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ABSTRACT

End-to-end automatic speech recognition (ASR) models are typically
data-hungry, which depend on a large paired speech-text dataset for
the models to be effective. It remains an active area how to increase
the linguistic competence of such ASR models with unpaired text data.
The conventional techniques that employ an external language model
(LM) suffer from high decoding complexity. Pre-training methods have
problems of catastrophic forgetting and model capacity gap between
the pre-trained modules and the actual tasks. This paper introduces a
speech-and-text Transformer to leverage unpaired text and address the
above issues. The decoder of the proposed speech-and-text Transformer
contains three parallel branches to learn strong text representations
from unpaired text and reduce the mismatch between the speech and
text representations. An on-demand dual-modality attention mecha-
nism is proposed to automatically select one or two modalities to learn
from. Besides, we introduce a novel alternate training algorithm to
load speech and text batches alternately and accumulate their gradients.
The proposed model is trained with an auxiliary language modeling
task. Intra-domain and cross-domain speech recognition experiments
are conducted on AISHELL-1, LibriSpeech, and WenetSpeech corpora.
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Results show competitive performance to the conventional shallow fusion
method with negligible computation overheads during inference.

Keywords: Speech recognition, language model, unpaired data, transformer,
semi-supervised learning

1 Introduction

Deep learning has significantly advanced the landscape of speech recognition
research with the scalability and prediction power of deep neural networks.
The main goal of speech recognition is to build a model to infer the text
sequence Y from the acoustic feature sequence X. Traditionally, a statistical
automatic speech recognition (ASR) system contains two major components –
an acoustic model (AM) for estimating the likelihood of a sequence of speech
features given a sequence of text tokens P (X|Y ) and a language model (LM)
for evaluating the prior probability of the text sequence P (Y ) [28, 30]. The
AM component finds the possible text sequences that match the input acoustic
features, while the LM component imposes linguistic constraints on these
selected text sequences. The AM-LM decoding mechanism is formulated under
the hidden Markov modeling (HMM) framework [64]. While the HMM-based
ASR model is not as effective as the end-to-end ASR model, the former employs
a modular architecture that allows the AM and LM to be trained separately
on the unpaired dataset.

The end-to-end (E2E) ASR model directly maps acoustic sequence to
label sequence, obviating the need to train different modeling components
with separate datasets. There are three prevailing types of end-to-end speech
recognition architecture: connectionist temporal classification (CTC) [20, 24],
recurrent neural network Transducer (RNN-T) [19, 21], and attention-based
encoder-decoder (AED) [1, 10]. The early AED models use the recurrent neural
network (RNN) as the building block to realize the encoder-decoder framework.
Therefore, they are referred to as the RNN-based encoder-decoder hereafter.
One of the latest advances of the attention-based encoder-decoder approaches
is the adoption of Transformer [14, 56], which replaces all recurrent connections
in the early AED models with the self-attention mechanism to capture long-
range dependence and allow for parallelization. This model is referred to
as the Transformer-based encoder-decoder hereafter. Augmented with CNN,
Conformer-based ASR models have achieved state-of-the-art performance on
most ASR benchmarks [22].

Despite overwhelming success, one critical problem of E2E solutions is that
they are data-hungry, i.e., it requires thousands of hours of labeled speech
for them to be effective [39]. The performance of an E2E ASR system may
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dramatically deteriorate as the amount of paired speech-text training data
reduces [50]. Traditional module-based ASR systems contain a powerful LM,
which is separately trained on massive text-only data to inject domain-specific
linguistic knowledge into the ASR system and enhance the fluency of generated
texts. In contrast, E2E ASR models entirely rely on paired speech-text training
data, that are not always available. Therefore, the scope of application of the
end-to-end ASR models is highly constrained. How to enhance the linguistic
competence of E2E speech recognition systems with abundant unpaired text
data is still an open research problem.

A common strategy to improve the linguistic competence of an E2E ASR
system is to leverage the knowledge contained in an LM trained with unpaired
text data. Shallow fusion [12] is the most popular approach in this direction,
which applies the pre-trained LM during ASR’s decoding stage in a post-
processing beam search process. The use of pre-trained LM during ASR’s
training stage has also been investigated in techniques such as cold fusion [52],
component fusion [51], and memory attentive fusion [29]. One crucial problem
of those fusion techniques is that the additional LM module increases the
model’s computational complexity and decoding time, making it a great
challenge to deploy them in real-time applications [27]. Liu et al. [38] use a
Criticizing LM to distinguish the real text (both paired and unpaired text
data) from the fake text generated by the ASR system and force the ASR to
generate transcriptions of better quality. However, the adversarial training
method often leads to overfitting as the ASR model might overly depend on
the output distribution of an LM and less on the acoustic evidence.

Instead of using a separate LM, it has also been studied to pre-train end-
to-end speech recognition systems directly with text data [6, 62, 67]. Gao et
al. [18] treat the decoder of a Transformer-based encoder-decoder model as
a neural LM and pre-train it using pure text data. After pre-training, the
whole ASR model is fine-tuned with paired speech-text data. Similarly, Deng
et al. [13] design a one-cross decoder to relax its dependence on acoustic inputs
for a Transformer-based encoder-decoder model and initialize the encoder and
decoder of the system with pre-trained AM and LM separately. Fan et al. [16]
pre-train the encoder and decoder of a Transformer-based encoder-decoder
model with unpaired audio data and synthesized speech-text data separately,
then fine-tune the whole system with genuine paired data.

There are two significant issues with these pre-training methods. One
is catastrophic forgetting, i.e., a model forgets previously learned knowledge
when learning new information. During the fine-tuning stage, the pre-trained
ASR models learn speech-text alignments at the price of forgetting linguistic
knowledge learned in the previous stage. As a result, text-derived knowledge
is not fully utilized in such pre-trained ASR models. Another issue lies in
the model capacity gap between the powerful pre-trained LM part and the
randomly initialized acoustic part of the E2E model at the beginning of the
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fine-tuning stage. This model capacity gap can cause mismatches between
their generated speech and text representations, degrading the learning of
speech-text alignment in the fine-tuning stage.

In this paper, we propose a novel encoder-decoder ASR architecture, called
speech-and-text Transformer, to acquire linguistic knowledge directly from
the unpaired text for E2E ASR systems and address the above problems.
We make three significant amendments to the decoder architecture of the
vanilla Transformer: (1) Instead of having one single branch with two attention
modules connected in series, our decoder has three parallel branches – a deep
acoustic branch for capturing multiple levels of acoustic abstractions, a speech
decoding branch for learning speech-text alignment from previous deep acoustic
states and decoder states, and an inner-LM branch for acquiring linguistic
knowledge from unpaired text data. (2) In the speech decoding and inner-LM
branches, we introduce an on-demand dual-modality attention mechanism to
enable the model to automatically learn from one or two modalities, depending
on their availability. (3) We share parameters between the speech decoding
and inner-LM branch to leverage the strong text representation learned in the
inner-LM branch for speech decoding and reduce model size.

To overcome catastrophic forgetting and balance the model capabilities
between the inner-LM and other branches of the decoder, we introduce an
alternate training algorithm that involves loading several batches of text data
and a batch of paired speech-text data in an alternating manner. Besides, we
use a text gradient accumulation mechanism in the alternate training algorithm
to accumulate gradients from the text and speech-text batches to simulate a
big batch for stabilizing training. Another highlight of this algorithm is the
use of text ratio, which controls the proportion of the unpaired text to paired
speech-text data when updating the parameters. We employ multi-objective
learning to optimize the speech-and-text Transformer with a main hybrid
CTC/attention objective and an auxiliary language modelling objective. By
controlling the LM training weight in the joint loss function, we balance the
contributions from the paired speech-text data and the unpaired text, thus
avoiding overfit to one of the two training data.

