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ABSTRACT

Single-channel speech enhancement aims to remove the interfering noise
and reverberation in real environments by a single microphone, which is a
very challenging task in the speech signal processing field. Over the past
years, deep learning has shown great potential for speech enhancement.
In this paper, we propose a novel real-time framework, called DBCN,
which is a dual-branch architecture. One branch takes waveform as its
input for time-domain modeling and the other one takes shift real spec-
trum as input for frequency-domain modeling. The two branches have
the same network structure, which is the representative convolutional
recurrent network. To exchange information sufficiently, a bridge module
is added between the two branches. Furthermore, we propose a novel
feature normalization approach that enables each band to complete the
normalization independently by counting the root mean square of each
band and obtaining the inter-frame relationship for each band. The
proposed approach allows the network to ignore the magnitude dur-
ing processing, reducing learning difficulty and improving performance.
Systematical evaluation and comparison are conducted. Experimental
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results show that the proposed system substantially outperforms related
algorithms for causal and non-causal speech enhancement under very
challenging environments.

Keywords: Deep learning, speech enhancement, time-domain processing,
frequency-domain processing, feature normalization.

1 Introduction

Teleconferencing is becoming more and more popular at present, particularly
during the COVID-19 pandemic. However, various noises in real environments
can severely interfere with normal speech communication. To recover clean
speech from the noise-contaminated mixture, speech enhancement is indis-
pensable in almost all speech communication devices. Although the study of
speech enhancement has a long history and many methods are invented in
the literature [20], it is still a challenging task in practice, particularly for the
single-channel scenario where only one microphone is available.

Spectral subtraction [2] is a classic method for single-channel speech en-
hancement, which subtracts the estimated spectrum of noises from the mixture.
However, it is very difficult to estimate the spectrum of non-stationary noise
which varies dramatically with time, and spectral subtraction becomes invalid
in this most common scene. To overcome the shortcomings of traditional
speech enhancement methods [2, 5, 37], Wang et al. first introduced a deep
neural network for speech separation [48], which decomposes the input mixture
into time-frequency representation and estimate the time-frequency (T-F)
binary mask to recover the clean speech. The experimental results showed the
great potential of DNN for speech enhancement task.

Since then, a large number of methods for speech enhancement using
deep learning have been extensively studied, most of which exploit the T-F
structure. Their training objectives can be divided into two main streams,
one is masking-based and the other is mapping-based. For the masking-based
targets, such as ideal binary mask (IBM) [44] and ideal ratio mask (IRM) [47],
the network models the relationship between noisy speech and clean speech,
and the mask is learned to cover the noisy speech to remove noise. For the
mapping-based targets [21], such as spectral magnitude and complex spectral,
the network learns a mapping and directly outputs clean speech. The training
target together with the input features trains a DNN and obtains the enhanced
waveform by reconstructing the estimated target.

Since phase is difficult to estimate, the early enhancement methods [18,
40] only enhance the magnitude and use the noisy phase for reconstruction.
One example is the convolutional recurrent network (CRN) proposed by Tan
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et al. [40], which incorporated convolutional encoder-decoder (CED) and long
short-term memory (LSTM) into the CRN architecture, and finally trained a
magnitude-based mapping network. However, subsequent research has shown
that incorporating phase into the supervised learning step can be effective
in enhancing the listener’s subjective perception [27]. At present, many ap-
proaches combining magnitude enhancement and phase perception have been
proposed [13, 46, 52, 54, 55], which can be roughly classified into time-domain
speech enhancement and complex frequency-domain speech enhancement. In
complex spectrogram enhancement, the real and imaginary components of the
complex-valued noise STFT (Short Time Fourier Transform) are simultane-
ously enhanced to recover the complex spectrogram of clean speech, and also
indirectly recover the phase information by learning the relationship of the
RI component information [11, 15, 16, 25, 41, 50]. Compared with complex
frequency-domain approaches, time-domain methods [10, 17, 22, 26, 29, 30,
34] have several obvious advantages. First, STFT for frequency domain pro-
cessing usually requires multiple vibration periods in one frame to analyze the
frequency characteristics, while time domain processing has no requirement for
frame length. This means that temporal networks can model data at a finer
scale. Second, the time-domain approach avoids the computations associated
with converting between the two domains. That is, the raw speech is used
directly for regenerated speech enhancement without going through the STFT
process. Luo et al. used time-domain models for speech separation, and succes-
sively proposed TasNet, Conv-TasNet and DPRNN [22–24]. All of them used
extremely small frame lengths to replace the STFT, which greatly improved
the performance of the model. Subsequently, many similar methods have been
widely explored in the field of speech enhancement [7, 31, 33, 51]. However,
time-domain methods usually require more trainable parameters and greater
model complexity, which is difficult to apply in practical scenarios. Therefore,
making full use of their respective advantages is still a problem worth exploring.

