Therefore, we hereafter use (23) for ISS update in this paper.
Table 1 summarizes the complexities of the update rules.

Table 1: Complexities per each iteration and frequency bin.

Method Complexity

Ukf (∀k) wkf or vkf (∀k)
IP1, IP2 O(TK3) O(NrepK

4)
IP1-MIL, IP2-MIL O(TK3) O(NrepK

3 +K4)
ISS by (24) O(TK3) O(NrepK

4)
ISS by (25) —— O(NrepTK

2)

4 Experimental Validation

4.1 Solving the HEAD Problem

4.1.1 Runtime Comparison

Since the runtime performance may differ from theoretical complexity, as de-
scribed in Section 3.3, we first compare the runtime performance characteristics
of the different methods. This simulation was run using Python language on
a workstation powered by a 96-core AMD EPYC 7643 processor at 2.3 GHz.
We generate sets of K random Hermitian matrices Ukf (k = 1, . . . ,K) by the
following procedure:

1. Generate random complex values

ykft, zkft ∼ N (0, 1) (∀k, f, t),
xkft := ykft + jzkft (∀k, f, t).

2. Generate random observed signals as xft :=
[
x1ft . . . xKft

]T
(∀f, t).

3. Calculate random covariance matrices as

Ukf ←
1

T

∑
t

xftx
H
ft√∑

f |xkft|2
(∀k, f).
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The initial demixing matrices were set to the identity matrix. We set the
number of time frame T to 100 and the number of frequency bins F to 257.
For ISS, we update the demixing matrices by (23) in this experiment because
T is large. We ran 20 iterations of IP1, IP1-MIL, IP2, IP2-MIL, and ISS by
changing K = 2, 4, 6, 8, 10, 12, 14, 16. The covariance matrices are fixed in each
K. Table 2 shows the average runtimes for IP1, IP1-MIL, IP2, IP2-MIL, and
ISS over 100 trials.

Table 2: Runtimes (ms) with and without the matrix inversion lemma (MIL).

Methods Number of channels

2 4 6 8 10 12 14 16

IP1 5.7 16.9 40.7 79.5 151.1 222.3 342.6 503.6
IP1-MIL 4.8 14.5 32.6 62.6 112.6 180.8 312.6 465.0
IP2 12.4 33.8 68.3 122.9 202.4 302.0 461.7 720.3
IP2-MIL 13.6 32.1 55.2 90.0 135.4 188.5 283.1 501.2
ISS 4.4 16.4 45.2 84.8 174.1 265.2 511.6 793.1

We can see that the fastest algorithm depends on the number of channels.
For example, ISS is the best in K = 2, but IP1-MIL is the best in K = 6. The
table also shows that IP1-MIL and IP2-MIL were almost consistently faster
than IP1 and IP2, except for IP2 and IP2-MIL in K = 2. This exception might
be because computing temporal variables in IP2-MIL take more time than
the matrix inversion when K = 2. In the following evaluation of separation
performance, IP1-MIL and IP2-MIL will respectively be referred to as IP1 and
IP2 because the resulting outputs are identical to those of the original IP1
and IP2.

4.2 Blind Separation of Music Mixtures

4.2.1 Evaluation Criteria

We evaluated the separation and convergence performance characteristics of our
proposed ILRMA-Rep with convolutive music mixtures. The separation perfor-
mance criterion is the scale-invariant source-to-distortion ratio (SI-SDR) [S.],
defined as

SI-SDR(s, ŝ) = 10 log10
∥αs∥2

∥αs− ŝ∥2
, (42)

α =
ŝTs

∥s∥2
, (43)

where s ∈ RL is the reference signal and ŝ ∈ RL is the estimated signal in the
discrete time domain of length L. A higher SI-SDR indicates higher separation
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performance and quality. We also measured SI-SDR improvement (SI-SDRi)
defined as the difference in SI-SDR between the estimated and mixture signals:

SI-SDRi(s, ŝ) = SI-SDR(s, ŝ)− SI-SDR(s,x), (44)

where x ∈ RL is the mixture signal in the discrete time domain. In the following
experiment, we use the individual reverberant signals at each microphone as
reference signals.