The contributions of this work are summarized as follows.

• We introduce a unified end-to-end speech recognition model, namely
speech-and-text Transformer, that is designed to enhance its language
modeling ability directly from unpaired text data.

• We overcome catastrophic forgetting of pre-training methods and close
the model capacity gap within the ASR model by using a novel alternate
training algorithm.

• Our methods achieve comparable performance to the conventional shallow
fusion method in both in-domain and out-of-domain speech recognition
experiments.
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• Our methods only incur negligible computational overhead during infer-
ence, making it possible to deploy our model to real-time applications.

The rest of this paper is organized as follows. Section 2 reviews the
background of the Transformer-based encoder-decoder ASR. The architecture
and training schemes of the proposed speech-and-text Transformer model are
introduced in Section 3. Section 4 describes related work. Experiment setups
and results are presented in Sections 5 and 6. Section 7 provides analyses and
some insights into our experiment results. Finally, Section 8 concludes the
paper and discusses future work.

2 Preliminaries

We first discuss the fundamentals relevant to the proposed Transformer-based
encoder-decoder ASR architecture.

2.1 Transformer-based ASR Model

Transformer draws dependencies between inputs and outputs by relying entirely
on attention mechanisms. In Figure 1, we illustrate a standard Transformer-
based encoder-decoder speech recognition architecture. Let’s define a T -length
input acoustic feature sequence as X = {x1, . . . , xt, . . . , xT } and an N -length
output text token sequence as Y = {y1, . . . , yn, . . . , yN}. We also define
Θ = {θenc, θdec} as the set of trainable parameters of the Transformer model,
with θenc being the parameters of the encoder and θenc being the parameters
of the decoder.

The Transformer encoder is composed of a stack of J identical encoder
blocks, each of which takes input from the hidden states of its previous block
and generates higher-level encoder hidden states. Together with an acoustic
embedding and a positional encoding module, these encoder blocks extract
information from the input acoustic feature sequence X and convert it to a
high-level acoustic representation H as follows,

X(0) = PosEnc(AousticEmb(X)), (1)

X(j) = EncBlock(X(j−1), θenc), (2)

H = LayerNorm(X(J)), (3)

where EncBlock(·) is the Transformer encoder block containing a multi-head
attention sub-layer and a position-wise feed-forward network sub-layer, with a
residual connection and a layer normalization adopted for each sub-layer.

The Transformer decoder also consists of a stack of K identical decoder
blocks, each of which takes input from the hidden states of its previous decoder
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Figure 1: The architecture of a Transformer-based encoder-decoder ASR.

block and the same acoustic representation H obtained from the encoder to
yield higher-level decoder hidden states. The Transformer decoder calculates
the probability of the next text token given the whole acoustic feature sequence
and its previous text token sequence P (yn|X,y1:n) as follows,

Y (0) = PosEnc(TextEmb(y1:n−1)), (4)

Y (k) = DecBlock(Y (k−1),H, θdec), (5)

P (yn|X,y1:n) = Softmax(Linear(LayerNorm(Y (K)))), (6)

where DecBlock(·) is the Transformer decoder block containing two multi-head
attention sub-layers and a position-wise feed-forward network sub-layer, with
a residual connection and a layer normalization adopted for each sub-layer.

2.2 Multi-Head Attention

Multi-head attention is the core module of Transformer, which allows the model
to acquire dependency information from multiple representation sub-spaces
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jointly. The left part of Figure 2 illustrates a multi-head attention module
that employs the scaled dot-product attention function.

Figure 2: (left) A multi-head attention module that adopts scaled dot-product attention as
its attention function. (right) Scaled dot-product attention.

Scaled dot-product attention is the most common choice for the attention
function used in the multi-head attention mechanism. Define Q ∈ Rlk×dmodel ,
K ∈ Rlk×dmodel and V ∈ Rlv×dmodel as the query, key, and values, where l∗
are the lengths of these matrices and dmodel is the output dimension of the
Transformer model. Normally, lk = lv. As shown on the right side of Figure 2,
the scaled dot-product attention function is formulated as follows,

Attention(Q,K,V ) = Softmax(
QKT

√
dk

)V , (7)

where dividing the dot products by
√
dk is to ensure the generated attention

score has variance 1.
In the multi-head attention mechanism, Q, K, and V are first projected

into h sub-spaces by using different linear layers, with h being the number
of heads. The attention function Attention(·) is then performed h times to
extract information from h representation sub-spaces. Lastly, the calculated
attention scores are concatenated and projected to yield the final attention
score. The multi-head attention mechanism is formulated as follows,

MultiHead(Q,K,V ) = Concat(head1, . . . ,headhW
O, (8)

headi = Attention(QWQ
i ,KWK

i ,V W V
i ), (9)

where W ∗ are the learned linear projection matrices, with WQ
i ∈ Rdmodel×dk ,

WK
i ∈ Rdmodel×dk , W V

i ∈ Rdmodel×dv , WO ∈ Rdo × dmodel, and dmodel is the
output dimension of the Transformer model. Usually, dk = dv = dmodel/h and
do = h · dv = dmodel.
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3 Speech-and-Text Transformer

We propose a neural architecture where we directly use unpaired text data
in ASR training to enhance the linguistic competence of a Transformer-based
encoder-decoder speech recognizer.

3.1 Architecture

The overall architecture of the proposed speech-and-text Transformer is shown
in Figure 3. The speech-and-text Transformer employs the same encoder
structure as the vanilla Transformer-based encoder-decoder model. We denote
the encoder output as H(0) instead of H to distinguish different levels of
acoustic representations in the decoder. The decoder consists of a stack of

Figure 3: The architecture of the proposed speech-and-text Transformer. The orange area
inside the decoder block indicates the deep acoustic branch, the pink area inside the decoder
block indicates the speech decoding branch, and the green area inside the decoder block
indicates the inner-LM branch. Modules inside the grey-dotted rounded rectangle share the
same set of parameters.
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K identical decoder blocks. Each decoder block contains three branches of
different roles in parallel to facilitate the learning of speech-and-text alignments:
a deep acoustic branch, a speech decoding branch, and an inner-LM branch.
Define STDecBlock(·) as the decoder block of the speech-and-text Transformer
and θdec = {θdec_s, θdec_d, θdec_t} as the set of trainable parameters of the
speech-and-text decoder, with θdec_s being the parameters of the deep acoustic
branch, θdec_d being the parameters of the speech decoding branch, and θdec_t

being the parameters of inner-LM branch.
(1) Deep Acoustic Branch: In the vanilla Transformer decoder, the same en-

coder output is used as the acoustic representation to establish the speech-text
alignments for all decoder blocks. However, this fixed acoustic state is consid-
ered a relatively low-level abstraction than the various text representations
generated in the decoder blocks. In order to help the model to learn better
alignments with acoustic and text representations of the same abstraction
level, we adopt deep acoustic structure (DAS) [68] in the deep acoustic branch
for extracting deeper levels of acoustic representations in the decoder blocks.
The deep acoustic branch contains a multi-head attention sub-layer and a
feed forward sub-layer. The deep acoustic branch generates new deep acoustic
states H(k) by attending to the deep acoustic states from its previous block
as follows,

H(k) = STDecBlock(H(k−1), θdec_s). (10)

(2) Speech Decoding Branch: The speech decoding branch is responsible
for predicting the next text token from deep acoustic representations and
previously decoded text tokens. This requires the model to understand the
dependency between the audio and text sequence and within the text sentence
itself. We use a novel on-demand dual-modality attention module that attends
to two modalities simultaneously to generate decoder states. This attention
mechanism is detailed in the next subsection. The speech decoding branch
is composed of an on-demand multi-modality attention sub-layer and a feed
forward sub-layer. The speech decoding branch generates decoder states Y (k)

by attending to the deep acoustic states and the decoder states from its
previous block as follows,

