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ABSTRACT

The design of a tiny machine learning model which can be deployed in
mobile and edge devices for point cloud object classification is investi-
gated in this work. To achieve this objective, we replace the multi-scale
representation of a point cloud object with a single-scale representation
for complexity reduction, and exploit rich 3D geometric information of
a point cloud object for performance improvement. The proposed solu-
tion is named Green-PointHop due to its low computational complexity.
We evaluate the performance of Green-PointHop on ModelNet40 and
ScanObjectNN two datasets. Green-PointHop has a model size of 64 K
parameters. It demands 2.3M floating-point operations (FLOPs) to
classify a ModelNet40 object of 1024 down-sampled points. Its classifi-
cation performance gaps against the state-of-the-art DGCNN method
are 3% and 7% for ModelNet40 and ScanObjectNN, respectively. On
the other hand, the model size and inference complexity of DGCNN are
42X and 1203X of those of Green-PointHop, respectively.
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1 Introduction

Given a point cloud object scan, the goal of point cloud classification is to
assign it a category label. Point cloud object classification is a fundamental
task in point cloud analysis and processing. It lays the foundation for other
advanced 3D vision tasks such as semantic/instance segmentation, object
detection, registration and generation. Different from semantic segmentation
or object detection, which needs to deal with large-scale and noisy point clouds,
point cloud object classification often targets at classifying small-scale objects
that are clean and well aligned. The point cloud object classification task relies
on the understanding of the local and global structures of an object. Moreover,
the efficiency of a classifier matters in practical 3D real-time systems that
often contain a few advanced tasks and applications. The design of a tiny
machine learning model to be deployed in mobile and edge devices is our focus
in this work.

Two families of machine learning models have been proposed for 3D point
cloud object classification. The first one relies on the end-to-end optimized
deep learning (DL) technique. A representative method is PointNet [28]. The
second one adopts the green learning (GL) methodology [19] aiming at smaller
model sizes and lower computational complexity. An illustrative example is
PointHop [47]. To design a tiny point cloud classifier, we have observations on
the methods of these two families below.

As a pioneering work, PointNet has influenced DL-based neural networks
on point cloud classification significantly. Its follow-ups include [9, 10, 24, 29,
37]. All of them attempt to learn a richer context. Recently, more complex
models [8, 48] have been proposed to push the performance further. Their
computational complexity and memory costs increase accordingly. On the other
hand, we observe that the performance of point cloud classifiers is not much
affected by their layer depth and complexity. For instance, PointNet achieves
47.6% mIoU (the mean intersection over union) in semantic segmentation
for the S3DIS dataset [1], while Point Transformer [48] increases the mIoU
value to 73.5%. In contrast, PointNet and Point Transformer achieve 89.2%
and 93.7% classification accuracy on the ModelNet40 dataset [39] respectively.
As compared with the 25.9% performance gain in semantic segmentation,
the improvement of 4.5% classification accuracy of Point Transformer over
PointNet is not impressive.

Solutions to point cloud classification, segmentation and registration can
be designed using the GL methodology to achieve lower inference complexity
and smaller model sizes. Since no backpropagation is used to determine model
parameters, their training is also very fast. All of these advantages are enabled
by the unsupervised representation learning module in GL. PointHop is the
first GL-based method on point cloud classification. It learns local-to-global
attributes hierarchically. The framework has been successfully extended to
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other tasks such as point cloud segmentation [45] and point cloud registration
[15]. Nevertheless, the limited performance gain in classification accuracy
(i.e., 2%) from PointHop to its enhanced solution, PointHop++ [46], is also
observed.

Based on the above observations, there appears to be little gain in building
a complex point cloud classifier. Although GL-based point cloud classifiers
are more efficient than their DL-based counterparts, we wonder whether it is
possible to obtain an even more economical model. Models of both DL-based
and GL-based families share one common principle – all of them represent point
cloud objects in multiple scales. To reduce the complexity of existing solutions,
we replace the multi-scale representation of a point cloud object with a single-
scale representation for complexity reduction, and exploit rich 3D geometric
information of a point cloud object for performance preservation. The proposed
solution is named Green-PointHop due to its low computational complexity.