Most mainstream enhancement models are still trained either in frequency
or in time domain, and some researchers use cross-domain constraints or
cross-domain training for speech enhancement. Pandey et al. [30] combined
the loss of the time-domain waveform and the loss of the frequency domain
in a certain ratio to train the model, and Wang et al. [45] stringed together
three different domain modules for cross-domain joint training. Both of them
achieve great performance. In fact, the superiority of the cross-domain model
is theoretically based. Models in different domains may play different roles in
dealing with different types of noise. For impulse noise as shown in the left
column of Figure 1, it is easy to eliminate in the time domain. Only a few
samples need to be removed. When it comes to the frequency domain, the
noise pollutes the entire frequency band, and it is difficult to be eliminated
on the frequency domain. In contrast, for a narrow band noise like a pure
tone as shown in the right column of Figure 1, the noise is distributed on the
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Figure 1: Here is a schematic diagram illustrating the difference between impulse noise and
narrow-band noise. The left column contains: (a) the waveform of a mixed speech with
impulse noise, (c) the waveform diagram of the frame inside the red box in (a), (e) the log
power spectrum corresponding to the waveform in (a), (f) the frequency diagram of the
frame which is pointed out in (e) by an arrow. The right column contains corresponding
schematic representations of mixed speech with narrow-band noise.

narrow band and the frequency domain-based method covers well. In the time
domain, the noise and the speech are coupled together at every sample, and it
is hard to decouple on time domain. Therefore, we proposed a dual-branch
network architecture [53] processing on both frequency- and time-domain, and
the experimental results show impressive enhancement performance.

The dual-branch network consists of two convolutional recurrent networks
(CRN) to process the time and the frequency representations respectively. At
the same time, two branches exchange information after each convolution except
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the output layer. The key idea is to learn feature representations from two
different perspectives in the time domain and the frequency domain and provide
the learned features for each other as a reference to improve performance. From
the complementary perspective, the time domain branch directly enhances the
original speech, which avoids the problem of signal distortion caused by invalid
STFT [8]. In addition, the time domain calculates all the discrete sample
points, resulting in more attention to detail and prompting the network to
eliminate some time-sensitive noises. In contrast, the frequency domain branch
is responsible for suppressing the main noise components and eliminating
frequency-sensitive noise. Note that we convert the complex spectrum to shift
real spectrum (SRS) [38] losslessly to ensure that all operations of the network
are in the real-valued domain and make the interaction of the two branches
smooth. The contributions of this work are as follows,

1. We propose a dual-branch convolutional network structure that combines
time-domain and frequency-domain processing. We use a bridge layer to
facilitate the flow and fusion of cross-domain information. This allows
our model to effectively exploit the complementary nature of these two
domains and improve performance. By fully comparing our approach
with multiple baseline methods, we demonstrate the effectiveness of our
proposed network structure.

2. Based on the dual-branch convolutional network, we propose a novel
feature normalization method. This method normalizes each frequency
band independently by calculating the root mean square of each frequency
band. It makes the network independent of the input amplitude and
leads to better generalization ability for real-time scenarios.

3. We conducted a preliminary exploration of the information fusion layer
and investigated the effects of different initialization methods on the
performance of the fusion layer. This research forms the basis for further
development and optimization of the fusion layer in our proposed network
structure.

4. We used three different combinations of loss functions to constrain the
time-domain branch and the frequency-domain branch separately. This
allowed us to investigate the behavior of our network under different
loss function configurations and validated the superiority of the pro-
posed cross-domain loss function combination. We also conduct ablation
experiments to evaluate the contribution of the proposed modules.

The remainder of the paper is organized as follows. In Section 2, the time-
domain speech enhancement problem and shift real spectrum transformation
are described. In Section 3, we present the proposed dual-branch network
in detail. In Section 4, the experimental setting and data setup are given.
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Experimental results are displayed along with the analysis in Section 5. Finally
in Section 6 we conclude the paper.

2 Problem Formulation

2.1 Monaural Speech Enhancement

Given a single-microphone noisy mixture m, monaural speech enhancement
aims to separate target speech s from background noise n. A noisy mixture
can be formulated as:

m[k] = s[k] + n[k], (1)

where k denotes the time index.
In the time domain, the algorithm aims to get ŝ directly from mixture y

rather than a T-F representation of y. The process for time-domain speech
enhancement using DNN can be expressed as:

ŝ = ϕθ(m), (2)

where ϕθ represents a function defined by a DNN model parameterized by
θ. Generally, a speech enhancement network is designed to process frames of
the speech signal. Given a speech signal s, it is first chunked into overlapping
frames before being processed by the DNN model ϕθ. Let M denote a matrix
consisting of frames of the signal m, and Mt denote the tth frame of the signal,
then Mt can be formulated as:

Mt[i] = m[(t− 1) · J + i], i = 0, . . . ,K − 1, (3)

where K is the frame length and J is the frame shift. The number of frames
T is calculated from the signal length L and the frame shift J and expressed
as ⌊L

J ⌋, where ⌊ ⌋ denotes the floor function. Then a target frame can be
computed by:

ŝt = ϕθ(Mt−T1 , . . . ,Mt−1,Mt,Mt+1, . . . ,Mt+T2), (4)

where ŝt is computed using Mt, T1 past frames, and T2 future frames.

