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ABSTRACT

In compressed sensing, measurements are typically contaminated by ad-
ditive noise, and therefore, information about the noise variance is often
needed to design algorithms. In this paper, we propose a method for
estimating the unknown noise variance in compressed sensing problems.
The proposed method, called asymptotic residual matching (ARM), esti-
mates the noise variance from a single measurement vector on the basis
of the asymptotic result for the ℓ1 optimization problem. Specifically,
we derive the asymptotic residual corresponding to the ℓ1 optimization
and show that it depends on the noise variance. The proposed ARM
approach obtains the estimate by comparing the asymptotic residual
with the actual one, which can be obtained by empirical reconstruction
without the information on the noise variance. For the proposed ARM,
we also propose a method to choose a reasonable parameter based on
the asymptotic residual. Simulation results show that the proposed
noise variance estimation outperforms several conventional methods,
especially when the problem size is small. We also show that, by using
the proposed method, we can tune the regularization parameter of the
ℓ1 optimization to achieve good reconstruction performance, even when
the noise variance is unknown.
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1 Introduction

Compressed sensing [11–13, 25] has attracted much attention in the field of
signal processing [17, 38, 45, 46]. One of the main purposes of compressed
sensing is to solve underdetermined linear inverse problems of an unknown
vector with a structure such as sparsity. Although the underdetermined prob-
lem has an infinite number of solutions in general, we can often reconstruct
the unknown vector by using the sparsity as the prior knowledge appropri-
ately. A similar idea can be applied to the reconstruction of other non-sparse
structured vectors, e.g., discrete-valued vectors [2, 51], which often appear in
wireless communication systems [16, 33, 59].

There are various algorithms proposed for compressed sensing. In greedy
algorithms such as matching pursuit (MP) [47] and orthogonal matching pursuit
(OMP) [55, 71], we update the support of the estimate of the unknown sparse
vector in an iterative manner. Another approach based on message passing,
e.g., approximated belief propagation (BP) [40] and approximate message
passing (AMP) [5, 26], utilizes a Bayesian framework for the reconstruction of
the structured vector. Such message passing-based methods can achieve good
reconstruction performance with low complexity for large-scale problems. For
small-scale problems with a few hundred unknown variables, however, their
performance degrades and the algorithms may even diverge.

Various convex optimization-based approaches have also been studied in
the literature on compressed sensing. The most popular convex optimization
problem for compressed sensing is ℓ1 optimization (a.k.a. least absolute
shrinkage and selection operator (LASSO) [70]), where the ℓ1 norm is used as
the regularizer to promote the sparsity. The iterative shrinkage thresholding
algorithm (ISTA) [19, 22, 29] and the fast iterative shrinkage thresholding
algorithm (FISTA) [7] can solve the ℓ1 optimization problem with feasible
computational complexity. Another promising algorithm is the alternating
direction method of multipliers (ADMM) [10, 18, 27, 31], which can be
applied to a wider class of optimization problems than ISTA and FISTA.
Such optimization-based approaches can also be applied to the reconstruction
of other non-sparse structured vectors [4, 30, 34, 37]. Unlike the message
passing-based methods, the convex optimization-based algorithms converge to
the solution of the corresponding optimization problem even for small-scale
reconstruction problems.

The measurement vector in compressed sensing is usually contaminated
by additive noise in practice. In the design of the algorithms for compressed
sensing, information on the noise variance is often required to obtain good
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reconstruction performance. In optimization-based approaches, for example,
the objective function and/or the constraint in the problem usually include
some parameters to be fixed in advance. Since the appropriate value of the
parameter depends on the noise variance in general, its information is essential
to tune the parameter of the optimization problem, with few exceptions such
as square-root LASSO [9, 60]. If the noise variance and the distribution of
the unknown vector are known, we can obtain the optimal regularization
parameter in terms of the asymptotic mean squared error (MSE) under several
assumptions by using some analytical results [5, 26, 65]. Hence, when the noise
variance is unknown, we need to estimate it from the measurement vector
before the reconstruction of the unknown vector.