Since Green-PointHop has only one hop, its computation time and model
size can be reduced. It compensates the performance loss of a shallow model by
concatenating 3D complementary geometric information using the global, cone
and inverted cone aggregations. As compared to PointHop and PointHop++,
which need four hops to learn hierarchical representations of point clouds,
Green-PointHop has a much simpler architecture. We evaluate the performance
of Green-PointHop on ModelNet40 and ScanObjectNN two datasets. Green-
PointHop has a model size of 64K parameters. It demands 2.3M floating-point
operations (FLOPs) to classify a ModelNet40 object of 1024 down-sampled
points. Its classification performance gaps against the state-of-the-art DGCNN
method are 3% and 7% for ModelNet40 and ScanObjectNN, respectively. On
the other hand, the model size and inference complexity of DGCNN are 42X
and 1203X of those of Green-PointHop, respectively. To summarize, our work
has the following three main contributions:

1. We propose a tiny lightweight machine learning model, called Green-
PointHop, for point cloud classification. It adopts a simple architecture
with one hop to learn point cloud representations.

2. To fully exploit the 3D representations, Green-PointHop adopts geomet-
rically aggregated features from points in the whole object and its partial
views.

3. We compare Green-PointHop with various DL-based and GL-based
methods on the ModelNet40 and the ScanObjectNN datasets in terms
of classification accuracy, computation efficiency and model size.

The rest of the paper is organized as follows. Related work is reviewed in
Section 2. The Green-PointHop method is proposed in Section 3. Experimental
results are shown in Section 4. Finally, concluding remarks are given in
Section 5.
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2 Related Work

2.1 Methods for Point Cloud Analysis

For traditional point cloud analysis methods, it is common to use local ge-
ometric properties as point cloud representations. Representative 3D local
geometric descriptors include PFH [31], FPFH [31], ISS [49], and SHOT [33],
etc. Traditional point cloud analysis methods are mathematically interpretable.
They offer good and fast results in simple scenarios. Yet, they are not effective
in handling complex objects.

With the success of DL in image processing and computer vision, researchers
tried to apply DL to point clouds but encountered difficulty due to the
unordered and unstructured nature of 3D points initially. As a pioneering DL
solution, PointNet solves this problem using multi-layer perceptrons (MLPs)
and max aggregation. Since the max aggregation function is a symmetric one,
PointNet is invariant to the order of points. PointNet only learns the global
structure of point clouds without considering the local structures of points.

Its follow-ups, e.g., PointNet++ [29], PointCNN [24], PointSIFT [10],
DGCNN [37], and RandLANet [9], learn richer local contexts. PointNet++
applies PointNet to the local neighborhood of each point and aggregates local
features hierarchically. PointCNN uses a χ-Conv to aggregate features in a
local region with a latent and potentially canonical order. Inspired by the
SIFT descriptor [26], PointSIFT uses an orientation-encoding unit to encode
eight orientations. DGCNN [37] updates local regions at each layer using
point features (instead of 3D coordinates). This idea works better in capturing
the semantic information. RandLANet [9] has an attention mechanism and
aggregates features with attention scores.

DL-based methods achieve good performance in complex tasks but require
a large number of training data, expensive annotation, and huge computational
resources. Moreover, they are not as transparent as traditional methods. GL-
based point cloud analysis methods strike a balance between simple traditional
methods and costly DL-based methods.

PointHop [47] and PointHop++ [46] are two pioneering GL-based point
cloud processing systems. PointHop++ is an improved version of PointHop
method. They exploit successive subspace learning (SSL) [5] to learn rich
representations of point clouds. Specifically, they adopt an unsupervised
feature extraction module without any class labels. They have an extremely low
training complexity since no backpropagation is used. They only demand one
feedforward pass to learn model parameters in the feature extraction module.