Y (k) = STDecBlock(Y (k−1), H(k−1), θdec_s, θdec_d), (11)

and the probability of the next text token given the whole acoustic feature
sequence and its previous text token sequence is calculated as follows,

P (yn|X,y1:n) = Softmax(Linear(LayerNorm(Y (K)))). (12)

(3) Inner-LM Branch: The inner-LM branch is an acoustic-independent
branch that aims to take pure text as input to gain linguistic knowledge for
our model. It has the same modular structure as the speech decoding branch,
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except that there is only text input for the on-demand dual-modality attention
module. The same modular structure enables easy linguistic knowledge transfer
between the speech decoding and inner-LM branch through parameter sharing.
We share parameters among all modules between the speech decoding and
inner-LM branch to leverage the high-quality text representations generated by
the inner-LM for recognizing speech and reducing model size. The calculation
of inner-LM states Y

(k)
LM is formulated as follows,

Y
(k)
LM = STDecBlock(Y (k−1), θdec_t). (13)

After obtaining the final LM hidden state Y
(K)
LM , the probability of the next

token conditioned on the previous token history is calculated as follows,

P (yn|y1:n) = Softmax(Linear(LayerNorm(Y
(K)
LM ))). (14)

The inner-LM branch is only used during training for introducing external
linguistic knowledge to the model with unpaired text data. During decoding,
only the deep acoustic and speech decoding branches are responsible for
utterance decoding, which reduces the model’s inference cost.

3.2 Multi-Input Multi-Head Attention

The multi-head attention mechanism in the vanilla Transformer model can
only learn the dependencies between two modalities or inside one modality
itself at different times. However, we hope to learn the above two relationships
simultaneously in the speech decoding branch and only the latter dependency in
the inner-LM branch of our model. Therefore, we propose the on-demand dual-
modality attention (ODDMA) mechanism that has the flexibility of mapping
a query and two sets of key-value pairs or a query and one set of key-value
pairs into an output, depending on the presence of the source sequence.

The left part of Figure 4 illustrates an ODDMA module. Basically, ODDMA
is a multi-head attention mechanism with five input matrices - a query and
two sets of key-value pairs: target queries Qt ∈ Rlkt×dmodel , target keys Kt ∈
Rlkt×dmodel , target values V t ∈ Rlvt×dmodel , source keys Ks ∈ Rlks×dmodel ,
and source values V s ∈ Rlvs×dmodel . Since all target matrices come from the
same text representation and all source matrices come from the same speech
representation, we denote lkt

= lvt = lt and lks
= lvs = ls. Like the standard

multi-head attention mechanism, ODDMA linearly projects each input matrix
into h different sub-spaces. After that, these projected representations go
through our proposed on-demand dual-modality scaled dot-product attention
function to learn dependencies from two modalities as requested flexibly.
Finally, the attention scores of all heads are combined and projected to get
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Figure 4: (left) An on-demand dual-modality attention module that adopts on-demand dual-
modality scaled dot-product attention. (right) On-demand dual-modality scaled dot-product
attention.

the final value. The multi-input multi-head attention is formulated as follows,

ODDMA(Qt,Kt,V t,Ks,V s) = Concat(head1, . . . ,headh)W
O, (15)

headi = OnDemandAttention(QtW
Qt

i ,KtW
Kt
i ,V tW

Vt
i ,KsW

Ks
i ,V sW

Vs
i ),
(16)

where W ∗ are the learned projection matrices, with WQt

i ∈ Rdmodel×dkt ,
WKt

i ∈ Rdmodel×dkt , W Vt
i ∈ Rdmodel×dvt , WKs

i ∈ Rdmodel×dks , W Vs
i ∈

Rdmodel×dvs , WO ∈ Rdo×dmodel , and OnDemandAttention(·) is our introduced
on-demand dual-modality scaled dot-product attention function. In this work,
we set dkt

= dvt = dks
= dvs = dmodel/h = d and do = h · d = dmodel.

The on-demand dual-modality scaled dot-product attention function per-
forms scaled dot-product attention on a concatenation of source and target
sequences or on the target sequence itself, depending on the availability of
these two modalities. The right part of Figure 4 shows the two cases of
the on-demand dual-modality scaled dot-product attention. The on-demand
dual-modality scaled dot-product attention function is formulated as follows,

OnDemandAttention(Qt,Kt,V t,Ks,V s)

=

Softmax
(

QtK
T
c√

d

)
V c, source sequence is present

Softmax
(

QtK
T
t√

d

)
V t, source sequence is not present

,
(17)

where Kc ∈ R(lt+ls)×d is the concatenation of Kt and Ks, and V c ∈ R(lt+ls)×d

is the concatenation of V t and V s. During ASR decoding, the concatenation
operations entail minimal computation costs.
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By sharing the target-related transformations WQt

i , WKt
i and W Vt

i for
the above two cases, ODDMA can take advantage of the superior text repre-
sentations learned from pure text data to help establish speech-text alignments
from paired data. To prevent the decoder from looking ahead at the future
part of the target sentence when predicting the next word in both cases, we
apply masks on the attention scores of each head that corresponds to faulty
connections.

3.3 Training and Inference

We employ multi-objective learning to train the speech-and-text Transformer.
The main task is to minimizes the Kullback-Leibler divergence loss Latt between
the predicted conditional probability Patt(Y |X) and the true label distribution.
This objective is optimized on a speech corpus DP consisting of acoustic feature
and transcription pairs (X,Y ), where the conditional probability Patt(Y |X)
is factorized as follows for an utterance of N tokens,

Patt(Y |X) =

N∏
n=1

P (yn|X,y1:n). (18)

We also adopt a CTC objective as an auxiliary task during training and
inference to take advantage of the deep acoustic knowledge and the monotonic
alignment property of CTC. The CTC loss Lctc is applied to the deep acoustic
outputs generated by the deep acoustic branch. Let’s define a set of distinct
text tokens as U . The CTC objective is defined as follows for an utterance of
T frames,

Pctc(Y |X) =
∑
Z

T∏
t=1

P (zt|zt−1,Y )P (zt|X), (19)

where Z = {zt ∈ U ∪ {< b >} | t = 1, . . . , T} is a frame-wise text token
sequence with blank symbol <b> added, P (zt|zt−1,Y ) is the CTC state
transition probability, and P (zt|X) is the frame-wise posterior distribution
which is calculated using the final deep acoustic representation H(K) as follows,

P (zt|X) = Softmax(Linear(LayerNorm(H(K)))). (20)

Furthermore, we introduce a simple language modeling task that predicts
the next token based on previous token history to facilitate our model to
learn strong text representations from both the paired text and unpaired text.
The LM loss Llm is defined as the cross entropy loss between the probability
Plm(Y ) predicted by the inner-LM and the true label distribution, normalized
by the total number of text tokens N . The joint probability of the text token
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sequence Y is factorized as follows,

Plm(Y ) =

N∏
n=1

P (yn|y1:n). (21)

To address the data imbalance problem between the paired and unpaired
text, we construct two loss functions and optimize them at different times to
exploit a large amount of unpaired data to its full potential. Given the paired
text from the speech-text corpus, we linearly combine the above loss functions
into a speech loss function Lspeech formulated as follows,

Lspeech = αLctc + (1− α)Latt + βLlm, (22)

where α is the CTC training weight and β is the LM training weight that
satisfy 0 ≤ α, β ≤ 1. On the other hand, given unpaired text-only training
data, we update the model with a text loss function Ltext defined as follows,

Ltext = βLlm. (23)

