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ABSTRACT

This paper proposes a new PPE detection method based on the attention-
based YOLOv7 and human pose estimation. The proposed attention
module consists of the concatenation of CBAM (Convolutional Block
Attention Module) and the SE (Squeeze-and-Excitation) block. This
attention module is placed immediately before the detection layer of the
YOLOv7 architecture. CBAM derives spatial and channel attention of
extracted features from a YOLOv7 backbone. The attention weights
prioritize the relevant features in both the spatial and channel domains to
be utilized for PPE detection. The SE block refines the attention weights
obtained from CBAM before feeding weighted features to the detection
layer. Human pose estimation based on YOLO-pose is employed to
remove some false positives of PPE detection. The proposed method
detects human body parts and assigns key points to human body parts.
The essential reference points are computed from the derived vital points.
The detection targets far from the reference points will be regarded as
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false positives and removed. From experimental results, our proposed
PPE detection can increase mAP by up to 8.5% at threshold 0.5, 8.8%
at threshold 0.5 to 0.95, and reduce false positive detection by 22% on
deployment when compared to the original YOLOv7 model.

Keywords: PPE detection, attention-based YOLOv7, human pose estimation,
false positive removal.

1 Introduction

Personal Protective Equipment (PPE) is intended to shield workers against
illness or harm at work. Generally, PPE includes various equipment such
as gloves, vests, helmets, and safety shoes. Based on the statistics from the
Occupational Safety and Health Administration, only 16%, 1%, 23%, and 40%
of workers who have head injuries, face injuries, foot injuries, and eye injuries
wore helmets, face shields, safety shoes, and glasses, respectively. As a result,
it is crucial to wear PPE properly since doing so lowers the possibility of being
injured in the workplace. Deep learning technology can play a key role in
ensuring the proper use of PPE in the workplace. The deep learning model
can be deployed to automate PPE detection in the workplace by firing alarms
when it detects workers who are not wearing the PPE correctly. In addition,
the deep learning model can even predict when PPE needs to be replaced or
repaired. This can guarantee that workers are always wearing PPE in good
condition.

There have been several research efforts recently to propose automatic
PPE detection algorithms. Protik et al. [14] deployed YOLOv4 for PPE
detection in real-time. They finetuned the already trained YOLOv4 with a
public PPE dataset. Ge et al. [4] used YOLOX, an anchor-free version of
YOLO, to detect PPE. They trained YOLOX with the dataset named CHVG,
containing four colored hard hats, vests, and safety glasses. Isailovic et al. [6]
combined faster R-CNN, MobileNetV2-SSD, and YOLOv7 for PPE detection.
Their proposed architecture can exclude false positives well. Nath et al. [13]
explored three approaches in PPE detection based on YOLOv3. The first
approach detected workers, hats, and vests. Then, the model verified whether
the individual worker wore the PPE correctly. The second approach detected
the workers and simultaneously determined their PPE-wearing compliances by
a single CNN model. Finally, the third approach detected only the workers
in the input image, which were then cropped and classified by CNN-based
classifiers. Gallo et al. [3] proposed a real-time detection system based on video
streaming and YOLOv4. They evaluated the PPE detection algorithm using
the detection performance and interference latency obtained from five CNN
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architectures. Wang et al. [20] used YOLOv5 for PPE detection. They trained
their model on the CHV dataset. The target objects were helmets with four
colors, person, and vests. Lo et al. [11] deployed multiple versions of YOLO,
including YOLOv3, YOLOv4, and YOLOv7, for real-time PPE detection. The
models were trained to detect only helmets and vests. Sun et al. [17] applied
the attention mechanism in YOLOv4 to enhance the detection capability for
person detection. Fu et al. [2] added the CBAM attention module to YOLOv4
to make the neural network pay more attention to the area that contains more
critical information and suppress irrelevant information.