PointHop and PointHop++ lay the foundation for other advanced GL-
based point cloud methods. The representation learning technique proposed
in PointHop is commonly adopted by others. Examples include point cloud
classification [12, 46, 47], small object part segmentation [45], large-scale
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semantic segmentation [44], registration [14, 15], odometry [13], joint object
retrieval and pose estimation [16], rotational-invariant object classification [12],
and scene flow estimation [11].

2.2 GL Methodology and Applications

GL was originally developed for image classification tasks [5, 6, 41] based on a
sequence of efforts in analyzing the operations of convolutional neural networks
(CNNs) [7, 17–20]. The GL paradigm has been successfully applied to other
2D vision tasks such as face biometrics [30], deepfake detection [4], anomaly
detection [43], image generation [21–23], and object tracking [50–53]. The GL
paradigm has also been extended to 3D vision problems, where a wide range
of point cloud processing algorithms have been developed in recent years [25].

3 Green-PointHop Method

3.1 Motivation and System Overview

It is common to use a hierarchical processing pipeline for object recognition in
2D images, say, the multi-layer network architecture in the context of CNNs.
The computational neurons at shallower (or deeper) layers have smaller (or
larger) receptive fields. More neurons are needed at deeper layers due to higher
content diversity in a larger receptive field. Although the same principle holds
for 3D point clouds, there is a major difference in pooling operations between
images and point cloud data.

A (2x2)-to-(1x1) local pooling is applied to filter responses in hierarchical
image processing. This is proper due to the structured order of image pixels.
All relative 2D spatial information is still preserved in pooled responses. Yet,
the situation changes in 3D point clouds. To deal with unstructured 3D points,
we need to define two operations, pooling and aggregation, separately. The
pooling operation is applied to input 3D points (rather than filter responses)
while the aggregation function, which has to be a symmetric one, is applied to
filter responses. The underlying 3D spatial information is lost after aggregation.
The hierarchical architecture computes spectral representations at different
scales. Its cost becomes higher as the layer goes deeper.

To reduce the computational and memory costs, we consider a single-
hop model called Green-PointHop, where no pooling is used to reduce the
point number. It computes the spectral representation of a local neighborhood
centered at each point using the Saab transform [20], and conducts aggregations
across points of an object and its partial views (or sub-objects). This new yet
simple idea has a clear geometric interpretation. Furthermore, its model size
and computation complexity can be significantly reduced since it has filtering
operations at a single scale.
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An overview of the proposed Green-PointHop system is shown in Figure 1.
The input point cloud scan consists of N points. Each point, pi, has three
Cartesian coordinates (xi, yi, zi), representing its location in the 3D space. To
obtain a discriminant point cloud representation for classification, we propose a
three-stage design. In the first stage, we compute local representations for each
point as detailed in Section 3.2. In the second stage, we perform geometric
aggregations of point-wise representations in Section 3.3. In the third stage,
we rank the discriminant power of each representation dimension from the
highest to the lowest, select discriminant ones based on the elbow point of the
curve, and feed them into a classifier to obtain an object label. The detail is
given in Section 3.4.

3.2 Stage 1: Point-wise Representation Learning

3.2.1 Raw Point-wise Representation Vector

For each point, we find its K nearest neighbors using the K-NN search. As
shown in the first stage of Figure 1, the red point is the target point while
the yellow points are its K nearest neighbors. We compute local coordinates
of yellow points with the red point as the origin, partition them using eight
octants, and calculate the centroid of points inside each octant. If an octant
does not have any point, its centroid is set to (0, 0, 0)T . Since there are 8 octants
and each centroid has 3 spatial coordinates, we have a raw representation
vector of 24 dimensions.