During inference, we use the conventional CTC/attention joint decoding [60].
Given Patt(Y |X) and Pctc(Y |X) as the sequence probabilities output by the
attention and CTC model, the most probable text token sequence Ŷ given
the input speech is defined as follows,

Ŷ = argmax
Ŷ ∈U

{λ logPatt(Y |X) + (1− λ) logPctc(Y |X)} , (24)

with a tunable parameter λ that satisfies 0 ≤ λ ≤ 1.
A prevalent challenge encountered in pre-training models is the occurrence

of catastrophic forgetting, where a model fails to retain previously acquired
knowledge while processing new information. In our case, catastrophic for-
getting means forgetting the learned speech-text alignments from paired data
when obtaining linguistic knowledge from unpaired text data. Another serious
yet common difficulty of using external data to update a partial ASR model is
the existence of model capacity gap between two parts of a model due to the
different training processes and imbalanced training data size, which often leads
to degradation in model performance. To overcome catastrophic forgetting
and reduce the model capacity gap between our model’s inner-LM and other
branches, we propose a training algorithm that alternately loads samples from
paired and unpaired data and accumulates gradients. The alternate training
algorithm is summarized in Algorithm 1 and is described next.

In each iteration, we first load the unpaired text batches and compute the
gradients w.r.t. the inner-LM parameters θdec_t for τ times. τ is an introduced
hyperparameter, called text ratio, that controls the number of unpaired text
batches used together with a batch of paired speech-text data for parameter
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Algorithm 1 The Alternate Training Algorithm
Require: paired speech-text dataset DP , unpaired dataset DU

Ensure: model parameters Θ = {θenc, θdec_s, θdec_d, θdec_t}
Initialize model parameters Θ randomly;
repeat

for i = 1, . . . , τ do
Load a batch of data from DU randomly;
Compute the text loss Ltext by Eq.(23);
Back propagate the text loss to obtain gradients for θdec_t;

end for
Load a batch of data from DP randomly;
Compute the speech loss Lspeech by Eq.(22);
Back propagate the speech loss to obtain gradients for

{θenc, θdec_s, θdec_d};
Update model parameters Θ with all the accumulated gradients;

until maximum iteration

update of the whole model. The use of τ regulates the mixing of two datasets
in one simulated big batch. Then, we load a batch of paired speech-text
data and compute the gradients w.r.t. the parameters of the encoder θenc,
the deep acoustic branch θdec_s, and the speech decoding branch θdec_d for
only once. The essential operation of the alternate training algorithm is to
accumulate the gradients from several text batches and one speech batch, then
update the model parameters with all the accumulated gradients. We call this
mechanism text gradient accumulation, which we believe helps the speech-and-
text Transformer stabilize during training by updating the linguistic-related
parameters of our model together with the speech-related parameters.

4 Relations to Prior Work

There have been studies on various neural architectures, learning objectives,
and learning procedures with a common goal of leveraging abundant unpaired
text data. In what follows, we try to link our work to the related prior work
for a better understanding of our proposal.

4.1 Knowledge Distillation

Knowledge distillation describes a group of methods that transfer knowledge
from a large and high-performing teacher model to a student model typically
trained on a small training data set. Bai et al. transfer knowledge from an
external RNN language model to an E2E ASR model by guiding the ASR’s



Speech-and-Text Transformer 15

training with the soft label provided by the teacher LM [3, 5]. Similarly, Futami
et al. distill knowledge from a bidirectional language model by minimizing
the divergence between the soft label and the ASR’s prediction [17]. Apart
from learning from the teacher model’s final prediction, some works focus on
supervising the student model with the teacher model’s hidden representations
as the source of knowledge [4, 11, 35, 63].

Knowledge distillation techniques do not explicitly incorporate the text-only
data into the training of the E2E ASR model, but rather rely on transferring
knowledge from an external LM in a multi-step training process. Thus, the
effectiveness and efficiency of the knowledge distillation become an additional
topic of concern. This work is a departure from the knowledge distillation
techniques, we study how to allow the ASR model to learn directly on the
unpaired text data in the target domain.

4.2 Multi-Task Learning

Multi-task learning is a machine learning paradigm that aims to simultaneously
learn multiple related tasks and exploit knowledge and commonalities across
tasks.

Sainath et al. [49, 58] use a learnable context vector to distinguish between
the paired and unpaired examples with a two-stage training scheme. The
whole model is trained on the paired text in the first stage, then alternately
trained on the paired and unpaired data in the second stage. One critical
issue of this method is that the artificial context vector does not contain any
speech information as the training is conducted on pure text, which might
harm the learning of speech-text alignment in the cross-attention module of
the decoder. Tang et al. use an extra text encoder and a shared encoder to
train the encoder-decoder ASR system with an additional denoising task [53].
The share encoder aims to map inputs of different modalities into the same
representation space. Similarly, Yusuf et al. use a bank of modality encoder
and a shared encoder to co-train the ASR model with a masked language
modeling task and two machine translation tasks [65].

Another line of multi-task learning involves jointly training an ASR model
with an inverse model to leverage unpaired data and enhance recognition
accuracy. A commonly used approach is using a text-to-speech (TTS) system
to synthesize speech from unpaired text data, and then training the TTS and
ASR systems jointly with both authentic and synthesized speech-text pairs [7,
8, 36, 37, 48, 55]. Rather than creating pseudo speech data, Hayashi et al. [26]
propose a text-to-encoder (TTE) model to generate synthetic encoder hidden
states to use as the speech counterpart of paired data. The use of text-based
synthesized data as speech representation such as words or phonemes has also
been explored in [46, 61]. To leverage the intermediate representations, Karita
et al. [32, 33] introduce a speech autoencoder, a text autoencoder, and an
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inter-domain loss to the system to generate common encoder features for the
ASR and TTS models. However, these multi-task learning techniques exhibit
certain limitations. Firstly, they rely on external models and require multiple
training steps, which increases the training time and complexity of end-to-end
models. Secondly, the synthesized data exhibits much less variation than real
data, which often leads to failure in generalization in tasks with real data [47,
57].

Unlike the aforementioned methods, our approach does not require any
additional artificial context vector, modality conversion component, or inverse
model. Instead, we incorporate an inner-LM branch into the ASR model
and introduce an on-demand dual-modality attention mechanism to enable
the model to be directly trained on unpaired text. Besides, we propose an
alternate training algorithm to ensure the proposed model preserves speech-
text alignment information while acquiring linguistic knowledge from unpaired
textual data.

4.3 Fusion Methods

Fusion methods refer to a group of techniques that utilize unpaired text by
integrating a separately pre-trained LM into the E2E ASR model. Shallow
fusion [25] is the simplest yet most popular one in end-to-end speech recog-
nition. It linearly combines the output scores of an E2E ASR model and an
LM during the ASR’s decoding stage. Unlike shallow fusion, deep fusion [23]
and cold fusion [52] were studied to fuse the final hidden states between a
neural LM and an encoder-decoder model with a parametric gating mecha-
nism during the ASR’s training stage. Component fusion [51] and memory
attentive fusion [29] build on the idea of cold fusion to integrate the last
hidden states of an external LM into the decoder layers of the encoder-decoder
ASR models. One common issue of these fusion methods is that employing
an additional LM during decoding increases the ASR model’s decoding time
and complexity. Furthermore, component fusion and memory attentive fusion
repeatedly use the same LM’s final hidden states in every decoder layer, which
presents a mismatch with the decoder hidden states at different levels of
abstraction.