2.2 Shift Real Spectrum (SRS)

In addition to the time domain, noisy speech is usually processed in the T-F
domain. The two major frequency-domain methods are to enhance speech on
the magnitude spectrum and the complex spectrum, respectively. The former
ignores the phase and couples the predicted magnitude with the noisy phase
in the recovery phase, causing a deviation from the target speech. The latter
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models the real and imaginary parts at the same time, which requires further
exploration of the relationship between the real and imaginary parts and
also brings large complexity. Soni et al. proposed an alternative to complex
spectrum in their study [38], called shift real spectrum (SRS). By applying
SRS, frequency domain information can be learned in the real field [19].

Given a time-domain speech s, we can use discrete-time Fourier transform
(DTFT) to obtain a complex spectrum S which consists of a real part (denoted
as SR) and an imaginary part (denoted as SI). As such, S = SR+ jSI where j
is an imaginary unit, and the speech s can be expressed as (SR, SI) losslessly.
More specifically, the real part SR is an even function that consists of a series
of cosine basic functions, while the imaginary part SI is an odd function that
stands for a superposition of a series of sine functions. That is, any signal s in
the time domain can be described as:

s = seven + sodd, (5)

where seven and sodd denote the IDTFT(SR) and IDTFT(j · SI), respectively.
When the signal s is an odd function, the even part can be ignored because
sodd = 0. Likewise, the odd part can be ignored when the signal is an even
function. By padding the signal with zeros of appropriate length as Figure 2
shown, we can decompose the signal into an even and an odd function, whose
amplitude is half of the signal s. Thus, the original signal can be described as
s = 2 · IDTFT (SR). In practice, we first separate the signal into windowed
frames. Then we apply STFT to these windowed frames. Finally, the real
part is taken as the representation. In the remainder of this article, all the
mentioned STFT processes are performed in this way.

Figure 2: An example of zero-padded singal. The blue line is the original signal. The red
and purple dashed lines denote the odd and even signals, respectively.

3 Dual-Branch Architecture

In this section, the details of the proposed dual-branch network are introduced.
As shown in Figure 3, the proposed dual-branch network consists of two
main modules: the time-domain module CRN-Time and the frequency-domain
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Figure 3: A schematic diagram illustrating the dual-branch architecture. The upper module
CRN-Time employs a CRN to predict the temporal representation, the lower module CRN-
SRS employs the same structure to predict the frequency-domain representation. After each
layer of convolution, a bridge layer is used for feature conversion and fusion. Each module
get an output and the output of CRN-SRS represents the outcome of the proposed network
because of its better performance in the evaluation stage.

module CRN-SRS. The input of the two-branch network is a noisy mixture.
CRN-Time module takes 320-point frames with 160-point overlapping as
input and generates a time-domain estimate of the clean frames which is then
converted back to speech. The CRN-SRS module takes the SRS obtained by
the ISRS operation as input and estimates the clean SRS representation. Note
that each branch has an independent output and the output of CRN-SRS is
obtained by ISRS. We adopt the same structure for the time domain branch
and the frequency domain branch. This makes the features of the two branches
have the same dimension, which ensures the smooth flow of information in the
two domains. Secondly, since the best feature conversion structure has not
been found for the time being, we hope to achieve the SRS-liked transformation
by using the trainable parameters, which also require the same dimension.
In the following subsections, we will introduce several key modules, network
configurations, and loss functions.

3.1 Gated Convolution And Grouping Strategy for RNN

A gating mechanism, which controls the information flows of the network, is
first designed for long short-term memory (LSTM) [9] based on RNN. This
could allow modeling more complicated interactions and enable RNNs to
achieve better performance. Van den Oord et al. added a gating mechanism
to the convolutional layer to model the image in their study [43], and it can
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be described as:

y = tanh(x ∗W1 + b1)⊙ σ(x ∗W2 + b2)

= tanh(v1)⊙ σ(v2),
(6)

where Ws and bs denote kernels and bias, respectively, and σ represents
sigmoid function. Convolution and element-wise multiplication are denoted by
the symbols ∗ and ⊙, respectively. However, the gradient gradually disappears
as the network deepens. To alleviate this phenomenon, a similar structure was
proposed by Dauphin et al. [4] which can be expressed as:

y = x ∗W1 + b1 ⊙ σ(x ∗W2 + b2)

= v1 ⊙ σ(v2).
(7)

The removal of the tanh function makes the entire unit treated as a multiplica-
tive skip connection, allowing the gradient to pass through the layers smoothly.
An example of a gated convolutional unit (denoted as “GCN”) as well as a
gated deconvolutional unit (denoted as “DeGCN”) is shown in Figure 4. In our
network, the feature normalization is introduced in the convolution, which is ex-
plained in the latter subsection. A feature normalization layer is placed before
the sigmoid of the gated convolution. In addition, the bias of the convolution
is set to zero to prevent it from destroying the linear structure of the feature.

Figure 4: Diagrams of a gated convolutional unit and a gated deconvolutional unit, where σ
denotes a sigmoid function.