4.2.2 Dataset and Simulation Setup

We used the MUSDB18-HQ dataset [22] as a source signal, including 150
stereo-recorded songs. Each song in the dataset consists of four parts: bass,
drums, other, and vocals. To perform the image-source method and reduce
the computational load, we extracted the left channel of each signal and then
downsampled each signal by 16 kHz from the original 44.1 kHz. We created sim-
ulated convolutive mixtures using the Python package pyroomacoustics [23].
As shown in Figure 3, the number of sound sources and microphones was four,
and the microphone array was uniformly linear with a spacing of 2 cm. The
reverberation time was approximately 200 ms.

Figure 3: Room geometry and locations of sources and microphone array.

4.2.3 Experimental Conditions

We use the STFT with a 4096-points Hamming analysis window and half-
overlap. We set the initial demixing matrices W f to the identity matrices for
all f . Also, we set the initial values of the source models bkfl to 1 and cklt
to uniformly distributed values over ]0, 1] for all l, k, f, and t. We performed
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ILRMA-Rep with 100 iteration steps and several “repeates” Nrep in each
iteration. After separation, the scale of the estimated signal was restored
by back-projection onto the first microphone [16]. Then, we calculated the
SI-SDRi for each music mixture and obtained its average along all the songs
and channels.

4.2.4 Implementation Notes

We implemented all the algorithms in Python 3.9.6. For numerical stability,
we performed the following regularization after the respective updates in each
iteration:

bkfl ← max(bkfl, ε), cklt ← max(cklt, ε), (45)

where ε is a user-defined parameter. We set ε to 10−6 in this experiment.

4.2.5 Results and Discussion

Figure 4 shows the separation performance at the end of the 100 iterations
for the number of bases L = 1, 2, 5, 10, and 20. Note that the conventional
ILRMA corresponds to Nrep = 1 in the brightest color bar in Figure 4, and
the case of L = 1 in the leftmost plot in Figure 4 is nearly equivalent to that
of AuxIVA.

Figure 4: Averaged SI-SDR improvements over 144 samples and four channels at the end of
100 iterations, with various numbers of repeats and bases.

For L = 1, the SI-SDRi of all methods did not change markedly with
increasing Nrep. For L = 2 or larger, SI-SDRi was steadily increased by Nrep
in each L. These results support that performance can be improved by simply
repeating the updates of demixing matrices.

One possible explanation for these results would be as follows. ILRMA is
a difficult optimization problem in terms of two different types of parameters:
demixing matrices and source model parameters (NMF parameters). It is a non-
convex optimization, and then it should have local minima. For example, if the
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source model is optimized too fast, it may fit mixed (or insufficiently-separated)
signals. Then, the demixing matrices are no longer updated, and a poor result
might be obtained. Previous studies suggest that quickly updating the demixing
matrices [18, 19] or slowly updating the source model parameters [13] leads
to better separation performance. Our proposed method repeatedly updates
the demixing matrices by fixing the source model parameters. It works by
updating the demixing matrices faster than the source model parameters and
thus improves the separation performance.

Figure 5 shows the relationship between SI-SDRi at the end of the iteration
with Nrep = 1 and Nrep ≥ 2. Each point corresponds to the value before
becoming the average in Figure 4. The dashed line in the figure is the line

Figure 5: Scatter plots of SI-SDR improvements with and without repeats for each number
of bases L.
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Figure 6: Averaged SI-SDR improvements over 144 samples and four channels along with
iteration steps, with various numbers of repeats and bases. Note that vertical axes are
aligned for each row, but not for different rows.

where the vertical and horizontal axes are equal; the points above the dashed
line indicate that repeats of the demixing vector update improve SI-SDRi.
For L = 1, the points are clustered near the dashed line for any number of
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repetitions. By contrast, when L = 2 or larger, more points are clustered above
the dashed line, and this tendency is stronger with a larger number of iterations.
This result supports the observation that the separation performance improves
with repeated updates of the demixing matrix.

Figure 6 shows the separation performance with the number of iteration
steps for the number of bases L = 1, 2, 5, 10, and 20. For L = 1, the
convergence became faster as Nrep increased, but the final performance was
almost the same, approximately 3 dB. By contrast, for L = 2 or larger, both
the convergence speed and the final performance became much higher than
those for L = 1.

5 Conclusion

In this paper, we proposed a repeated update scheme of demixing vectors for
independent low-rank matrix analysis. We also derived an efficient update
rule for the repeated version of IP2 by applying the matrix inversion lemma.
Music source separation experiments with more than 100 songs were performed
to evaluate the separation performance. The experimental results implied
that the proposed update scheme improved the separation performance. In
particular, we experimentally found that when the number of bases is large, the
separation performance is markedly improved by repeating parameter updates.
In future work, we will further investigate the performance of repeated updates
of demixing vectors on other source models using IP1, e.g., in independent
deeply learned matrix analysis [12] or the multichannel variational autoencoder
method [4].