Although several estimation methods for the noise variance have been
proposed in the context of linear regression in statistics [24, 41, 58], some of
them mainly consider non-structured vectors and do not exploit the sparsity
of the unknown vector. On the other hand, some sparsity-based methods such
as [63, 76] cannot be extended to the case with other non-sparse structured
vectors in a trivial manner. A possible exception is AMP-LASSO [6], which is
based on the asymptotic analysis of the MSE of LASSO [49, 50]. The estimate
of the noise variance by AMP-LASSO is consistent and can be simply calculated
using the reconstructed vector by LASSO with a fixed regularization parameter.
For small-scale problems, however, we need to choose an appropriate value of
the regularization parameter to obtain a good estimate of the noise variance.
For more details of related work, see Section 3.

In this paper, we propose a novel estimation method for the noise variance
on the basis of the asymptotic analysis for the ℓ1 optimization. The proposed
approach, referred to as asymptotic residual matching (ARM), uses the fact
that the residual of the estimate obtained by the ℓ1 optimization can be well
predicted under some assumptions when the problem size is sufficiently large.
By using the convex Gaussian min-max theorem (CGMT) [65, 69] and a similar
procedure to [48], we derive the asymptotic residual in the large system limit,
where the problem size goes to infinity. The asymptotic residual depends on
the noise variance, whereas the empirical residual can be computed without
using the noise variance because we just need to solve the ℓ1 optimization
problem. We can thus estimate the noise variance by choosing the value whose
corresponding asymptotic residual is the closest to the empirical residual.
Hence, the proposed noise variance estimation firstly solves the ℓ1 optimization
problem with a fixed regularization parameter and then computes the empirical
residual of the reconstructed vector. After that, we obtain the noise variance
whose corresponding asymptotic residual matches the empirical residual.

As is the case with other methods such as AMP-LASSO, the estimation
performance of the proposed method depends on the value of the regularization
parameter. We thus propose a parameter initialization method for the proposed
ARM on the basis of the asymptotic residual. The proposed method enables



4 Hayakawa

us to choose a reasonable value of the regularization parameter without the
computation of the solution of the ℓ1 optimization problem. To further improve
the estimation performance, we also propose the iterative approach, where we
iterate the estimation of the noise variance and the update of the regularization
parameter. Hence, unlike the conventional methods, the proposed method can
estimate the noise variance without the manual tuning of the regularization
parameter. Another advantage of the proposed ARM is that we can easily
extend it to the case with other non-sparse structured vectors if the distribution
is known. In this paper, we consider the reconstruction of binary vector as an
example, which appears in some communication systems such as multiple-input
multiple-output (MIMO) signal detection [15, 74].

Simulation results demonstrate that the proposed method can achieve good
estimation performance even when the problem size is small. By using the
estimate of the noise variance for the choice of the regularization parameter,
we can obtain good reconstruction performance in compressed sensing even
when the noise variance is unknown.

The rest of the paper is organized as follows. We describe the problem
considered in this paper in Section 2 and related work in Section 3. We
then provide the analytical results for the residual of the ℓ1 optimization in
Section 4. In Section 5, we explain the proposed noise variance estimation
method based on the analytical result. In Section 6, we discuss the extension
of the proposed method and show the example for binary vector reconstruction.
We demonstrate several simulation results to show the validity of the proposed
method in Section 7. Finally, Section 8 presents some conclusions.

In this paper, we use the following notations. We denote the transpose by
(·)⊤ and the identity matrix by I. For a vector a = [a1 · · · aN ]

⊤ ∈ RN , the ℓ1

norm and the ℓ2 norm are given by ∥a∥1 =
∑N

n=1 |an| and ∥a∥2 =
√∑N

n=1 a
2
n,

respectively. We denote the number of nonzero elements of a by ∥a∥0. sign(·)
denotes the sign function. For a lower semicontinuous convex function ζ :
RN → R ∪ {+∞}, we define the proximity operator and the Moreau envelope
as

proxζ(a) = arg min
u∈RN

{
ζ(u) +

1

2
∥u− a∥22

}
, (1)

envζ(a) = min
u∈RN

{
ζ(u) +

1

2
∥u− a∥22

}
, (2)

respectively. The probability density function (PDF) and the cumulative
distribution function (CDF) of the standard Gaussian distribution are denoted
as pG(·) and PG(·), respectively. When the PDF of the random variable X is
given by pX, we denote X ∼ pX. When a sequence of random variables {Θn}
(n = 1, 2, . . . ) converges in probability to Θ, we denote Θn