The application of LSTM allows modeling long-term dependencies and
using deeper layers, but also introduces enormous complexity. However, the
efficiency of the model is quite significant for practical applications, for example,
the microphone noise reduction program requires efficient computation and
a small memory footprint. To mitigate this problem, a grouping strategy is
proposed by Gao et al. [6] to improve the model efficiency. The layers of a
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typical LSTM are fully connected, and the number of inter-layer connections
increases dramatically with the number of nodes. As illustrated in Figure 5,
the grouping strategy divides the input features and hidden states of each
recurrent layer into two groups evenly, and each group processes the internal
features independently. In addition, a frame-level rearrangement layer is
applied between consecutive recurrent layers to alleviate the problem of the
inability to build mutual dependencies between separate groups. And this
rearrangement layer brings together distantly-located frames into one group,
which potentially allows for learning long-span features. We employ this
grouping strategy for the LSTM layers in the proposed dual-branch network
and set the number of groups to 2, which is proven to be the most efficient
and effective setting in [41].

Figure 5: Illustration of a grouped long-short time memory (GLSTM) module.

3.2 Bridge Module

Figure 6a and 6b show a feature map of the CRN-Time module and the CRN-
SRS module, respectively. It can be easily found that their feature maps exhibit
distinct patterns, so coarse connections may introduce unnecessary modeling
difficulties. Therefore, a bridge module is applied between each convolutional
layer from the two branches. The bridge module can be regarded as an
information transfer module between different domains, which is responsible
for converting information from one branch to another. More specifically, the
bridge module is composed of two K × K independent matrices, where K
denotes the frame length. Each transformation matrix is trainable and used
for a unidirectional transformation process (from the time domain to frequency
domain or vice versa). In practical applications, we determine the initial value
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Figure 6: Example feature maps from CRN-TIME and CRN-SRS, they exhibit quite different
feature patterns and the values vary widely.

of the matrix in three ways: random initialization, specific initialization using
the real part of fast Fourier transform (FFT) parameters or SRS parameters.
We found that initializing the matrix with SRS parameters leads to better
performance of the model.

3.3 Feature Normalization

Normalization is a technique to improve generalization ability and facilitate
DNN training. Batch normalization [12], layer normalization [1], and instance
normalization [42] are widely used for speech enhancement. For a given 4-
dimensional input of Batch×Channel× Timeframes×Frequencybins, the
three normalization methods calculate the statistics of [B, T, F], [C, T, F] or
[T, F] slices respectively, which makes them suitable for different application
scenarios. However, we found that the augmentation ability of the network
is deprived when the magnitude range of the input is inconsistent with the
training samples. In this paper, we propose the feature normalization which
can be described as:

ynorm =
y

Ry + ϵ
⊙ γ + β, (8)

Ry =

√√√√ 1

C · T

C−1∑
c=0

T−1∑
t=0

y2c,t, (9)

where ynorm ∈ RB×C×T×F and Ry ∈ RB×1×1×F , respectively, are the normal-
ized output and the root mean square of the input data. C and T represent
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the channels and frames of input data. γ ∈ R1×1×1×F and β ∈ R1×1×1×F are
trainable variables of the same size as frequency bins, and + and ⊙ denote
element-wise addition and multiplication. ϵ is a small positive constant to
avoid division by zero. As described in the formula, we independently compute
the root mean square of the input data along the channel and time dimensions
for each frequency bin and perform normalization on each frequency bin. In
subsequent experiments, we found that feature normalization improves the
enhancement ability and still performs well in noise suppression in the face of
various untrained amplitude scenarios.

3.4 Time Module And SRS Module

The two branches of the model use the same structure which is similar to
CRN. CRN is an encoder-decoder structure composed of convolutional layers
and LSTMs, which combines the feature extraction capabilities of CNNs
with the temporal modeling capabilities of RNNs. In the proposed network,
CRN-Time is fed with time-domain frames of noisy utterances, and CRN-
SRS is fed with frequency-domain frames. The encoder stacks 6 normal
convolutions with a stride 2 to downsample along the frequency axis, while
the decoder stacks 6 deconvolutions with the same stride for upsampling. A
modified version of the gated convolutional unit elaborated in Section III. A
is used as a convolutional layer, and each one is followed by a parametric
ReLU (PReLU) nonlinearity except the output layer. Each layer of the
encoder and decoder not only receives the output of the previous layer but also
concatenates the corresponding information transformed from the other branch.
The used architecture additionally incorporates skip connections to facilitate
optimization, which connects each layer in the encoder to its corresponding
layer in the decoder. Additionally, we apply the grouping strategy on the
intermediate LSTM, which greatly reduces the model complexity.

Table 1 provides a more detailed description of the proposed network
architecture. The input size and the output size of each layer are displayed in
inChannels × timeFrames × frequencyBins format. The layer hyperparameters
are specified in (kernelSize, strides, outChannels) format. For all the convolu-
tions and the deconvolutions, We use a kernel size of 1× 3 (time × frequency)
for the causal system and 3 × 3 for the non-causal system. The number of
input channels in each encoder layer is doubled due to the connections of the
bridge module, while the number of input channels in the decoder is tripled
due to the additional skip connections.