However, the previously mentioned research on PPE detection did not
exploit the state-of-the-art YOLO architecture. Most of the current research
lacks essential protective gear, such as gloves and shoes, whose intricate
designs and small size make them more challenging to detect than hard hats
and safety vests. In addition, the attention mechanism that can help the
deep learning model focus on the high-potential regions has not been taken
into consideration in previous work. As a result, this paper proposes a new
PPE detection method based on the attention-based YOLOv7 and human
pose estimation. The proposed attention module consists of the concatenation
of CBAM (Convolutional Block Attention Module) and the SE (Squeeze-
and-Excitation) block. This attention module is placed immediately before
the detection layer of the YOLOv7 architecture. CBAM derives spatial and
channel attention of extracted features from a YOLOv7 backbone. The
attention weights determine the relevant features in both the spatial and
channel domains to be utilized for PPE detection. The SE block refines the
attention weights obtained from CBAM before feeding weighted features to the
detection layer. Human pose estimation based on YOLO-pose is employed to
remove some false positives of PPE detection. The proposed method detects
human body parts and assigns key points to human body parts. The essential
reference points are contributions of this paper can be summarized as follows.

1. By adding an attention mechanism to YOLOv7, we improve the ability
to focus on the most crucial regions of features by selectively weighting
different regions of the features before detection.

2. We combine CBAM and SE attention modules to improve the perfor-
mance of PPE detection. After the CBAM first extracts global context
information from the input data, the SE blocks perform channel-wise
re-weighting on the attended feature maps.

3. We reduce the false positive detection using human pose estimation by
mapping the detected PPE to its appropriate position on various human
body parts, then deleting the detected PPE from locations where its
position does not correspond to the regular wearing position.
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This paper is organized as follows. Section 2 describes the novel enhanced
YOLOv7 architecture with an attention mechanism. The overall architecture
of YOLOv7 is presented in Section 2.1. The proposed combination of CBAM
and the SE block to prioritize extracted features is described in Section 2.2.
Section 2.3 discusses the false positive removal based on human pose estimation.
Experimental results are provided in Section 3. Finally, concluding remarks
are in Section 4.

2 Personal Protective Equipment (PPE) Wearing Detection Method
with YOLOv7 and Attention Mechanism

2.1 YOLOv7

The YOLO (You Only Look Once) v7 model [19] is one of the latest object
detection frameworks in the family of YOLO models. YOLOv7 can achieve
more accurate bounding box prediction than its predecessors while maintaining
exact inference times, gratitude to its new extended efficient layer aggregation,
model scaling, re-parameterization planning, and auxiliary head coarse-to-fine.
The main architecture of YOLOv7 is still the same as its predecessors as
consisting of the backbone, neck, and head as illustrated in Figure 1.

The backbone of YOLOv7 extracts essential features from an input image
and then feeds them to the head. In general, the backbone architecture of
previous YOLO versions is based on convolutional neural networks such as
Darknet-53 (YOLOv3 [15] and CSPDarnet-53 (YOLOv4, YOLOv5 [1, 7]).
The Extended Efficient Layer Aggregation Network (E-ELAN) is introduced
to the backbone of YOLOv7 to help the model learn better. Furthermore, the
YOLOv7 backbone can be scaled to match different levels of required accuracy
and inference speeds. It can be done by adjusting the network depth, width,
and layer concatenation. YOLOv7 adopts module-level re-parameterization
techniques to improve inference performance by averaging model outputs. To
be more specific, during training, the training session is split into multiple
training modules. Then, the weights of each module are ensembled to obtain the
final model. For example, the E-ELAN computation block’s 3×3 convolutional
layers can be replaced by the combination of RepConv [19], identity connection,
and convolutional layer. The outputs of different E-ELAN computation blocks
are finally averaged.

The neck of YOLO mainly relies on the variant feature pyramid network in-
troduced in YOLOv3 [15]. The Spatial Pyramid Pooling (SPP) and Path Aggre-
gation Network (PANet) are utilized in YOLOv4 [1]. The PANet in YOLO adds
a path aggregation module to the network architecture, which helps improve
object detection accuracy by aggregating features from multiple scales and
resolutions. This module effectively handles objects of various sizes and shapes.
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Figure 1: Enhanced YOLOv7 architecture with attention mechanism.