P−→ Θ as n → ∞ or
plimn→∞Θn = Θ.
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2 Noise Variance Estimation in Compressed Sensing

A standard problem in compressed sensing is the reconstruction of an N di-
mensional sparse vector x = [x1 · · · xN ]

⊤ ∈ RN from its linear measurements
given by

y = Ax+ v ∈ RM , (3)

where A ∈ RM×N is a known measurement matrix and v ∈ RM is an additive
noise vector. We denote the measurement ratio by ∆ = M/N . In the scenario
of compressed sensing, we focus on the underdetermined case with ∆ < 1 and
utilize the sparsity of x as the prior knowledge for the reconstruction.

One of the most famous convex optimization problems for compressed
sensing is the ℓ1 optimization given by

x̂(λ) = arg min
s∈RN

{
1

2
∥y −As∥22 + λf(s)

}
, (4)

where f(s) = ∥s∥1 is the ℓ1 regularizer to promote the sparsity of the estimate
x̂(λ) of the unknown vector x. The regularization parameter λ (> 0) controls
the balance between the data fidelity term 1

2 ∥y −As∥22 and the ℓ1 regulariza-
tion term λf(s). Since the ℓ1 optimization is the convex optimization problem,
the sequence converging to the global optimum can be obtained by several
convex optimization algorithms [7, 10, 18, 19].

In this paper, we assume that the noise variance σ2
v is unknown, and

tackle the problem of estimating σ2
v from the single measurement y and the

corresponding measurement matrix A. The knowledge of the noise variance
σ2
v is important to design the algorithms for compressed sensing. For the

optimization problems in (4), for example, the reconstruction performance
largely depends on the parameter λ and its appropriate value is different
depending on the noise variance. In fact, by using the AMP framework or the
CGMT framework, the asymptotically optimal parameter minimizing MSE can
be obtained under some assumptions when the noise variance is known [49, 65].
Hence, the accurate estimate of the noise variance is significant to achieve
good reconstruction performance in convex optimization-based compressed
sensing. For other approaches, the information on the noise variance would
also be helpful to design the algorithm.

3 Related Work

In statistics, several estimation methods for the noise variance have been
discussed in the context of linear regression [23, 24, 39]. A method using the
residual of the ridge regression has been proposed in [41], where simulation
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results show that it outperforms some conventional approaches. The signal-to-
noise ratio (SNR) estimation method in [62] is also based on the analysis of
the ridge regularized least squares. Although it has good estimation perfor-
mance when the number of measurements is sufficiently large, the performance
degrades for underdetermined problems like compressed sensing. Moreover,
the above methods mainly focus on the non-structured unknown vectors, and
hence they do not take advantage of the sparsity in the estimation.

Some sparsity-aware methods have also been proposed for the noise variance
estimation, e.g., scaled LASSO [63] and refitted cross-validation [28]. In [58],
the authors have compared the performance of several estimators and have
concluded that a promising estimator is given by

σ̂2
v =

1

M − ∥x̂(λ)∥0
∥y −Ax̂(λ)∥22 . (5)

For the estimator in (5), however, the regularization parameter λ significantly
affects the estimation performance and the parameter should be carefully
selected. Although the cross-validation technique can be used for the choice of
λ, it increases the computational cost of the estimation. Even if we use several
approximation techniques [32, 52, 57, 61], we need to obtain the estimate
x̂(λ) for various values of λ to choose its appropriate value. Moreover, these
sparsity-aware methods only consider the sparse unknown vector, and the
extension of other non-sparse structured vectors is not trivial.

Another LASSO-based method has also been proposed in [6] on the basis
of the analysis of the AMP algorithm [5, 26]. The estimate by AMP-LASSO
can be written as

σ̂2
v = ∆τ̂2 − R̂(τ̂), (6)

where τ̂ =
√
N ∥y −Ax̂(λ)∥2 /(M − ∥x̂(λ)∥0) and

R̂(τ) = τ2
(
2 ∥x̂(λ)∥0

N
− 1

)
+

N
∥∥∥A⊤ (y −Ax̂(λ))

∥∥∥2
2

(M − ∥x̂(λ)∥0)
2 (7)

(under Assumption 1 below). The estimate in (6) is consistent and hence the
noise variance is well predicted in large-scale problems. Simulation results in [6]
show that the estimation performance of AMP-LASSO is better than several
conventional methods such as [28, 63]. For small-scale problems, however, we
need to choose an appropriate value of the regularization parameter in LASSO
to obtain a good estimate of the noise variance. Moreover, the extension to
the structure other than sparsity is not discussed explicitly.