3.5 Loss Functions

The training objective of our dual-branch architecture consists of two parts,
corresponding to the outputs generated by these two branches. We employ
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Table 1: Architecture of our proposed one branch. Both branches contain the same structure
and parameter settings. Here T denotes the number of time frames.

layer name input size hyperparameters output size
GCN2d_1 1× T × 320 (1×3), (1,2), 64 64× T × 160
Bridge_1 64× T × 160 – 64× T × 160
GCN2d_2 128× T × 160 (1×3), (1,2), 64 64× T × 80
Bridge_2 64× T × 80 – 64× T × 80
GCN2d_3 128× T × 80 (1×3), (1,2), 64 64× T × 40
Bridge_3 64× T × 40 – 64× T × 40
GCN2d_4 128× T × 40 (1×3), (1,2), 64 64× T × 20
Bridge_4 64× T × 20 – 64× T × 20
GCN2d_5 128× T × 20 (1×3), (1,2), 64 64× T × 10
Bridge_5 64× T × 10 – 64× T × 10
GCN2d_6 128× T × 10 (1×3), (1,2), 64 64× T × 5
reshape_1 64× T × 5 – T × 320
glstm_1 T × 320 320 T × 320
glstm_2 T × 320 320 T × 320
reshape_2 T × 320 – 64× T × 5
DeGCN2d_6 64× T × 5 (1×3), (1,2), 64 64× T × 10
Bridge_5 64× T × 10 – 64× T × 10
DeGCN2d_5 192× T × 10 (1×3), (1,2), 64 64× T × 20
Bridge_4 64× T × 20 – 64× T × 20
DeGCN2d_4 192× T × 20 (1×3), (1,2), 64 64× T × 40
Bridge_3 64× T × 40 – 64× T × 40
DeGCN2d_3 192× T × 40 (1×3), (1,2), 64 64× T × 80
Bridge_2 64× T × 80 – 64× T × 80
DeGCN2d_2 192× T × 80 (1×3), (1,2), 64 64× T × 160
Bridge_1 64× T × 160 – 64× T × 160
DeGCN2d_1 192× T × 160 (1×3), (1,2), 64 64× T × 320

various loss functions for two outputs to find the best combination. The first
loss function is the utterance level mean squared error (MSE) in the time
domain which can be defined as:

LMse(s, ŝ) =
1

L

L−1∑
k=0

(s[k]− ŝ[k])2. (10)

The second one is the mean absolute error loss between the L1 norm of clean
and estimated STFT coefficients [32] and can be described as:

LMag(s, ŝ) =
1

T · F

T−1∑
t=0

F−1∑
f=0

(|S(t, f)| − |Ŝ(t, f)|), (11)
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where T and F represent the number of time frames and frequency dimensions,
S and Ŝ denote STFTs of s and ŝ, respectively. Although LMag obtains better
objective scores, it introduces unnecessary artifacts. Therefore, a loss function
based LCom on the complex spectrum [49] is applied.

LRI(s, ŝ) =
1

T · F

T−1∑
t=0

F−1∑
f=0

(|Sr(t, f)− Ŝr(t, f)|

+ |Si(t, f)− Ŝi(t, f)|),

(12)

LCom(s, ŝ) = LMag(s, ŝ) + LRI(s, ŝ), (13)

where Sr and Ŝi represent the real and imaginary parts of S, respectively.
Finally, we tried three combinations of loss functions: (1) LMse for the time
branch, LMag for the frequency branch. (2) LMag for both time- and fre-
quency branch. (3) LCom for both time- and frequency branch. Comparative
experiments show that training with the combination (1) can improve the
performance of the model, which may indicate that multi-domain constraints
are beneficial for model training.

4 Experimental Settings

4.1 Datasets

The proposed dual-branch architecture is evaluated on the WSJ0 SI-84 dataset
[35] which includes 7138 utterances from 83 speakers (42 males and 41 females).
We select the utterances of 77 speakers (42 males and 41 females) as the
original corpus for training and validation sets, while the utterances of the
rest 6 speakers (3 males and 3 females) are used to generate the test set. For
training, 10000 non-speech sounds from a sound effect library (available at
www.sound-ideas.com) [3] are used, and the duration is about 126 h. For
testing, we choose two highly challenging noises (babble and cafeteria) from
Auditec CD (available at http://www.auditec.com).

During the mixing process, different generative strategies are used for
training and testing. For training, we first concatenate all training sentences
into one large file and do the same with noises. Then we randomly intercept 7s
segments from the speech file and noise file, respectively, and generate mixtures
under an SNR uniformly sampled from −5, −4, −3, −2, −1, and −0dB. As a
result, a total of 320,000 and 3000 noisy-clean pairs are generated for training
and validation, respectively. For testing, 150 utterances from 6 speakers (25
each) are mixed with two selected non-stationary noises at three SNR levels
−5, 0, 5 dB. Note that test mixtures are of variable length.

www.sound-ideas.com
http://www.auditec.com
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4.2 Experimental Setup

All the utterances are resampled to 16kHz. For SRS operations, Hamming
window is used for smoothing. Frame length and frame shift are set to 20ms
and 10ms, respectively. For the frame-level operations in the time domain, the
20 ms rectangle window is used to divide each utterance into segments of 320
samples with 50% overlap. All models are developed by PyTorch and trained
with stochastic gradient descent optimization using the Adam optimizer [14].
We train the models for 20 epochs with a batch size of 8 at utterance level and
keep the learning rate of 0.001. We develop the proposed dual-branch model1
with one NVIDIA RTX 3090 for two weeks.