Departing from the above, we propose a novel Transformer-based encoder-
decoder architecture for speech recognition that contains an inner-LM branch
learned from scratch with unpaired text to guide the ASR’s training with
minimum computation overheads during inference. Furthermore, the inner-LM
branch has the same modular structure as the speech decoding branch, which
allows for easy linguistic knowledge transfer between the two branches through
parameter sharing, at the same time, fully utilizes the hidden states from
different layers of the inner-LM.
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4.4 Domain Adaptation

Domain adaptation for ASR models aims to overcome the acoustic or linguistic
mismatch between training and test conditions. As the E2E ASR model tends
to memorize the training speech well, such mismatch becomes even more acute.
On the other hand, paired speech-text data in the target domain is often
insufficient and hard to obtain. Therefore, researchers have studied adapting
the E2E ASR model to a target domain with relatively cheaper text-only data.

McDermott et al. extend shallow fusion and propose a method called
density ratio [40] based on Bayes’ rule. They train a source-domain LM using
the paired text data and a target-domain LM using separate text-only data.
During decoding, the source-domain LM score is subtracted from the linear
interpolated score of the source-domain ASR model and the target-domain
LM. Similarly, Meng et al. propose internal LM estimation [41, 42] approaches
to calculate the internal LM score of an E2E ASR model by eliminating
the contribution of the encoder. During inference, the estimated internal
LM score is removed from the combined score of the ASR model and the
target-domain LM. Although these fusion-based domain adaptation methods
achieved good results, they still face a common problem: decoding with an
additional target-domain LM component increases the model’s decoding latency.
Another line of work treats the internal LM part of the E2E ASR system as
a standalone neural LM, and fine-tunes it with target-domain text data [45,
54]. Unfortunately, these techniques can only be applied to Transducer-based
E2E ASR architecture as the decoder in Transformer-based encoder-decoder
models highly depends on acoustic input for computing cross-attention.

Different from these domain adaptation approaches, we propose a unified
Transformer-based encoder-decoder architecture that can be trained directly
with target-domain text-only data. As a result, we can enhance the model’s
target-domain linguistic knowledge and adapt the model to the target domain
without using an external LM component during decoding.

5 Experimental Setup

We conduct experiments on two in-domain and one cross-domain speech
recognition task to evaluate the neural architecture. With the two in-domain
tasks, we aim to verify the speech-and-text Transformer’s ability to leverage
unpaired text data of small (5 times the size of the text in the paired speech-
text data) and large (250 times the size of the text in the paired speech-text
data) sizes. With the cross-domain experiments, we intend to validate if our
model can gain target-domain linguistic knowledge from unpaired text data
to alleviate the domain mismatch between source-domain training and target-
domain testing speech data. For ease of comparison with previous work, the
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corpora we used are publicly available. All the experiments are implemented
with the end-to-end speech processing toolkit ESPNet [59].

5.1 Dataset

Chinese In-domain Speech Recognition: We first conduct in-domain
speech recognition experiments with a Mandarin speech corpus:
AISHELL-1 [9] and small-scale unpaired text data from AISHELL-2 [15].
AISHELL-1 is a 178-hours read speech corpus sampled at 16 kHz. It covers
five topics: finance, science and technology, sports, entertainments, and news.
AISHEEL-2 contains 1,000 hours of speech with application topics similar
to AISHELL-1. Since these two corpora contain similar speaking styles and
topics, we consider they are from the same domain. We use the training
set of AISHELL-1 as the paired audio-text data and the unique sentences in
AISHELL-2 as the unpaired text data. By removing sentences that appeared
in the AISHELL-1 from the unpaired text data, we obtain a text-only dataset
of 591,291 sentences1. The number of sentences in the unpaired text data
is approximately 5 times of the number of utterances in the paired speech
data. The data structure of AISHELL-1 and AISHELL-2 after the clean-up
is summarized in Table 1. The model’s hyperparameters are tuned on the
AISHELL-1 dev. set and the final model is tested on the AISHELL-1 test set.

Table 1: Dataset statistics of in-domain Chinese experiments.

#Hours #Utterance #Uniq. Sent.

Training 150 120,098 –
AISHELL-1 Dev. 18 14,326 –

Test 10 7,176 –

AISHELL-2 - - - 591,291

English In-domain Speech Recognition: We then perform in-domain
speech recognition experiments with an English corpus LibriSpeech [43] and
larger text-only datasets. LibriSpeech is a 960-hours read English speech corpus
derived from audiobooks and sampled at 16 kHz. The speech training data of
LibriSpeech is partitioned into three sets: train-clean-100, train-clean-360, and
train-other-500. The corpus also contains 4.3 GB of additional text-only data
in the same domain for building language models. We use the train-clean-100
set as the paired speech data, and use the transcriptions of the remaining
860-hours training data and a subset of the LibriSpeech-LM dataset as the

1The selected unpaired text data for the Chinese in-domain speech recognition
experiments can be downloaded at: https://www.dropbox.com/sh/9xyyftgvr69hrnw/
AADAPieK9PVYSCC6hmR34bYua?dl=0

https://www.dropbox.com/sh/9xyyftgvr69hrnw/AADAPieK9PVYSCC6hmR34bYua?dl=0
https://www.dropbox.com/sh/9xyyftgvr69hrnw/AADAPieK9PVYSCC6hmR34bYua?dl=0
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unpaired text data for our experiments.2 The number of sentences in the two
unpaired text data is approximately 9 and 250 times the number of utterances
in the paired speech data. We tune our models on the 10-hours merged
development set and evaluate the test-clean and test-other set performance.
The data structure of the Librispeech corpus and text database after the
clean-up is summarized in Table 2.

Table 2: Dataset statistics of in-domain English experiments.

#Hours #Utterance #Uniq. Sent.

train-clean-100 100 28,539 28,539
train-clean-360 363 – 103,973
train-other-500 497 – 148,627

LibriSpeech dev-clean 5 2,703 –
dev-other 5 2,864 –
test-clean 5 2,620 –
test-other 5 2,934 –

Subset of LibriSpeech-LM – – – 7,134,750

Chinese Cross-domain Speech Recognition: We conduct cross-domain
experiments with the AISHELL-1 corpus and a multi-domain Mandarin speech
corpus WenetSpeech [66]. WenetSpeech is a 10, 000+ hours multi-domain
speech corpus collected from YouTube and Podcast and re-sampled to 16
kHz. It contains ten domains: audiobook, commentary, documentary, drama,
interview, news, reading, talking, variety, and others. We set the read speech
from AISHELL-1 as the source domain and the radio speech from WenetSpeech
audiobook and news domain as the target domains for our cross-domain
speech recognition experiments. Besides the domain mismatch, the inherent
difference between the audio characteristics of the source domain’s read speech
and the target domain’s radio speech poses another challenge to our cross-
domain speech recognition experiments. Specifically, audio samples from the
WenetSpeech-audiobook and news domain are characterized by a wide range
of original audio bandwidth, large variation in speech style and speaking rate,
and inclusion of background music and noises. In contrast, AISHELL-1’s audio
samples are all read speech collecting in a controlled environment with proper
pronunciation, consistent speaking style and rates, and minimal background

2The selected unpaired text data for the English in-domain speech recognition
experiments can be downloaded at: https://www.dropbox.com/sh/n8zvdk11kj3y8i3/
AAAXyP-MifOEyZh1DCDkheqva?dl=0

https://www.dropbox.com/sh/n8zvdk11kj3y8i3/AAAXyP-MifOEyZh1DCDkheqva?dl=0
https://www.dropbox.com/sh/n8zvdk11kj3y8i3/AAAXyP-MifOEyZh1DCDkheqva?dl=0
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noise. All ASR models are trained with the paired speech from the AISHELL-1
training set, and tuned and tested on the target domain’s dev. and test set.3

We randomly select 14,000 utterances from the target domain with label
confidence of 1.0 as the initial development set and select another 7,000
utterances as the test set. We use the transcriptions of the remaining utterances
from the target domain with label confidence greater than 0.95 as the initial
unpaired text data. The remaining data are used as the training set. We
remove any duplicated sentences from the training set and the dev. set, and
make sure that these three sets do not overlap. The target domain data after
the clean-up for the cross-domain experiments is summarized in Table 3.