Finally, the head consists of output layers, which provide the final object
detection. In YOLOv7, the head creates feature pyramids by collecting feature
maps extracted from the backbone and outputting the final predictions. The
head part in YOLOv7 uses the SPPCSP (Spatial Pyramid Pooling Cross
Stage Partial) that combines the SPP (Spatial Pyramid Pooling) neck and the
CSP (Cross Stage Partial) backbone and ELAN modules to aggregate image
features. RepConv then modifies the output feature channels. Finally, the
YOLOv7 output and prediction are derived from the 1× 1 convolution.
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2.2 PPE Wearing Detection with Enhanced YOLOv7 based on Attention
Mechanism

We integrate the attention mechanism into the YOLOv7 architecture in this
section to improve its detection of PPE. The attention mechanism improves the
model’s ability to automatically focus on the most relevant PPE regions from
the input images by weighing image regions differently. In this paper, we utilize
the combination of CBAM (Convolutional Block Attention Module) [21] and
the SE Block (Squeeze-and-Excitation Block) [5] as our attention mechanism.
CBAM combines channel attention with spatial attention. Spatial attention
weighs the significance of each position in the spatial dimensions of the feature
maps, whereas channel attention weighs the significance of each channel in the
feature maps. The SE Block gives the feature maps more attention by learning
about each channel in the feature maps through a Squeeze-and-Excitation
process. We will first describe the architecture of CBAM and SE Block in
detail in the following sections.

2.2.1 Convolutional Block Attention Module (CBAM)

Suppose the PPE feature map from YOLOv7 is F with dimensions C×H×W .
CBAM generates channel and spatial attention maps, as shown in Figure 2.

The channel attention module applies average pooling and max pooling to
F as

Favg = AvgPools(F), (1)
Fmax = MaxPools(F), (2)

and then processes the pooled feature maps with multi-layer perceptron (MLP)
and sigmoid activation as

Mc(F) = σ(MLP (Favg) +MLP (Fmax)), (3)
MLP (Favg) = W1(ReLU(W0(Favg))), (4)
MLP (Fmax) = W1(ReLU(W0(Fmax))), (5)

where Mc(F) is the channel attention map with dimensions C × 1× 1, and r
is the reduction ratio.

The spatial attention module applies global average pooling and max
pooling along the channel dimension as

Fsavg = AvgPoolc(F), (6)
Fsmax = MaxPoolc(F), (7)

followed by concatenation and convolutional operation, resulting in

Ms(F) = σ(Conv7×7([Fsavg;Fsmax])), (8)

where Ms(F) is the spatial attention map with dimensions 1×H ×W .
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Figure 2: CBAM architecture.

2.2.2 Squeeze-Excitation (SE) Block

The SE block assigns channel-specific weights to a feature map, with three
operations: squeeze, computation, and excitation, as shown in Figure 3.

The squeeze operation applies global average pooling to an input feature
F with dimensions of C × H × W , resulting in a C × 1 × 1 pooled feature
Fsqueeze

Fsqueeze = AvgPool(F). (9)

Figure 3: SE block architecture.
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This feature vector passes through two fully connected layers with ReLU and
sigmoid activation functions, respectively, resulting in a C × 1 × 1 feature
Foperation

Foperation = σ(W se1(ReLU(W se0(Fsqueeze)))). (10)

Finally, the excitation operation uses Foperation as a per-channel weight vector,
generating the SE attention map Mse(F) with dimensions C ×H ×W .