Biographies

Taishi Nakashima received his B.E. in Engineering from Osaka University,
Osaka, Japan, in 2019 and his M.S. in Informatics from Tokyo Metropolitan
University, Tokyo, Japan, in 2021. He is pursuing a Ph.D. at Tokyo Metropoli-
tan University and is also a recipient of the JSPS Research Fellowship (DC1)
from April 2021. He is an esteemed Student Member of the Acoustical Society
of Japan (ASJ) and the IEEE Signal Processing Society (SPS). He received the
24th Best Student Presentation Award of ASJ and the 16th IEEE SPS Japan
Student Conference Paper Award in 2022. His research interests primarily
focus on blind source separation and acoustic signal processing.

Nobutaka Ono received his B.E., M.S., and Ph.D. degrees from the Uni-
versity of Tokyo, Japan, in 1996, 1998, and 2001, respectively. He became a
research associate in 2001 and a lecturer in 2005 at the University of Tokyo.



20 Nakashima and Ono

He moved to the National Institute of Informatics in 2011 as an associate
professor and then to Tokyo Metropolitan University in 2017 as a full professor.
His research interests include acoustic signal processing, especially microphone
array processing, source localization and separation, machine learning, and
optimization algorithms. He is a member of IEEE, EURASIP, APSIPA, IPSJ,
IEICE, and ASJ. He was a member of IEEE Audio and Acoustic Signal Process-
ing (AASP) Technical Committee from 2014 to 2019. He served as Associate
Editor of IEEE Transactions on Audio, Speech, and Language Processing from
2012 to 2015. He received the best paper award at APSIPA ASC in 2018 and
2021 and Sadaoki Furui Prize Paper Award from APSIPA in 2021.

References

[1] E. Cano, D. FitzGerald, A. Liutkus, M. D. Plumbley, and F.-R. Stöter,
“Musical Source Separation: An Introduction,” IEEE Signal Processing
Magazine, 36(1), 2019, 31–40, doi: 10.1109/MSP.2018.2874719.

[2] P. Comon and C. Jutten, Handbook of Blind Source Separation: Indepen-
dent Component Analysis and Applications, 1st edition, USA: Academic
Press, Inc., 2010.

[3] A. Hiroe, “Solution of Permutation Problem in Frequency Domain ICA,
Using Multivariate Probability Density Functions,” in Proc. ICA, 2006,
601–8.

[4] H. Kameoka, L. Li, S. Inoue, and S. Makino, “Supervised Determined
Source Separation with Multichannel Variational Autoencoder,” Neural
Computation, 31(9), 2019, 1891–914, doi: 10.1162/neco\_a\_01217.

[5] T. Kim, H. T. Attias, S.-Y. Lee, and T.-W. Lee, “Blind Source Separation
Exploiting Higher-Order Frequency Dependencies,” IEEE/ACM Trans.
Audio, Speech, Language Process, 15(1), 2006, 70–9.

[6] D. Kitamura, S. Mogami, Y. Mitsui, N. Takamune, H. Saruwatari, N. Ono,
Y. Takahashi, and K. Kondo, “Generalized Independent Low-rank Matrix
Analysis Using Heavy-Tailed Distributions for Blind Source Separation,”
EURASIP Journal on Advances in Signal Processing, 2018(1), 2018, 28.

[7] D. Kitamura, N. Ono, H. Sawada, H. Kameoka, and H. Saruwatari,
“Determined Blind Source Separation Unifying Independent Vector Anal-
ysis and Nonnegative Matrix Factorization,” IEEE/ACM Trans. Audio,
Speech, Language Process, 24(9), 2016, 1622–37, doi: 10.1109/TASLP.
2016.2577880.

[8] K. Lange, MM Optimization Algorithms, Society for Industrial & Applied
Mathematics, U.S., 2016, doi: 10.1137/1.9781611974409.ch1.