Table 3: Dataset statistics of cross-domain Chinese experiments.

Domain #Hours #Utterance #Uniq. Sent.

Training – – 269,516
Audiobook Dev. 10 13,040 –

Test 5 7,000 –

Training – – 1,239,205
News Dev. 8 12,255 –

Test 4 7,000 –

5.2 Implementation Details

Basic Settings. We extract 80-dimensional log Mel-filter bank features
(FBANK) plus 3-dimensional pitch features as the acoustic features, normalized
with cepstral mean and variance normalization (CMVN) calculated from the
training set. For English experiments, we apply byte-pair encoding (BPE) on
the Librispeech 960-hours speech transcriptions to generate subword units of
vocabulary size 5,000 as the text modeling units. For Chinese experiments,
we use 5,210 frequently used Chinese characters extracted from AISHELL-2
training text with ⟨unk⟩, ⟨sos⟩, and ⟨eos⟩ tokens added as the output units.

ASR Models. We follow the LibriSpeech4 and AISHELL-15 small Trans-
former recipes provided by ESPnet for model configuration. The speech-and-
text Transformers contain 12 encoder and 6 decoder blocks, with an output
dimension of 256 and an inner-layer dimension of 2,048. To maintain fairness
in terms of model size, the baseline Transformer utilized in the experiments

3The selected speech (dev. and test set) and unpaired text data for the Chi-
nese cross-domain experiments can be downloaded at: https://www.dropbox.com/sh/
eargormy1u15eu5/AAB8V3cYU2s4SoGUg9BcgSySa?dl=0

4https://github.com/espnet/espnet/blob/master/egs/librispeech/asr1/RESULTS.md
5https://github.com/espnet/espnet/blob/master/egs/aishell/asr1/RESULTS.md

https://www.dropbox.com/sh/eargormy1u15eu5/AAB8V3cYU2s4SoGUg9BcgSySa?dl=0
https://www.dropbox.com/sh/eargormy1u15eu5/AAB8V3cYU2s4SoGUg9BcgSySa?dl=0
https://github.com/espnet/espnet/blob/master/egs/librispeech/asr1/RESULTS.md
https://github.com/espnet/espnet/blob/master/egs/aishell/asr1/RESULTS.md
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comprises 17 encoder layers instead of the 6 used in the speech-and-text Trans-
former. Both the speech-and-text Transformer and the baseline Transformer
have a model size of 38M. 4 attention heads are used for the multi-head
attention modules and the proposed multi-input multi-head attention modules.
A stack of two 3 × 3 CNN subsampling layers with stride 2 is used as the
acoustic embedding. The ASR models are optimized with the Adam algorithm
with an initial learning rate of 1.0 for all Chinese experiments and 5.0 for
all English experiments. The batch size is 32 for Chinese models, and the
number of batch bins is 599,200 for English models. We use Noam [56] as the
learning rate scheduler. A warm-up learning rate schedule with a warm-up
rate of 25,000 is used for all ASR models. We set gradient clipping to 5 and
gradient accumulation to 8 for English models and 5 for Chinese models. The
dropout rate is set to 0.1 for all ASR models. For baseline Transformers, we
train English models for 100 epochs and train Chinese models for 50 epochs.
We increase the number of epochs for speech-and-text Transformers to ensure
convergence. The weight α of the CTC branch is set to 0.3 during training and
set to 0.5 during decoding for all experiments. Parameters from the best 10
epochs on the validation set are averaged as the final ASR model for inference.

LMs. We train long short-term memory (LSTM) based LMs as the external
LMs used for shallow fusion. All LMs are one-layer LSTM models with 512
LSTM units. The LMs are trained with stochastic gradient descent (SGD)
algorithm for 20 epochs. The batch size is set to 64, and the learning rate is set
to 1.0. We select the best epoch on the validation set as the final LM used for
shallow fusion. The perplexities of the trained LMs on the LibriSpeech testing
sets are reported in Table 4. To study the influences of domain discrepancy on
LM performance, we report the perplexities of the trained LMs on AISHELL-
1, WenetSpeech-Audiobook and WenetSpeech-News testing sets in separate
blocks of Table 5. The LM trained using transcriptions of AISHELL-1 has a
relatively higher perplexity of 272 on WenetSpeech-Audiobook test set and
a lower perplexity of 99 on WenetSpeech-News test set. It is understood
that WenetSpeech-News is more similar than WenetSpeech-Audiobook to the
AISHELL-1 training set.

Table 4: Perplexity of LMs on the LibriSpeech testing sets.

LM #Sent. PPL
test-clean test-other

Trans. of Librispeech 281,231 82 81
Subset of LibriSpeech-LM 7,134,750 78 77

Evaluations. We evaluate the performance of English ASR models using
Word Error Rate (WER) and evaluate the performance of Chinese ASR models



22 Wang et al.

Table 5: Perplexity of LMs on dev and test set of AISHELL-1, WenetSpeech-Audiobook,
and WenetSpeech-News.

LM #Sent. PPL
Dev. Test

AISHELL-1 Trans. of AISHELL-1 120,098 61 58
Trans. of AISHELL-2 591,291 57 53

WenetSpeech- Trans. of AISHELL-1 120,098 276 272
Audiobook Trans. of Audiobook 269,516 60 59
WenetSpeech- Trans. of AISHELL-1 120,098 100 99
News Trans. of News 1,239,205 44 43

using Character Error Rate (CER). Perplexity (PPL) is used as the evaluation
metric for LMs. We also evaluate the language modeling ability of ASR models
with speech-and-text decoder by calculating the perplexity of the inner-LM
part of it on testing data.

6 Results

6.1 In-domain Evaluation on AISHELL-1

The in-domain evaluations are conducted on the AISHELL-1 (Chinese) dev.
and test set and reported in Table 6.

Table 6: AISHELL-1: CERs on the dev. and test set. Upper section: fusion methods
discussed in Section 4. Middle section: recent semi-supervised techniques. Lower section:
speech-and-text Transformer framework.

Method #Param. Unpaired Speech Unpaired Text CERs (%)

Dev. Test

LAS [51] – – – – 10.6
Cold Fusion [51] – – AISHELL-2 – 10.1
Component Fusion [51] – – AISHELL-2 – 9.0

Transformer + SP + SF [31] 30M – – 6.0 6.7
Pre-training [16] – AISHELL-2 AISHELL-2 – 7.3
Teacher-Student Learning + SA [4] 68M - Subset of CLMAD – 6.4

Baseline Transformer 38M – – 7.1 7.9
Baseline Transformer + SF 38M – AISHELL-2 6.2 6.7
Speech-and-Text Transformer 38M – AISHELL-2 6.0 6.9
Speech-and-Text Transformer + SF 38M – AISHELL-2 5.6 6.1
Speech-and-Text Transformer + SP 38M – AISHELL-2 5.7 6.4
Speech-and-Text Transformer + SA 38M – AISHELL-2 5.2 5.8

Note: SP stands for speed perturbation; SF stands for shallow fusion; SA stands for SpecAugment.
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We first compare with cold fusion and component fusion discussed in Section
IV under the RNN-based encoder-decoder framework. With the transcriptions
of AISHELL-2 as the unpaired text in ASR training, these methods obtain 5.0%
and 15.1% relative CER reduction over the vanilla LAS model, as summarized
in the upper section of Table 6.