2.2.3 CBAM-SE Attention Mechanism

We combine CBAM and the SE block to be CBAM-SE attention model. The
extracted features of YOLOv7 are fed to CBAM to compute the attention
maps in both spatial and channel dimensions. The derived attention maps are
applied to the original features to obtain the prioritized feature map as

Fc = Mc(F)⊗ F, (11)
Fcbam = Ms(Fc)⊗ Fc, (12)

where Fcbam is the prioritized PPE feature map from CBAM. Then, Fcbam is
passed to the SE Block to reassign the priorities of CBAM channel features.
This process is responsible by the excitation operation of the SE block, which
is

Fcbam−se = Mse(Fcbam)⊗ Fcbam, (13)

where Fcbam−se is the output feature map from the CBAM-SE attention
module.

Placement positions of attention modules within YOLOv7 affect the overall
PPE detection performance. For instance, if we place the attention model
immediately after the input images, the final PPE detection results will appear
suboptimal. This is based on the fact that PPE locations can be anywhere
within input images. As a result, the attention model is unable to properly
prioritize regions corresponding to PPE. To solve this problem, we place the
proposed attention module immediately before the detection layer, as shown in
Figure 4. At the underlying location, the attention model can only prioritize
essential PPE features extracted from the YOLOv7 backbone and neck, which
are generally less location-dependent.

2.3 PPE False Detection Removal using Human Pose Estimation

This section proposes a method to improve the PPE detection results obtained
from our attention-based YOLOv7. Because most PPE-related images and
videos involve people wearing PPE suits, it is reasonable to use human bodies
as key indications to remove false positives from the PPE detection results.
The simplest method is first to detect humans and then to compute the
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Figure 4: The position of the CBAM-SE attention module in YOLOv7.

Intersection over Union (IOU) between the detected PPE objects and humans.
If these PPE objects are within the human bounding boxes, we can assume
that the detected PPE results should not be false positives. Unfortunately,
when multiple people are within the same image, human bounding boxes may
cover almost the whole image region. False positives likely fall inside these
bounding boxes and will not be eliminated.

To solve this problem, we identify not only human locations but also key
locations corresponding to different body parts. With derived human key
points and detected PPE, we map the detected targets with human body parts
corresponding to key points. Specifically, we deploy YOLO-pose [12] to input
images simultaneously with our enhanced YOLOv7. The detected objects
not corresponding to the human key points are discarded as false positives.
Figure 5 shows the human key points obtained from YOLO-pose.

Figure 5: Key points on a human body obtained from YOLO-pose.
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Targeted wearing PPE equipment consists of four classes: helmet; vest;
gloves; and shoes. We can directly relate the detected object to key points
corresponding to the wrists and ankles for gloves and shoes. However, there
are multiple key points agreeing with the human head and the human body.
As a result, we need to find the reference points of the head and the body
by averaging the key point coordinates. Suppose that coordinate sets of the
human body and head key points are

Ω = {(xb,1, yb,1), (xb,2, yb,2), . . . , (xb,m, yb,m)}, (14)
Θ = {(xh,1, yh,1), (xh,2, yh,2), . . . , (xh,n, yn,m)}, (15)

where m and n are key numbers of the body and the head,respectively. Then,
the reference points of the body and the head can be expressed as

xb =

∑m
i=1 xb,i

m
, (16)

yb =

∑m
i=1 yb,i
m

, (17)

xh =

∑n
i=1 xh,i

n
, (18)

yh =

∑n
i=1 yh,i
n

, (19)

where (xb, yb) and (xh, yh) are reference points of the body and the head,
respectively.

We use the distance between the reference point to the center of the
bounding box to determine the relevance of the detected object and the key
point. If the center coordinate of the bounding box is (xc, yc), the distances
between reference points to the bounding box can be calculated via

Dbc =
√
(xb − xc)2 + (yb − yc)2, (20)

Dhc =
√
(xh − xc)2 + (yh − yc)2, (21)

where Dbc and Dhc are the distances from the body reference point and the
head reference point to the center of the bounding box separately. We compare
Dbc and Dhc with the threshold. The bounding box is declared a false positive
if the distance is greater than a threshold. Since the values of Dbc and Dhc are
affected by the size of the bounding box, it is reasonable to take the bounding
box size into consideration in order to determine the threshold. In other words,
the smaller size the human appearance in the image, the comparatively smaller
the values of Dbc and Dhc.