3.2.2 Saab Filtering

There are correlations between dimensions of raw point-wise representation
vector. It is advantageous to decorrelate them using the Saab transform based
on our prior experiences in PointHop and PointHop++. The Saab transform
[20] contains one DC kernel (or filter) and 23 AC kernels (or filters). The
DC kernel is a constant-element vector. Since DC-removed vectors can be
treated as zero-mean vectors, we conduct the principal component analysis
(PCA) on them and obtain 23 AC kernels. Then, by multiplying the Saab
transform matrix of dimension 24 × 24 with the raw representation vector
of dimension 24, we obtain 24 filter responses, which define the ultimate
point-wise representation vector.

The point-wise representation vector was first proposed in [47]. It has
three nice properties. First, it is invariant under index permutation of points.
Second, it is a spectral representation via the Saab transform, which is more
effective than the raw representation in the spatial domain. Third, it is a
representation derived by unsupervised learning. No object labels are needed.
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3.3 Stage 2: Global and Regional Representation Learning

Point-wise representation vectors alone are too local to be discriminant. Besides,
the number of these vectors is proportional to the number of points, which is
too many to feed to the classifier directly. It is essential to aggregate point-wise
representation vectors across a set of points to offer robust and discriminant
representations of manageable sizes. The aggregation of point-wise octant
representation vectors is proven to be effective in prior GL-based point cloud
analysis work such as PointHop, PointHop++ and R-PointHop [14]. Some
adjustments are made to tailor to Green-PointHop as described below.

3.3.1 Aggregation Functions

The aggregation function is applied to individual elements of the representation
vectors of selected points. It should be a symmetric function so that the aggre-
gation output is invariant to the permutation of point indices. The maximum
(or max) aggregation function was used in PointNet. Three more aggregation
functions are added in PointHop and PointHop++; namely, the mean, the
L1-norm, and the L2-norm. They aggregate point-wise representation vectors
in a complementary manner and offer better performance. Here, we add
three more aggregation functions to Green-PointHop: the minimum (min), the
standard deviation (std) and the variance (var). Thus, Green-PointHop has
seven aggregation functions in total as shown in the second stage of Figure 1.
The effectiveness of these aggregation functions is analyzed in Section 4.2.3.

3.3.2 Aggregation Regions

The aggregation function has to work on a set of points. One default choice is
to include all points of an input point cloud. It is called the global aggregation.
Furthermore, we can consider a subset of points. We use the centroid of all
points as the new origin while keeping the same pointing directions of the
x, y, and z three axes in the following discussion. We define a symmetric
cone-shaped region by including all points whose angles with respect to the
positive or negative x-axis are less than a predefined parameter, θ1. This
cone region is shown in purple in the second stage of Figure 1. Similarly, we
define two more symmetric cone-shaped regions with respect to the y- and
z-axes. They are colored in green and yellow, respectively. We can further
manipulate the cone that covers points in the positive x-axis as follows. We
move the vertex of the cone to (∆, 0, 0)T , where ∆ > 0 is a parameter selected
by users and invert the cone orientation by 180 degrees. Then, points with the
new vertex as the origin with angles against the negative x-axis less than θ2
define an inverted cone region that has its base on the y-z plane (i.e., x = 0).
With the same manipulations, we can obtain 6 inverted cone-shape regions.
They are marked by 6 different colors in the right of the second module in
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Figure 1. In the experiments, we set θ1 = 75◦ for three symmetric cone-shaped
regions and θ2 = 45◦ for six inverted cone-shaped regions. The former three
are used to capture symmetrical shape properties while the latter six are used
to capture non-symmetric shape characteristics.

To summarize, there are 10 regions in our design (i.e., one global, three
symmetric cones and six inverted cones). We apply the 7 aggregation functions
to the 24D point-wise representation vector of all points in each region, and
concatenate all of them to form a joint representation vector of dimension
7× 24× 10 = 1680, which serves as the input to the last stage.