We then compare with the recent semi-supervised techniques that utilize
unpaired speech and text data for training Transformer-based ASR models.
Among all these previous studies, the teacher-student learning [4] could be the
closest to our experiment setups, which uses a subset of CLMAD [2] dataset
as the external text to train an external LM for knowledge distillation. They
use about 30 times the number of text sentences than speech utterances and
employ the SpecAugment [44] strategy in ASR training, to reach a CER of
6.4% on the AISHELL-1 test set.

Finally, in the lower section of Table 6, we summarize the experiment
results of the baseline and our various speech-and-text models. With the
number of sentences in the unpaired text being approximately 5 times that of
speech transcripts in the paired speech-text data, the proposed speech-and-
text Transformer obtains 12.7% relative CER reduction on the AISHELL-1
test set over the baseline Transformer. The CER is further reduced to 6.4%
and 5.8% with speed perturbation [34] and SpecAugment applied to the
speech-and-text Transformer during training. These results imply that the
speech-and-text Transformer is compatible with other data augmentation
techniques such as SpecAugment and speed perturbation. When decoding
with an external RNNLM trained on the AISHELL-2 transcriptions, the speech-
and-text Transformer attains a relative CER reduction of 9.0% compared to
the baseline Transformer with shallow fusion applied. This implies that the
speech-and-text Transformer can also be used with an external LM during
the decoding stage to boost its performance. With a small number of model
parameters and fewer unpaired text data, our method outperformed the
baseline model and previous methods for the AISHELL-1 in-domain speech
recognition task without introducing additional decoding complexity.

6.2 In-Domain Evaluation on LibriSpeech-100 hours

We then conduct in-domain experiments using the LibriSpeech (English) train-
clean-100 set as the paired speech data and evaluate on the test-clean and
test-other sets. The results are reported in Table 7.

The upper section of Table 7 shows the results of previous semi-supervised
methods trained with 100 hours of paired speech-text data and varied amounts
of unpaired text data. Among these studies, the best result comes from
the ASR system trained using the multi-task training method [58] with the
unpaired text data from the whole LibriSpeech LM dataset, which achieves
WERs of 10.1% and 30.4% on the LibriSpeech test-clean and test-other.
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Table 7: Librispeech-100h: WERs on the test-clean and test-other set. Upper section: recent
techniques exploiting text data. Lower section: speech-and-text Transformer framework.

Method Unpaired Text WERs (%)
test-clean test-other

Adversarial Training [38] 860 hrs 18.7 –
Pre-Training [18] 860 hrs 11.2 30.5
Multitask Training [58] LibriSpeech-LM 10.1 30.4

Baseline Transformer - 12.7 31.8
Baseline Transformer + SF 860 hrs 10.5 27.8
Speech-and-Text Transformer 860 hrs 11.0 29.0
Speech-and-Text Transformer + SF 860 hrs 9.9 26.3
Baseline Transformer + SF Subset of LibriSpeech-LM 10.1 27.2
Speech-and-Text Transformer Subset of LibriSpeech-LM 10.2 28.4
Speech-and-Text Transformer + SF Subset of LibriSpeech-LM 9.0 25.1

Note: SF stands for shallow fusion.

The lower section of Table 7 summarizes the experiment results of our
baseline model and our proposed method for exploiting unpaired text-only
data for E2E ASR. We find that our method achieves the best recognition
performance compared to the previous techniques [18, 38] when using a small
amount of unpaired text, i.e., the transcription of the 860-hours LibriSpeech
training data. Specifically, our method yields WERs of 11.0% on test-clean
and 29.0% on test-other. Furthermore, when applying shallow fusion during
decoding, the WERs of our model on test-clean and test-other are further
reduced to 9.9% and 26.3%, respectively. When using a large amount of un-
paired text, i.e., the subset of the LibriSpeech-LM dataset, our method achieves
competitive results compared to the multi-task learning model [58], which
is trained with 5 times more text data than ours. Moreover, when applying
shallow fusion for post-processing, our model attains relative WER reductions
of 10.9% and 7.7% on test-clean and test-other, respectively, compared to the
baseline Transformer.

We further study the impact of varying the amount of unpaired text data
used in ASR training to better understand how the text-only data affects the
performance of the speech-and-text Transformer. We report the perplexity
of the inner-LM of the speech-and-text Transformer as well as the WER of
the model. The results are summarized in Table 8. We fix the LM weight
to 0.5 and the text ratio to 5 for all experiments in this table to eliminate
other interference factors. As the amount of text data increases from zero to
250 times, the perplexity of our model drops consistently from 177 and 179
to 59 and 59 on test-clean and test-other. Similarly, the WERs of our model
also decrease from 13.2% and 31.0% to 10.2% and 28.2% on test-clean and
test-other. These results suggest that the inner-LM branch of the speech-and-
text Transformer acts as a stand-alone LM and benefits from a large amount
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Table 8: Librispeech-100h: Contributions of Unpaired Text data.

Unpaired Text #Sentences test PPL test WERs (%)
clean other clean other

– 0 177 179 13.2 31.0
10 times 285,390 110 110 12.6 30.3
50 times 1,426,950 82 79 11.1 29.0
100 times 2,853,900 77 75 10.6 28.8
200 times 5,707,800 67 66 10.3 28.5
250 times 7,134,750 59 59 10.2 28.4
Note: “times” means that the number of sentences in the unpaired text is N times large than
that of the paired speech-text training data.

of text data to improve its language modeling ability. Besides, the inner-LM
highly correlates to the ASR model, which implies that a stronger inner-LM
means a speech-and-text Transformer with better linguistic knowledge. These
findings demonstrate the ability of the speech-and-text Transformer to learn
from external text data and utilize the learned linguistic knowledge for speech
recognition. Moreover, the speech-and-text Transformer is able to maintain
low perplexity on the LM task while improving accuracy on the ASR task,
indicating our method effectively mitigates catastrophic forgetting.

However, we also observed that the performance improvement of the model
with additional unpaired text from 100 to 250 times is relatively small. We
attribute this to the proposed model’s ability to leverage linguistic knowledge
being constrained by the quality of the inner-LM, as evaluated through per-
plexity. Specifically, as we increase the amount of unpaired text from 100 to
250 times, the perplexity reduction on the test sets becomes less significant,
resulting in a smaller improvement in WERs. In the future, we plan to in-
vestigate the training objective and architecture of the inner-LM to further
enhance its language modeling ability, which would also help the proposed
model to leverage unpaired text better and improve performance.

6.3 Cross-domain Evaluation on WenetSpeech

We evaluate the speech-and-text Transformer trained on out-of-domain AISHELL-
1 speech data and in-domain text data on the WenetSpeech-Audiobook and
News. The results are shown in Table 9.

For the audiobook domain, the speech-and-text Transformer is trained
with unpaired text data approximately 2 times the amount of speech data in
terms of the number of sentences. It obtains CERs of 43.2% and 43.7% on the
WenetSpeech-Audiobook dev. and test set, amounting to 13.6% and 13.6%
relative CER reduction over the baseline Transformer. When applying shallow
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Table 9: WenetSpeech: CERs on the dev. and test set of audiobook and news domain.

Domain Method Unpaired CERs (%)
Text Dev. Test

Audiobook

*Transf. + SP No 48.7 49.4
Baseline Transf. No 50.0 50.6

Baseline Transf. + SF Yes 42.0 42.5
Speech-and-Text Transf. Yes 43.2 43.7

Speech-and-Text Transf. + SF Yes 36.4 36.5

News

*Transf. + SP No 47.0 49.2
Baseline Transf. No 49.3 52.1

Baseline Transf. + SF Yes 42.9 45.4
Speech-and-Text Transf. Yes 42.2 42.9

Speech-and-Text Transf. + SF Yes 37.8 38.3
Note: Transf. is an abbreviation for Transformer. * are evaluated on the Transformer
model downloaded from the ESPnet official repository. https://drive.google.com/open?id=
1BIQBpLRRy3XSMT5IRxnLcgLMirGzu8dg.

fusion to the speech-and-text decoder with an external RNNLM trained on
the same amount of unpaired text, the CERs are further reduced to 36.4%
and 36.5%.