For the bounding box with the size of wd×hd, the threshold used to decide
whether it is a false positive is reckoned via

Tadj =
√
(w2

d + h2
d)× T , (22)
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where T is a hyperparameter related to a threshold. If Dbc > Tadj , then this
bounding block is a false positive of a vest class. If Dhc > Tadj , this bounding
block is considered as a false positive of a helmet class. Moreover, we can also
further assume that one person normally wears only one helmet, one vest, two
gloves, and one pair of shoes. Hence, we only maintain these sets of detected
PPE with smallest distances to the human key points. Other surplus detected
objects will be considered as false positives and then discarded. The steps of
false positive removal is visualized in Figure 6.

Figure 6: False Positive Removal Mechanism.

3 Experimental Result

3.1 Evaluation Metrics

This section evaluates the PPE-wearing detection performances of the proposed
attention-based YOLOv7 and false positive removal algorithm. The assessment
metric is the mean Average Precision (mAP). To compute mAP, we must
deploy the Confusion Matrix, Intersection over Union (IoU), Precision, and
Recall. The Confusion Matrix contains four attributes: True Positives (TP);
True Negatives (TN); False Positives (FP); and False Negatives (FN). True
positives and false positives are caused by the model detecting the PPE
objects, and the objects are a part of the ground truth and not a part of the
ground truth, respectively. True positives and false positives occur when the
model detects PPE objects that are, or are not, part of the ground truth,
respectively. Conversely, true negatives and false negatives arise when the
model does not detect PPE objects that are not, or are, part of the ground
truth, respectively. The IoU is defined as the ratio of the intersection area
between the predicted bounding box and the ground truth over the union area
of the predicted bounding box and the ground truth. Based on the previously
described metrics, the Precision can be computed as

Precision =
nTP

nTP + nFP
, (23)

where nTP and nFP are the numbers of true positives and false positives,
respectively. Moreover, the Recall can be expressed as

Recall =
nTP

nTP + nFN
, (24)
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where nTP and nFN are the numbers of true positives and false negatives,
respectively.

Average Precision (AP) is calculated by averaging Precision results from
different thresholds. The threshold is dictated by the IoU values. For example,
suppose that we set the IoU threshold as 0.5. If two detected PPE possess
0.3 and 0.5 values of IoU, we can declare that these two objects are a false
positive and a true positive, respectively. Since in our application, there are
four classes of PPE equipment: helmet; vest;gloves; and shoes. The mean
Average Precision (mAP) can be computed from averaging the AP values of
these four classes, which is

mAP =
1

4
(APh +APv +APg +APs), (25)

where APh, APv, APg, and APs are Average Precision of class helmet, vest,
gloves, and shoes, respectively.

3.2 Dataset and Data Preprocessing

The PPE dataset used for train our model contains 1500 images and 5,286
annotations. The data distributions among train, validation, and test sets of
PPE equipments are shown in Figure 7. The example of annotated image can be
illustrated in Figure 8. We exploit the data augmentation techniques including
image rotation, color distortion, image translation, and image transformation
to increase the training data. As a result, the over fitting can be avoided.

Figure 7: The Annotation Numbers of Train, Validation, and Test Sets for PPE Detection.

3.3 Performance Evaluation of Attention-based YOLOv7

This section gives the evaluated performance of the proposed attention-based
YOLOv7 over the existing methods. Since PPE-wearing detection methods
are generally deployed in real-time, we benchmark the proposed method with



Novel Personal Protective Equipment Detection Technique 13

Figure 8: Example of Annotated Image.