[9] T.-H. Lin and Y. Tsao, “Source Separation in Ecoacoustics: A Roadmap
Towards Versatile Soundscape Information Retrieval,” Remote Sensing
in Ecology and Conservation, 6(3), 2020, 236–47.

https://doi.org/10.1109/MSP.2018.2874719
https://doi.org/10.1162/neco\_a\_01217
https://doi.org/10.1109/TASLP.2016.2577880
https://doi.org/10.1109/TASLP.2016.2577880
https://doi.org/10.1137/1.9781611974409.ch1


Repeated Update of Demixing Vectors in Independent Low-rank Matrix Analysis 21

[10] Z. Luo, C. Li, and L. Zhu, “A Comprehensive Survey on Blind Source
Separation for Wireless Adaptive Processing: Principles, Perspectives,
Challenges and New Research Directions,” IEEE Access, 6, 2018, 66685–
708, doi: 10.1109/ACCESS.2018.2879380.

[11] S. Makino, ed., Audio Source Separation, Springer International Publish-
ing, August 2018, doi: 10.007/978-3-319-73031-8.

[12] N. Makishima, S. Mogami, N. Takamune, D. Kitamura, H. Sumino, S.
Takamichi, H. Saruwatari, and N. Ono, “Independent Deeply Learned
Matrix Analysis for Determined Audio Source Separation,” IEEE/ACM
Transactions on Audio, Speech, and Language Processing, 27(10), 2019,
1601–15.

[13] Y. Mitsui, D. Kitamura, N. Takamune, H. Saruwatari, Y. Takahashi, and
K. Kondo, “Independent Low-rank Matrix Analysis based on Parametric
Majorization-Equalization Algorithm,” in Proceedings of IEEE Interna-
tional Workshop on Computational Advances in Multi-Sensor Adaptive
Processing (CAMSAP), December 2017, 1–5.

[14] S. Mogami, Y. Mitsui, N. Takamune, D. Kitamura, H. Saruwatari, Y.
Takahashi, K. Kondo, H. Nakajima, and H. Kameoka, “Independent
Low-Rank Matrix Analysis Based on Generalized Kullback–Leibler Di-
vergence,” IEICE Transactions on Fundamentals of Electronics, Com-
munications and Computer Sciences, E102-A(2), 2019, 458–63.

[15] S. Mogami, N. Takamune, D. Kitamura, H. Saruwatari, Y. Takahashi, K.
Kondo, and N. Ono, “Independent Low-Rank Matrix Analysis Based on
Time-Variant Sub-Gaussian Source Model for Determined Blind Source
Separation,” IEEE/ACM Trans. Audio, Speech, Language Process, 28,
2020, 503–18.

[16] N. Murata, S. Ikeda, and A. Ziehe, “An Approach to Blind Source Sepa-
ration Based on Temporal Structure of Speech Signals,” Neurocomputing,
41(1-4), 2001, 1–24.

[17] T. Nakashima, R. Scheibler, M. Togami, and N. Ono, “Joint Dereverber-
ation and Separation with Iterative Source Steering,” in Proceedings of
IEEE International Conference on Acoustics, Speech and Signal Process-
ing (ICASSP), June 2021.

[18] T. Nakashima, R. Scheibler, Y. Wakabayashi, and N. Ono, “Faster Inde-
pendent Low-rank Matrix Analysis with Pairwise Updates of Demixing
Vectors,” in Proceedings of European Signal Processing Conference (EU-
SIPCO), January 2021, 301–5.

[19] N. Ono, “Fast Algorithm for Independent Component/Vector/Lowrank
Matrix Analysis with Three or More Sources,” in Proceedings Spring
Meeting of Acoustical Society of Japan, in Japanese, March 2018, 437–8.

[20] N. Ono, “Fast Stereo Independent Vector Analysis and Its Implementa-
tion on Mobile Phone,” in Proceedings of IEEE International Workshop
on Acoustic Signal Enhancement (IWAENC), September 2012.

https://doi.org/10.1109/ACCESS.2018.2879380
https://doi.org/10.007/978-3-319-73031-8


22 Nakashima and Ono

[21] N. Ono, “Stable and Fast Update Rules for Independent Vector Anal-
ysis based on Auxiliary Function Technique,” in Proceedings of IEEE
Workshop on Applications of Signal Processing to Audio and Acoustics
(WASPAA), 2011, 189–92, doi: 10.1109/ASPAA.2011.6082320.

[22] Z. Rafii, A. Liutkus, F.-R. Sttöter, S. I. Mimilakis, and R. Bittner,
“MUSDB18-HQ - an uncompressed version of MUSDB18,” August 2019,
https://doi.org/10.5281/zenodo.3338373.