There is an intuitive way to explain the regional cone-shaped design. Each
cone can be treated as a pinhole camera at different locations viewing a specific
part of the object. For example, the pinhole camera is at the center of the
object and views parts of the object along each axis. The viewing angle has
a certain limitation bounded by θ1. As an alternative, the camera goes to
different sides of the object, turns around, and examines the object from each
side to the center, where the viewing angle is bounded by θ2. In Figure 2, the
Stanford bunny [34] is used to illustrate our intuition.

Figure 2: An illustration for the intuition behind the regional cone-shaped aggregation. A
pinhole camera is set at a certain distance to a Stanford bunny and views a specific part
of it.

3.4 Stage 3: Feature Selection and Decision Learning

3.4.1 From Representation Vectors to Features

As stated above, the total dimension number from Stage 2 is 1680. We can
select a subset of them to serve as the final feature set. Here, we adopt
a supervised feature selection method called the discriminant feature test
(DFT) [42]. The DFT is a tool used to measure the discriminant power of each
dimension independently. It consists of two steps: 1) The weighted entropy
loss for each 1D dimension is calculated at a partition, which is chosen from a
set of uniformly partitioned points. 2) The lowest weighted entropy loss is set
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to the DFT loss of the dimension. Then, we sort dimensions from the lowest
to the highest DFT loss values as shown in the third stage of Figure 1, where
the x-axis is the sorted dimension index and the y-axis is the DFT loss value.
The lower the DFT loss, the higher the discriminant power. Then, we can
use the elbow point of the curve as indicated by the red point to determine a
subset of discriminant features. Features with their loss values less than that
of the red point are selected.

3.4.2 Classifier Selection

We try a couple of classifiers and find that the linear-least-squares-regression
(LLSR) classifier gives the best tradeoff between the classification performance,
computational complexity, and the number of model parameters. Thus, we
choose it as the classifier for Green-PointHop.

4 Experiments

4.1 Experimental Setup

We first evaluate Green-PointHop on ModelNet40 [39]. It has 40 object
categories. The dataset contains 9,843 training samples and 2,468 test samples.
We randomly down-sample each point cloud scan from 2,048 points to 1,024
points for further processing. In experiments, we set K = 32 in the KNN
search, select 1569 features using DFT, and feed them into the LLSR classifier.
Exhaustive experimental results such as classification accuracy, model sizes, and
time complexity in inference, and ablation study are reported in Section 4.2.

To show the generalizability of Green-PointHop, we also evaluate its per-
formance on the ScanObjectNN dataset [35]. It consists of objects extracted
from real world scenes. The dataset has several scenarios such as the “object
only”, “object with background”, and “object with perturbation”. To align with
ModelNet40, we evaluate the “object only” scenario only. For this scenario, we
have 2,309 training samples and 581 test samples from 15 object classes. Since
real world models have background noise and incomplete scans, we adjust
some hyper-parameters in Green-PointHop. In experiments, we set K = 48 in
the KNN search, (θ1, θ2) = (65◦, 45◦) in the regional cone-shaped aggregation,
and select 1108 features based on DFT. The experimental results are given in
Section 4.3.

4.2 ModelNet40 Dataset

4.2.1 Classification Performance

We compare the classification accuracy results of several methods on Model-
Net40 in Table 1. All benchmarking methods are evaluated in two metrics [28]:
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Table 1: Classification performance comparison of representative DL- and GL-based point
cloud object classification methods on ModelNet40.

Learning Scheme Method Accuracy (%)
class-avg overall

Deep Learning

PointNet [28] 86.2 89.2
PointNet++ [29] - 90.7
PointCNN [24] 88.1 92.5
PointConv [38] - 92.5
DGCNN [36] 90.2 92.9
KPConv [32] - 92.9