YOLOv5 [7], YOLOv7 [19], SSD [10], EfficientDet [18], RetinaNet [8], and
Faster-RCNN [16]. The hyperparameters of these models are set to their
default values. We train all models on the same dataset using NVIDIA
GeForce RTX 3090 10-GB GPUs, AMD Ryzen Threadripper 2950X 16-Core
Processor, 3.500 GHz CPU, and 130 GB RAM. Table 1 compares the PPE
detection performance of YOLOv7 with other detection modules by employing
mAP and inference time. The result in terms of mAP@0.5 of YOLOv7 and
EfficientDet is very similar. However, YOLOv7 outperforms other modules in
terms mAP@0.5:0.95, a lot while still having a relatively high inference time
regarding frames per second.

As we previously discussed in Section 2.2.3, the placement position of the
attention module plays an essential role in improving PPE-wearing detection
accuracy. As a result, we conduct experiments by placing the SE attention

Table 1: Performance comparison of PPE wearing detection of different detection models.

Architecture Backbone mAP@.5 mAP@.5:.95 FPS

YOLOv5 PANet 0.763 0.419 96
YOLOv7 E-ELAN 0.811 0.515 84
SSD VGG16 0.701 0.310 44
EfficientDet EfficientDet-D0 0.813 0.472 41
RetinaNet ResNet50 0.742 0.354 27
RetinaNet ResNet101 0.764 0.372 20
Faster-RCNN ResNet50 0.768 0.376 26
Faster-RCNN ResNet101 0.811 0.389 20
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Table 2: PPE-wearing performance regarding placement positions of the attention module.

Attention Module Position P R mAP@.5 mAP@.5:.95

Placing after the input 0.891 0.711 0.796 0.481
Placing after the head 0.872 0.723 0.808 0.492
Placing before the detection layer 0.911 0.768 0.831 0.534

module in a different position within the YOLOv7 architecture. We intention-
ally deploy only the SE block in this testing because the SE block requires less
computation complexity. The results of this study can be presented in Table 2.
We observe for mAP at IoU threshold 0.5 placing the attention module after
the input performs worst at 0.796, whereas placing the attention module before
the detection layer provides the best mAP value. With the deployment of mAP
at IoU between 0.5 and 0.95 (i.e., if the IoU value is between this interval, the
PPE detection is declared), the results are consistent with the mAP value 0.5.

The attention mechanism can best focus on the most important features
and suppress those that are irrelevant when the attention module is placed
before the detection layer. The attention module may not be as effective if
it comes after the input because the input features may still be too raw or
coarse to properly capture the relevant information. Although the results are
still lower than before the detection layer, placing the attention module after
the head produces better results than after the input. This implies that the
features acquired at this level may not be as discriminating as those that were
accessible right before the detection layer.

As a result, we decided to position our proposed attention module before
the detection layer.

Tables 3 and 4 show the results of enhanced YOLOv7 with different
combinations of CBAM and the SE block. The results are obtained from
the training with batch size, learning rate, and training epoch equaling 16,
0.01, and 200, respectively. The enhanced YOLOv7 corresponding to Table 4
deploys the pre-trained weights from the COCO 2017 dataset [9], whereas
the model in Table 3 does not. We found that pre-trained weights from the
COCO 2017 dataset gave inferior results to the model explicitly trained from
the PPE dataset. To be more specific, the improvement is up to 8.5% for
the mAP with a threshold of 0.5 and 8.8% with a threshold between 0.5 and
0.95. The combination of YOLOv7 with SE and CBAM in parallel improves
performance, although not as much as when both attention mechanisms are
coupled sequentially. This further supports the hypothesis that sequential
integration of attention mechanisms allows each mechanism to refine the
features successively, leading to better overall performance.

Figure 9 shows the confusion matrix of YOLOv7+CBAM+SE (before
false positive removal). The model correctly identified the presence of each
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Table 3: PPE-wearing detection performance of the enhanced YOLOv7 with different
combinations of CBAM and the SE block, when no pretrained weights are used.