For the news domain, the speech-and-text Transformer is trained with
unpaired text data approximately 10 times the amount of speech data in terms
of the number of sentences. It outperforms the baseline model with shallow
fusion, achieving CERs of 42.2% and 42.9% on the WenetSpeech-Audiobook
dev. and test set, which corresponds to 14.4% and 17.6% relative CER reduction
over the baseline Transformer. With additional RNNLM used for shallow
fusion, the CERs of our model are further reduced to 37.8% and 38.3%.

By summarizing the results from these two domain adaptation experiments,
we can see that the proposed speech-and-text Transformer consistently improves
speech recognition performance in scenarios where the unpaired text data
originates from a distinct domain than the paired speech training data. This
indicates that our proposed model successfully learns the target domain’s
linguistic knowledge from the unpaired text and effectively mitigates the domain
mismatch between the training and testing speech data, even in the presence
of the audio characteristic difference between the source and target domain.

7 Analysis

In this section, we conduct ablation studies on the speech-and-text Transformer
and investigate the impacts of its hyper-parameters text ratio and LM weight

https://drive.google.com/open?id=1BIQBpLRRy3XSMT5IRxnLcgLMirGzu8dg
https://drive.google.com/open?id=1BIQBpLRRy3XSMT5IRxnLcgLMirGzu8dg


Speech-and-Text Transformer 27

on the model’s performance. We also examine some decoded examples of our
method and baseline method to investigate the contribution of external text
to ASR performance.

7.1 Ablation Study

We conduct ablation studies on the speech-and-text Transformer to examine
the contributions of each of its components to the overall system under the in-
domain Chinese speech recognition experiment setting. We use the AISHELL-1
training set as the paired speech data and transcriptions of the AISHELL-2
training set as the unpaired text data. To isolate the impact of other tunable
parameters on model performance, we set the text ratio τ to 20 and LM weight
β to 0.7 for all experiments in this sub-section. We exclude one component
each time and compare the perplexity and CER changes on the AISHELL-1
dev. and test set. The experiment results are reported in Table 10.

Table 10: AISHELL-1: Ablation study on speech-and-text Transformer by excluding one
component each time.

#Param. PPL CERs (%)
Dev. Test Dev. Test

Speech-and-Text Transformer 38M 39 34 6.0 6.9

w/o Parameter Sharing 48M 40 35 6.4 7.3
w/o Inner-LM Branch 38M – – 6.5 7.4
w/o Deep Acoustic Branch 38M 39 35 6.7 7.6
w/o Text Gradient Accumulation 38M 43 38 10.7 12.0

First, we investigate the impact of parameter sharing between the inner-LM
branch and the speech decoding branch of the speech-and-text Transformer.
Erasing this parameter sharing leads to a 10M increase in model parameters, a
slight degradation in perplexity, and a considerable drop in speech recognition
performance. These results confirm that parameter sharing between the inner-
LM branch and the speech decoding branch reduces the model parameter and
helps the ASR model utilize the linguistic knowledge learned from the external
text.

Second, we analyze the effect of removing the inner-LM branch on the
speech recognition ability of our proposed model. We find that removing the
inner-LM branch results in a significant increase in CERs, which underscores
the critical role that the inner-LM branch plays in enabling the model to learn
from unpaired text data and improving its linguistic knowledge. Moreover,
this finding is consistent with previous results in Table 8, which highlights the
importance of incorporating external text data in the proposed speech-and-text
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Transformer. By leveraging a large amount of unpaired text, the proposed
models can enhance their language modeling capabilities and achieve better
performance in recognizing speech.

Third, we examine the role of the deep acoustic branch in the speech-and-
text decoder by removing it and feeding the same encoder representation to
every decoder block, similar to the vanilla Transformer decoder. To ensure
a fair comparison of model size, we increase the number of encoder layers
in the speech-and-text Transformer from 12 to 18, resulting in a model size
of 38M after removing the deep acoustic branch. The results show that the
model achieves similar perplexity on test sets compared to the full speech-and-
text Transformer, indicating that the removed deep acoustic branch does not
significantly impact the model’s language modeling capability. However, we
observe a noticeable drop in speech recognition performance when the deep
acoustic branch is removed, suggesting its effectiveness in extracting high-level
acoustic representations and reducing the mismatches between speech and text
representations in different decoder layers.

Lastly, we assess the effect of text gradient accumulation on our model’s
performance. Specifically, we update the parameters of the inner-LM branch
and the other part of our model separately for each text or speech batch.
We find that stopping the accumulation of gradients from text batches does
not have a substantial impact on the model’s language modeling ability, as
evidenced by the slight increase in perplexity. However, we observe a severe
deterioration in ASR performance, indicating that the model struggles to
retain its proficiency in the ASR task while simultaneously learning the LM
task. These results underscore the crucial role played by the text gradient ac-
cumulation mechanism in stabilizing our model during training and mitigating
catastrophic forgetting.

7.2 Text Ratio and LM Weight

We conduct experiments with the in-domain Chinese speech recognition exper-
iment settings to study the effect of text ratio τ and the LM training weight β
on the performance of the speech-and-text Transformer.

We set the LM weight β to 0.7 for the text ratio experiments where we vary
the text ratio from 1 to 50 and report the results on the AISHELL-1 dev. set.
The experiment results are reported in Figure 5. As the text ratio increases,
the model’s perplexity improves and saturates at 1:20, where we observe the
lowest CER. We notice that the CER increases for a higher text ratio. This
suggests that a proper text ratio and the training strategy play a role.

The LM weight β is the training weight that regulates the contribution of
unpaired text data to the inner-LM. We further conduct experiments with the
in-domain Chinese speech recognition experiment settings to study its impact
by setting the text ratio to 20 for all experiments and varying the LM weight
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Figure 5: CERs and perplexity on the AISHELL-1 dev. set under various text ratios. The
x-axis denotes the text ratio. The primary y-axis (left) is the axis for CER (%), and the
secondary y-axis (right) is the axis for perplexity.

Figure 6: CERs and perplexity on the AISHELL-1 dev. set under various LM weights. The
x-axis denotes the LM weight. The primary y-axis (left) is the axis for CER (%), and the
secondary y-axis (right) is the axis for perplexity.

from 0.1 to 1.0. The experiment results are summarized in Figure 6. The CER
reaches the lowest when β = 0.7.

8 Conclusion

In this work, we introduce the speech-and-text Transformer, an end-to-end
speech recognition architecture that can directly learn from unpaired text
data to gain linguistic competence with minimum decoding computational
overheads. In-domain speech recognition experiments and perplexity studies
on Chinese (AISHELL-1) and English (LibriSpeech) corpora demonstrated the
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effectiveness of our proposed architecture and training scheme in leveraging
small and large text corpus to enhance the linguistic capability of the E2E
ASR model. Besides, the cross-domain experiments on the WenetSpeech
corpus confirmed that our model has the capacity to acquire the linguistic
knowledge of the target domain from unpaired text, thereby minimizing the
domain mismatch between the speech data used for training and testing. The
ablation studies on the speech-and-text Transformer reveal that all branches
and training strategies are crucial to the performance of our model. We
found that the text ratio and LM weight selection significantly influence the
model performance. Therefore, we would like to study ways for the model to
auto-adjust the hyperparameters to achieve good performance in the future.
We will also consider applying our model to under-resourced languages and
multi-lingual scenarios.
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