PCT [8] - 93.2
Point Transformer [48] 90.6 93.7

Green Learning

4 hops PointHop [47] 84.4 89.1
PointHop++ [46] 87 91.1

1 hop

PointHop 44.8 60.7
PointHop++ 49.7 64.5

Green-PointHop (Ours) 86 90.6

the average of per-class accuracy (class-avg) and the overall accuracy of all
scans. Among DL-based methods, we see 4.5% overall accuracy improvement
from PointNet in 2017 to Point Transformer in 2021 [48]. Nevertheless, the
improvement comes at the price of a substantially larger model size and a
significantly higher complexity. Among GL-based methods, Green-PointHop
achieves 86% class-avg and 90.6% overall accuracy, which are second (but close)
to PointHop++. Since Green-PointHop is a single-scale method with only
one hop, we report the classification accuracy of PointHop and PointHop++
using only one hop in the same table for comparison. Clearly, both of them
have a large performance gap with respect to Green-PointHop. It demon-
strates the effectiveness of aggregating complementary geometric information
through multiple oriented cones. By comparing DL- and GL-based methods,
the performance of Green-PointHop is comparable with those of PointNet and
PointNet++.

4.2.2 Model and Time Complexities

We compare the model and time complexities of representative DL-based and
GL-based methods in Table 2. We adopt different hardware platforms for DL-
and GL-based methods due to their different algorithmic nature. As reported
in the second column, DL-based methods are trained on a single GeForce GTX
TITAN X GPU while GL-based methods are trained on a 24-thread Intel(R)
Xeon(R) CPU. It takes several hours to train DL models. In contrast, it
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takes around 20 minutes and 25 minutes to train PointHop and PointHop++,
respectively. Here, we refer to PointHop and PointHop++ with their original
four-hop settings. The new Green-PointHop model completes its training
within 5 minutes. Although we conduct Green-PointHop’s inference on CPU,
its inference time (23 ms) is close to that of PointNet and PointNet++ using
GPU (i.e., 10 ms and 14 ms, respectively).

One platform-independent computational complexity measure is the number
of floating-point operations (FLOPs). The number of FLOPs is proportional to
power consumption as well as carbon footprint. In the 3rd column, we report
the numbers of FLOPs in the unit of millions and show their relative ratios with
respect to that of Green-PointHop inside the parentheses. Green-PointHop has
around 2.3 million FLOPs, which is about one half and one third of PointHop
and PointHop++, respectively. The FLOP numbers and model sizes of DL-
based methods are cited from the original papers and [3, 27]. The missing
items in Table 2 are missing from the original papers. As shown in Table 2, the
FLOP numbers of DL-based methods are about three orders of magnitude of
that of Green-PointHop, which shows the power efficiency of Green-PointHop.

Finally, for model size comparison, we list the numbers of model parameters
in the last column of the table. For GL-based methods, besides the total
number of model parameters, we report the parameter numbers in two modules
separately: 1) the filters used in unsupervised feature learning, and 2) the LLSR
classifier. Green-PointHop has significantly fewer parameters in these two
modules than PointHop and PointHop++ because of its single-hop architecture.
The total number of parameters of Green-PointHop is only 62K, which can
easily fit into a 256k-byte cache if each parameter is stored in four bytes.

4.2.3 Ablation Study

We conduct extensive experiments with various settings of Green-Point-
Hop on ModelNet40 to shed light on several design choices.

Global Aggregation Schemes. We first study the effect of using different
global aggregation schemes on the overall classification accuracy in Figure 3.
The x-axis of the figure indicates the aggregation across four sets of points (i.e.,
256, 512, 768, and 1024 points). The first three sets are randomly sampled from
a total of 1024 points. The general trend is that the test accuracy improves as
the number of sampled points increases, being attributed to better coverage of
underlying point cloud scans.

As to the number of aggregation quantities, we begin with the best setting
of PointHop, which is an ensemble of max, mean, L1 and L2 four quantities.
Under this setting, Green-PointHop has a worse performance than PointHop
except for 1024 points. To improve the performance, we calculate three more
quantities as the new aggregation schemes. They are the min, the standard
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Figure 3: The plot of Green-PointHop’s overall classification accuracy as a function of
the aggregating point number under eight different settings those adopt a subset of seven
aggregation quantities (i.e., max, min, mean, L1, L2, std and variance values) of selected
points.

deviation and the variance across a selected set of spatial points. They offer
new ways to summarize the global information obtained at the first stage
in Figure 1. We compare the test accuracy of eight aggregation cases of
Green-PointHop in Figure 3. As shown in the figure, the ensemble of all
seven aggregation schemes gives the best performance. The robustness of
Green-PointHop is demonstrated by good test performance with fewer points
in point cloud object scans. Although Green-PointHop has one scale only, it
offers the best performance for cases of 768 and 1024 points and the second
best performance for cases of 256 and 512 points.