Architecture P R mAP@.5 mAP@.5:.95

YOLOv7 0.877 0.739 0.811 0.515
YOLOv7+CBAM 0.876 0.745 0.822 0.524
YOLOv7+ SE 0.894 0.743 0.819 0.523
YOLOv7+CBAM+ SE 0.911 0.768 0.831 0.534
YOLOv7+ SE+CBAM 0.886 0.751 0.822 0.519
YOLOv7+ SE & CBAM in parallel 0.896 0.728 0.809 0.523

Table 4: PPE-wearing detection performance of the enhanced YOLOv7 with different
combinations of CBAM and the SE block, when the pretrained weights from COCO 2017
dataset are used.

Architecture P R mAP@.5 mAP@.5:.95

YOLOv7 0.878 0.744 0.814 0.534
YOLOv7+CBAM 0.894 0.857 0.884 0.599
YOLOv7+ SE 0.919 0.836 0.888 0.609
YOLOv7+CBAM+ SE 0.916 0.863 0.899 0.622
YOLOv7+ SE+CBAM 0.899 0.834 0.886 0.612
YOLOv7+ SE & CBAM in parallel 0.934 0.829 0.891 0.605

PPE category as follows: 62% for gloves, 87% for helmets, 72% for shoes, and
85% for vests.

3.4 Performance Evaluation of False Positive Removal with Human
Pose Estimation

This section evaluates the improved performance of PPE-wearing detection
with the proposed false positive removal method. We apply the false positive
removal engine to the detection results of enhanced YOLOv7 with attention
mechanism. The results are shown in Table 5.

Figure 9 shows the confusion matrix before and after applying the false
positive removal to the PPE detection using YOLOv7+CBAM+SE. The
redundant false positive detection of gloves and shoes, whose intricate designs
and small size make them more confused and lead to a lot of false positives,
are significantly decreased. Moreover, it makes the model more precise and
decreases the false positive detection of helmet and gloves too.

When integrating the false positive removal on the deployment to the
enhanced YOLOv7, we can reduce 22% of the false positive detection after
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Figure 9: Confusion Matrices Before and After Applying the False Positive Removal.

Table 5: PPE-wearing detection performance (total true positive and total false positive)
when applying false positive removal in different environments.

Conf. IoU FP Total Total
Env. Treshold Treshold Removal TP FP

Testing 0.001 0.65 No 742 6492
Deployment 0.25 0.45 No 677 105
Testing 0.001 0.65 Yes 726 1586
Deployment 0.25 0.45 Yes 677 82

applying the enhanced YOLOv7 with attention mechanism without sacrificing
any true positive detections.

Specifically, the false positive detection rates decreased by 15% for gloves,
30% for helmets, 6% for shoes, and 45% for vests, demonstrating the effec-
tiveness of the false positive removal algorithm in enhancing the detection
performance for each PPE category.

The comparison images for PPE detection from the original YOLOv7
model, the YOLOv7 model with our attention module added (CBAM+SE),
and our model after employing false positive removal to the attention-based
YOLOv7 are shown in Figure 10.

Figure 10: Result Comparison Images for PPE Detection.



Novel Personal Protective Equipment Detection Technique 17

4 Conclusions

In this research, we introduced a new method for PPE detection by adding
an attention module to YOLOv7. The attention model was based on the
concatenation of the Convolutional Block Attention Module (CBAM) and
Squeeze-Excitation (SE) block. The CBAM computed attention maps across
spatial and channel dimensions. The SE block refined the attention maps
obtained from the CBAM. This attention module was placed before the detec-
tion layer of YOLOv7. The false positive removal algorithm was also proposed
based on the human pose estimation to improve the detection accuracy. Our
results improved mAP up to 8.5% at threshold 0.5, 8.8% at threshold 0.5
to 0.95, and a 22% reduction in false positive detection compared to the
original YOLOv7 model. With this PPE detection model, it is possible to gain
real-time monitoring accuracy and enforce compliance with PPE to establish
employee safety.
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