[23] R. Scheibler, E. Bezzam, and I. Dokmanić, “Pyroomacoustics: A Python
Package for Audio Room Simulation and Array Processing Algorithms,”
in Proceedings of IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP), April 2018, 351–5, doi: 10 . 1109/
ICASSP.2018.8461310.

[24] R. Scheibler and N. Ono, “Fast and Stable Blind Source Separation with
Rank-1 Updates,” in Proceedings of IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), 2020, 236–40.

[25] R. Scheibler and N. Ono, “MM Algorithms for Joint Independent Sub-
space Analysis with Application to Blind Single and Multi-Source Ex-
traction,” 2020, arXiv: 2004.03926 [eess.SP].

[26] M. Sunohara, C. Haruta, and N. Ono, “Low-latency real-time blind
source separation for hearing aids based on time-domain implementa-
tion of online independent vector analysis with truncation of non-causal
components,” in Proceedings of IEEE International Conference on Acous-
tics, Speech and Signal Processing (ICASSP), March 2017, 216–20, doi:
10.1109/ICASSP.2017.7952149.

[27] T. Taniguchi, N. Ono, A. Kawamura, and S. Sagayama, “An Auxiliary-
Function Approach to Online Independent Vector Analysis for Real-
time Blind Source Separation,” in Proceedings of Hands-Free Speech
Communication and Microphone Arrays (HSCMA), May 2014, 107–11.

[28] A. Weiss, A. Yeredor, S. A. Cheema, and M. Haardt, “The Extended
“Sequentially Drilled” Joint Congruence Transformation and Its Applica-
tion in Gaussian Independent Vector Analysis,” IEEE Transactions on
Signal Processing, 65(23), 2017, 6332–44.

[29] J. Yang, S. Gohel, and B. Vachha, “Current Methods and New Directions
in Resting State fMRI,” Clinical Imaging, 65, 2020, 47–53, doi: https:
//doi.org/10.1016/j.clinimag.2020.04.004.

[30] A. Yeredor, “Blind Separation of Gaussian Sources With General Covari-
ance Structures: Bounds and Optimal Estimation,” IEEE Transactions
on Signal Processing, 58(10), 2010, 5057–68, doi: 10.1109/TSP.2010.
2053362.

[31] A. Yeredor, “On Hybrid Exact-Approximate Joint Diagonalization,” in
Proceedings of IEEE International Workshop on Computational Advances
in Multi-Sensor Adaptive Processing (CAMSAP), December 2009, 312–5.

https://doi.org/10.1109/ASPAA.2011.6082320
https://doi.org/10.5281/zenodo.3338373
https://doi.org/10.1109/ICASSP.2018.8461310
https://doi.org/10.1109/ICASSP.2018.8461310
https://arxiv.org/abs/2004.03926
https://doi.org/10.1109/ICASSP.2017.7952149
https://doi.org/https://doi.org/10.1016/j.clinimag.2020.04.004
https://doi.org/https://doi.org/10.1016/j.clinimag.2020.04.004
https://doi.org/10.1109/TSP.2010.2053362
https://doi.org/10.1109/TSP.2010.2053362


Repeated Update of Demixing Vectors in Independent Low-rank Matrix Analysis 23

[32] T. Yoshioka, T. Nakatani, and M. Miyoshi, “An Integrated Method for
Blind Separation and Dereverberation of Convolutive Audio Mixtures,”
in Proceedings of European Signal Processing Conference (EUSIPCO),
August 2008.


	Introduction
	Overview of Problem Formulation and Conventional ILRMA
	Notations
	Signal Model
	Independent Low-rank Matrix Analysis
	Update of Source Model Parameters
	Update of Demixing Vectors
	Sequential Update of Demixing Vector: Iterative Projection One (IP1)
	Pairwise Update Rules of Demixing Vectors: Iterative Projection Two (IP2)
	Iterative Source Steering (ISS)


	Repeated Update of Demixing Vectors for ILRMA
	Our Motivation and Approach
	Efficient Algorithm for Repeated Update
	Complexity Analysis

	Experimental Validation
	Solving the HEAD Problem
	Runtime Comparison

	Blind Separation of Music Mixtures
	Evaluation Criteria
	Dataset and Simulation Setup
	Experimental Conditions
	Implementation Notes
	Results and Discussion


	Conclusion