Sizes of Nearest Neighborhood. Next, we investigate the effect of the
number of nearest neighbors (or the number of K in the KNN search) adopted
in the first stage of Figure 1. We examine K = 16, 32 and 64 three cases in
the first three columns of Table 3. By focusing on the last three rows, we see
K = 32 gives the best result when other conditions are equal. It outperforms
the cases of K = 16 and K = 64 by 1.5% and 0.85%, respectively. Thus, we
successfully reduce K from 64 in PointHop to 32 in Green-PointHop. This
helps reduce the memory size and time complexity.

Effects of Global and Local Cone and Inverted Cone Aggregations.
When K = 32, we see from Table 3 that Green-PointHop has the high-
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Table 3: Ablation Study on the number of nearest neighbors and different combinations
of global and local aggregations. For the number of nearest neighbors, only the results of
three commonly used K are given for comparison. For the column of aggregation, cones and
inverted cones are tested separately.

Nearest Aggregation Overall
Accuracy (%)Neighbor # (K)

16 32 64 Global Cone Inverted Cone
✓ ✓ 72.37
✓ ✓ 83.75
✓ ✓ 87.1
✓ ✓ ✓ 85.94
✓ ✓ ✓ 88.49
✓ ✓ ✓ 89.75
✓ ✓ ✓ ✓ 90.64

✓ ✓ ✓ ✓ 89.14
✓ ✓ ✓ ✓ 89.79

Table 4: Ablation Study on the classification accuracy under different choices of θ1 and θ2.

θ2/θ1 15 30 45 60 75 90
15 85.7 87.9 86.6 88.6 87.9 85.2
30 87.6 89.1 89.2 89.3 88.8 87.8
45 89.5 90.4 90.3 90.0 90.6 88.6
60 88.6 89.1 89.2 89.9 89.8 88.2
75 88.6 89.6 89.5 90.0 90.2 87.4
90 88.5 89.5 89.3 90.0 89.8 87.3

est accuracy (90.64%) by concatenating features obtained from the global
aggregation, the local cone aggregation, and the local inverted cone aggre-
gation. It validates that the proposed cone and inverted cone aggregations
can capture more shape information of objects than the simple global ag-
gregation. This study shows the power of geometric aggregations of local
representations.

Selection of θ in the Cone and the Inverted-Cone Aggregations. As
mentioned in Section 3.3, we set θ1 = 75◦ for three symmetric cone-shaped
regions and θ2 = 45◦ for six inverted cone-shaped regions. In Table 4, we show
an ablation study on the classification accuracy under different choices of θ1
and θ2. The best performance is achieved when θ1 = 75◦ and θ2 = 45◦. This
is valid since the two types of cones should cover different size areas to obtain
complementary representation.
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Table 5: Comparison of classification results on ScanObjectNN.

Method Accuracy (%)
class-avg overall

3DmFV [2] 68.9 73.8
PointNet [28] 74.4 79.2
SpiderCNN [40] 77.4 79.5
PointNet++ [29] 82.1 84.3
PointCNN [24] 83.3 85.5
DGCNN [36] 84.0 86.2
PointHop [47] 70.1 72.6
PointHop++ [46] 70.3 73.0
Green-PointHop (Ours) 77.5 79.3