4.3 Baselines Models

We compared the proposed model with time-domain and frequency-domain
methods. In the frequency domain, CRN and GCRN are very representative.
As for the time-domain method, we chose AECNN [28], DDAEC [30], and
DCN [29] as our baseline methods. The description of baselines is listed as
follows:

• CRN: it is a convolutional recurrent network in the T-F domain. The
network uses 5 convolution layers as the encoder and 5 deconvolution
layers as the decoder. Two LSTM layers are used for sequence modeling.
This network receives magnitude as input. We kept the best configuration
in [40].

• GCRN: similar to CRN, it also consists of a convolutional layer and
an LSTM with the same structure. The difference is that the GCRN
process the signal in the complex domain, and there are two decoders
used to recover the real and imaginary parts respectively. Furthermore, a
gating mechanism is introduced in the convolutional layers to model more
complex interactions, while a grouping strategy is applied to LSTMs to
reduce the complexity of the model. We implemented both causal and
non-causal versions.

• AECNN: it is an autoencoder-based fully convolutional neural network in
the time domain. AECNN directly calculates the clean speech segments
from the noisy waveform segments. The hyperparameter settings we
adopted are consistent with those designed for the WSJ dataset in the
original paper.

• DDAEC: the network is an encoder-decoder based architecture with skip
connections. Layers in the encoder and decoder are followed by densely

1The code and examples: https://github.com/zhangkanghao/DBCN.

https://github.com/zhangkanghao/DBCN
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connected blocks, including dilation and causal convolution. Dilated con-
volutions are used to aggregate contexts of different resolutions. Subpixel
convolution is used in the decoder.

• DCN: this is an encoder-decoder based architecture with skip connections.
Each layer in the encoder and the decoder comprises a dense block and
an attention module. Dense blocks and attention modules help in feature
extraction using a combination of feature reuse, increased network depth,
and maximum context aggregation. We implemented both causal and
non-causal versions. The kernel is set to (1, 3) for the causal system.

4.4 Evaluation Metrics

In our experiments, we use perceptual evaluation of speech quality (PESQ)
[36], and short-time objective intelligibility (STOI) [39] as the objective metrics
to evaluate the enhancement performance of different models. PESQ is used
to evaluate speech quality, with its values ranging from −0.5 to 4.5. STOI
values range from 0 to 1, which is used to evaluate speech intelligibility. Note
that higher scores for all metrics mean better speech quality.

5 Results, Comparisons and Analyses

5.1 Comparison Results

In this section, we compare the proposed architecture with several excellent
baselines and show the results on the WSJ0 SI-84 dataset. Table 2a and
Table 2b show the comparison results in terms of the objective metrics STOI
and PESQ for two challenging noises at -5 dB, 0 dB, and 5 dB. All the best
results are marked in bold in both tables. The proposed dual-branch network
(DBCN) yields the best results under all conditions.

For objective metrics, the results in Table 2a and Table 2b show that our
proposed models both greatly outperform time-domain DCN and frequency-
domain GCRN. Among the frequency-domain baselines, GCRN performs the
best. It can achieve an average STOI score of 89.1 and a PESQ score of 2.64
under challenging babble noise. However, the performance of GCRN is far from
the proposed method. Compared with the frequency domain, the time-domain
method generally has better performance. Among them, the DCN performance
is the most prominent. The DBCN still maintains a sufficient advantage in
all conditions, especially for the PESQ, which is 0.24 better than DCN on
average under babble. In addition to the comparison of causal systems, we
provide non-causal versions of GCRN, DCN, and DBCN, denoted GCRN-NC,
DCN-NC, and DBCN-NC. In the non-causal version, causal convolutions are
replaced by non-causal convolutions, and LSTMs are replaced by bidirectional
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Table 2a: Evaluations and comparisons of different enhancement models in terms of STOI(%).

Metrix STOI

Casual?
Test Noise Babble Cafeteria

Test SNR (dB) -5 0 5 Avg. -5 0 5 Avg.
Mixture 58.5 70.4 81.2 70.0 57.5 69.9 81.1 69.5
CRN 77.9 88.0 93.2 86.4 75.7 86.6 92.7 85.0 ✓

GCRN 81.5 90.8 94.9 89.1 78.5 89.0 94.3 87.3 ✓
AECNN 80.5 90.6 94.2 88.4 80.0 89.4 94.0 87.8 ✓
DDAEC 84.0 92.2 95.6 90.6 81.7 90.9 94.9 89.2 ✓

DCN 83.9 91.8 95.2 90.3 81.0 90.3 94.5 88.6 ✓
DBCN 85.3 92.7 95.9 91.3 82.0 91.2 95.2 89.5 ✓

GCRN-NC 84.1 92.1 95.5 90.5 81.3 90.5 95.0 89.0 ×
DCN-NC 87.9 93.5 96.1 92.5 85.0 92.1 95.3 90.8 ×

DBCN-NC 88.3 94.1 96.5 93.0 85.2 92.5 96.0 91.2 ×

Table 2b: Evaluations and comparisons of different enhancement models in terms of PESQ.