4.3 ScanObjectNN Dataset

We conduct experiments on a real world dataset, ScanObjectNN with object
only, to show the generizability and effectiveness of Green-PointHop in this
subsection. For fair comparison, we perform the same data augmentation,
including random rotation and per-point jitter, as done in [35]. We compare
the classification accuracy results of several DL-based methods and Green-
PointHop in Table 5. Green-PointHop achieves 77.5% per-class accuracy and
79.3% overall accuracy. These numbers are comparable with PointNet and
SpiderCNN. Green-PointHop has a performance gap against more advanced
DL-based methods, ranging from 5% to 6.9% in the overall classification
accuracy. Since the discussion on model/time complexities in Section 4.2.2 still
holds here, Green-PointHop offers a different tradeoff between complexities
and effectiveness.

We have an interesting observation by comparing the performance of
PointNet and Green-PointHop. The per-class accuracy of Green-PointHop is
3.1% higher than that of PointNet while their overall accuracy results are about
the same. It means that Green-PointHop has more balanced performance
across different classes. To check this, we compare the per-class accuracy of
Green-PointHop and PointNet in Table 6. Green-PointHop achieves higher
accuracy in 11 classes and lower accuracy in the remaining 4 classes (cabinet,
desk, door, and table).

To understand it further, we show some objects in the ScanObjectNN
dataset with ground truth (GT) labels and predictions made by PointNet and
Green-PointHop in Figure 4, where labels and predictions are annotated for
error analysis. We show six examples for each of the following four cases: 1)
both predict correctly (the top group); 2) only PointNet predicts correctly (the
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Figure 4: Prediction error analysis for ScanObjectNN. Each object is visualized with its
GT label in the middle while the labels predicted by PointNet and Green-PointHop are,
respectively, shown above and below for comparison. Also, wrong and correct predictions
are shown in red and green, respectively.
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Table 6: Comparison of per-class classification accuracy of PointNet and Green-PointHop
on the ScanObjectNN dataset.

Method Bag Bin Box Cabinet Chair
PointNet 47.1 80.0 35.7 80.0 93.6
Green-PointHop (Ours) 70.6 90.0 46.4 65.3 96.2

Desk Display Door Shelf Table
PointNet 86.7 73.8 97.6 81.6 88.9
Green-PointHop (Ours) 56.7 83.3 92.9 83.7 79.6

Bed Pillow Sink Sofa Toilet
PointNet 59.1 76.2 54.2 85.7 76.5
Green-PointHop (Ours) 81.8 81.0 58.3 88.1 88.2

second group); 3) only Green-PointHop predicts correctly (the third group); 4)
neither predicts correctly (the bottom group).

Visualization of these objects helps us understand the challenges of the
real world dataset. One main obstacle is that the shape of many objects is
incomplete (with partial surfaces only). These incomplete objects are difficult
to classify as shown in Figure 4. For example, the door located in the bottom
left corner of the figure has only some borders. Even humans have difficulty
recognizing it. Also, we observe that door, cabinet and display form a confusing
group. They share a similar geometric shape – a flat surface. Only some details
on surfaces or edges can make them distinctive. However, these discriminant
parts could be missing.

5 Conclusion and Future Work

An extremely lightweight machine learning model, called Green-PointHop, was
proposed for point cloud object classification in this work. Green-PointHop
simplifies the PointHop model by reducing the hop number from four to one.
To enrich the representations of a point cloud object, Green-PointHop exploited
aggregated features obtained from points in the whole object and its partial
views. This new idea has a clear geometric interpretation. Furthermore, its
model size and computation complexity can be significantly reduced since
it has filtering operations at a single scale. Experiments on ModelNet40
and ScanObjectNN datasets showed that the classification performance of
Green-PointHop is comparable with PointNet and PointNet++.

There are several research topics worth future exploration. First, it is
interesting to extend Green-PointHop to solve the point cloud segmentation and
registration problems. Second, it is important to have a better understanding
on the pooling operation among spatial points and aggregations of filter
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responses across points in spatial regions. The understanding will help guide
the selection of optimal hyper-parameters of Green-PointHop.
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