Metrix PESQ

Casual?
Test Noise Babble Cafeteria

Test SNR (dB) -5 0 5 Avg. -5 0 5 Avg.
Mixture 1.54 1.82 2.12 1.83 1.46 1.77 2.12 1.78
CRN 1.99 2.50 2.91 2.47 2.01 2.47 2.89 2.46 ✓

GCRN 2.08 2.71 3.13 2.64 2.03 2.62 3.09 2.58 ✓
AECNN 2.00 2.57 2.88 2.48 2.03 2.55 2.93 2.50 ✓
DDAEC 2.33 2.88 3.26 2.82 2.30 2.81 3.19 2.77 ✓

DCN 2.23 2.72 3.09 2.68 2.15 2.62 3.01 2.59 ✓
DBCN 2.45 2.98 3.33 2.92 2.29 2.84 3.24 2.79 ✓

GCRN-NC 2.22 2.81 3.17 2.73 2.08 2.72 3.07 2.62 ×
DCN-NC 2.61 3.04 3.33 2.99 2.45 2.91 3.23 2.86 ×

DBCN-NC 2.63 3.12 3.38 3.05 2.48 3.01 3.35 2.95 ×

LSTMs to provide long-term contextual information. The performance of the
non-causal system will be significantly improved compared to the causal system
because future information is learned. However, we are pleasantly surprised to
find that the proposed DBCN outperforms the non-causal system GCRN-NC.
This suggests that the proposed model is a highly effective network for speech
enhancement even without any context information. We compare DBCN-NC
with DCN-NC, the best-performing non-causal baseline system. DBCN-NC
obtaine an average improvement of 0.5% and 0.4% for babble and cafeteria in
terms of STOI, respectively, and an average improvement of 0.06 and 0.09 for
PESQ.

In conclusion, the proposed dual-branch model outperforms both DCN
which is a time-domain based model, and GCRN which is a frequency-domain
based model for complex spectrogram mapping, indicating that information
transformation and fusion of two domains can significantly improve the perfor-
mance of the model and improve parameter utilization.
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Table 3: Ablation study on components of the dual-branch architecture.

Metric STOI PESQ Param.(M)
Test Noise Babble Cafeteria Babble Cafeteria
DBCN 91.3 89.5 2.92 2.79 2.85
− FN 90.3 88.2 2.73 2.63 2.85
− BG 90.9 88.7 2.80 2.68 2.85
CRN-Time 87.9 86.0 2.51 2.45 1.17
CRN-SRS 87.6 86.2 2.58 2.57 1.17

5.2 Ablation Study

In this section, we conduct ablation experiments on various constituent tech-
niques of the causal system. As shown in Table 3, we evaluate the contributions
of the components by taking the average of all test results. “- FN” means
that we remove the feature normalization and use the batch normalization
instead. “-BG” means to use random values to initialize the weight matrices
in the bridge layer instead of the SRS coefficients. CRN-Time and CRN-SRS
stands for single-branch on time and frequency domain respectively. For fair
comparison, we adjusted all systems to have similar numbers of parameters.

We can find that all the variants underperforms the proposed dual-branch
architecture, regardless of whether the feature normalization or bridge modules
are replaced. Among them, feature normalization plays a more important
role, which brings 1.0% STOI and 0.19 PESQ improvement under the bab-
ble condition. Note that replacing the bridge layer initialization method is
not equivalent to deleting the bridge layer, but using a random initialization
method. Under babble condition, STOI attenuates by 0.4% and PESQ at-
tenuates by 0.12. Additionally, two independent single-branch variants were
also evaluated. We can find that missing the reference information from
the other branch leads to a sharp drop in performance. The independent
time-domain branch and the frequency-domain branch reduce STOI by 3.4%
and 3.7% under the babble, respectively. It further proves that the dual-
branch network improves the enhancement performance by using alternate
interconnection.

5.3 Comparison of Loss Function

To analyze the effectiveness of the loss function, we compare the models
trained using different loss functions. First, we apply utterance-level MSE
constraints to the time-branch outputs and magnitude-spectral constraints to
the frequency-domain outputs, which are denoted as “LMse-LMag”. Second,
the magnitude spectral constraint is imposed on both outputs simultaneously,
denoted as “LMag-LMag”. These two combinations are used to prove that
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Table 4a: Evaluations and comparisons of models using different loss function in terms of
STOI(%). The best socre is marked in bold.

Metrix STOI
Test Noise Babble Cafeteria

Test SNR (dB) -5 0 5 Avg. -5 0 5 Avg.
LMse-LMag 85.3 92.7 95.9 91.3 82.0 91.2 95.2 89.5
LMag-LMag 84.8 92.3 95.6 90.9 81.4 90.6 95.0 88.6
LCom-LCom 84.5 92.3 95.6 90.8 80.6 90.4 95.1 88.3

LMse-LMag-NC 88.6 94.1 96.5 93.1 85.2 92.5 96.0 91.2
LMag-LMag-NC 88.6 94.2 96.5 93.1 85.1 92.5 96.0 91.2
LCom-LCom-NC 88.3 94.1 96.5 93.0 84.6 92.3 96.0 91.0

Table 4b: Evaluations and comparisons of models using different loss function in terms of
PESQ. The best socre is marked in bold.

Metrix PESQ
Test Noise Babble Cafeteria

Test SNR (dB) -5 0 5 Avg. -5 0 5 Avg.
LMse-LMag 2.45 2.98 3.33 2.92 2.29 2.84 3.24 2.79
LMag-LMag 2.32 2.85 3.21 2.79 2.15 2.72 3.15 2.67
LCom-LCom 2.24 2.85 3.25 2.78 2.04 2.68 3.19 2.64

LMse-LMag-NC 2.63 3.12 3.38 3.05 2.48 3.01 3.35 2.95
LMag-LMag-NC 2.64 3.13 3.38 3.05 2.47 3.00 3.35 2.94
LCom-LCom-NC 2.65 3.15 3.45 3.08 2.45 3.02 3.41 2.96

the combination of different domain loss functions benefits the performance
of the dual-branch network. However, the used LMag loss function brings
unknown artifacts to the enhanced speech, which corrupts the subjective
perception. Therefore, the complex loss, which constrains both real and
imaginary components and magnitude, is used on both outputs to alleviate
this problem. This is denoted as “LCom-LCom”.

Table 4a and Table 4b gives the comparison results for the three combi-
nations. For the causal system, the combination of LMse-LMag consistently
outperforms the other loss functions in all conditions. It is the deviation
of the two learning objectives that makes the features extracted by the two
branches more differentiated, prompting each branch to focus on the noise
it excels and reducing the learning difficulty of individual branches. Then,
the transformation and fusion of the bridge layers allow the information to
complement each other, giving a huge boost to the model performance. In
contrast, in the non-causal system, the combination of LMse and LMag still
maintains the advantage in STOI, but lags behind LCom in PESQ, especially at
high signal-to-noise ratios. It can be noticed that the frequency domain branch
using LMag lacks the phase constraint compared to LCom, which suggests that
the extra phase constraint could bring improvement in speech quality when
the contextual information is sufficient.
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Table 4a and Table 4b shows the results of the three combinations, and
it can be seen that the combination of constraints in different domains can
bring performance improvements. In our records, however, the performance of
the time branch drops considerably. We reckon that it is the deviation of the
learning target of the two branches that makes the information from the other
branch more instructive, resulting in better performance of the frequency do-
main branch. Additionally, we notice that LMag does not consistently improve
PESQ at different SNRs. At low SNR, LCom obtains better performances
than the others. Consistent with the previously mentioned, we think this is
because LMag introduces artifacts and PESQ is more sensitive to artifacts.
Moreover, this problem is more pronounced in non-causal systems. According
to the results, the combination of LMse and LMag may be the best choice.

5.4 Comparison of Model Complexities

The number of parameters and computational complexity are important in-
dicators for evaluating a model and determining the scenarios in which the
model can be applied. We evaluate the model complexity of the proposed
model and other baseline systems using trainable parameters and memory
access cost (MAC) for processing one second of speech. As shown in the
Table 5, the dual-branch model has about 2.85M parameters and 6.12G MAC
per second signal. Compared with the frequency domain model, the proposed
model has a bit more computational cost and fewer trainable parameters,
while the performance of the model is much better than the baseline in the
frequency domain. Compared with the time-domain model, the proposed
model is superior in terms of parameter quantity, computational complexity,
and even performance. This undoubtedly proves the effectiveness of the dual
branch network.

Table 5: Number of Trainable Parameters and MACS for Different Causal Systems, Where
M Indicates Million.

Model Parameters MACs
CRN 17.6M 2.51G
GCRN 9.76M 2.37G
AECNN 6.44M 11.7G
DDAEC 4.80M 36.5G
DCN 4.63M 35.7G
CRN-Time 1.43M 3.06G
CRN-SRS 1.43M 3.06G
DBCN 2.85M 6.12G
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6 Conclusion

In this study, we propose a novel dual-path convolutional network for cross-
domain speech enhancement, where the time-domain branch pays more at-
tention to local information, and the frequency-domain branch pays more
attention to the relationship between frames. The bridge layer is introduced
for the conversion and fusion of information between the two domains, thus
the two branches can achieve the effect of mutual guidance. Furthermore,
we propose a novel feature normalization method. The relative relationship
between frames of each frequency point can be obtained by using statistical
root mean square to regulate data. In the absence of bias, the model main-
tains complete noise reduction capability for input waveform with arbitrary
amplitudes.

We have developed causal and non-causal DBCN, which are trained on the
WSJ corpus and evaluated on untrained WSJ speakers. Systematic comparison
experiments and ablation experiments of each module are conducted, which
proved that DBCN outperforms existing noise and speaker-independent ap-
proaches for speech enhancement. In addition, the amount of parameters and
computation of the proposed network is much smaller than other time-domain
baselines, and it can denoise under fully causal conditions. However, due to
equipment limitations, this algorithm cannot be applied to terminal equipment.
In future studies, we will design more suitable structures for each domain and
plan to further reduce the computational load of the model to better imple-
ment the algorithm in real time scenarios. Finally, we consider introducing
a pre-training strategy to improve the practicality and performance of the
model.
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