Non-asymptotic and asymptotic analyses have been discussed for the
residual ∥y −Ax̂(λ)∥22 of the LASSO problem in [48]. Moreover, the tuning



Noise Variance Estimation Using Asymptotic Residual in Compressed Sensing 7

method for the regularization parameter λ has been proposed on the basis of
the analysis. However, the regularizer other than the ℓ1 regularizer has not
been considered explicitly in the paper. Furthermore, for the tuning of the
regularization parameter, we need to solve the optimization problem for many
values of λ, which increases the computational cost.

Although we focus on the case with measurement matrices A composed
of independent and identically distributed (i.i.d.) Gaussian elements in this
paper, the performance analyses for non-i.i.d. cases have been discussed in
several papers, e.g., [8, 14]. Especially, in [8], the out-of-sample error has
been analyzed for general regularizers, including the ℓ1 regularizer and the
elastic-net regularizer. The noise variance estimation has also been considered
in [8], and the estimate is equivalent to that of AMP-LASSO in the case with
i.i.d. Gaussian distribution.

4 Asymptotic Residual for ℓ1 Optimization

In this section, by using the CGMT framework [65, 69], we provide an asymp-
totic result for the ℓ1 optimization in (4), which will be used in the proposed
noise variance estimation in Section 5. Although a part of the result can
be derived from the general CGMT-based analysis in [65], we here derive
the explicit formula required in the proposed method. We characterize the
asymptotic property of the residual ∥y −Ax̂(λ)∥22 in the following. It should
be noted that a similar analysis has been discussed in [48] for the LASSO
problem, though we use more general notation for the regularizer in this paper
and actually consider a different problem in Section 6.

In the analysis, we use the following assumption.

Assumption 1. The unknown vector x is composed of i.i.d. random vari-
ables with a distribution pX(x) which have some mean and variance. The
measurement matrix A is composed of i.i.d. Gaussian random variables with
zero mean and variance 1/N . The noise vector v is also Gaussian with mean
0 and covariance matrix σ2

vI.

In Assumption 1, we assume the Gaussian measurement matrix because it
is required to apply CGMT in a rigorous manner. However, the universality
[6, 53, 54] of random matrices suggests that the analytical result also holds
for other i.i.d. measurement matrix. In fact, the simulation result in [3] shows
that the result of the CGMT-based analysis is valid even for the measurement
matrix from Bernoulli or Laplace distribution. Hence, it would be possible to
utilize our theoretical results for such cases in practice.

By using the CGMT framework [65], we provide the asymptotic property
of the residual ∥y −Ax̂(λ)∥22 in the following. It should be noted that the
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standard CGMT-based analysis gives the asymptotic error performance such
as MSE, which is different from the residual analyzed here. In the theorem,
we consider the large system limit N,M → ∞ with the fixed ratio ∆ = M/N ,
which we simply denote as N → ∞ in this paper.

Theorem 1. We assume that Assumption 1 is satisfied. We also assume
that the optimization problem minα>0 maxβ≥0 F (α, β) has a unique optimizer
(α∗, β∗)1, where

F (α, β) =
αβ

√
∆

2
+

σ2
vβ

√
∆

2α
− 1

2
β2 − αβ

2
√
∆

+
β
√
∆

α
E

[
env αλ

β
√

∆
f

(
X +

α√
∆
G

)]
(8)

and X ∼ pX, G ∼ pG. Then, the asymptotic value of the objective function
in (4) and the residual for the optimizer x̂(λ) are given by

plim
N→∞

1

N

(
1

2
∥y −Ax̂(λ)∥22 + λf (x̂(λ))

)
= F (α∗, β∗) , (9)

plim
N→∞

1

N
∥y −Ax̂(λ)∥22 = (β∗)2, (10)

respectively.

Proof. See Section A.1.

To compute α∗ and β∗ in Theorem 1, we need to optimize the function
F (α, β) in (8). Fortunately, for some distribution pX(x), we can write the
expectation E

[
env αλ

β
√

∆
f

(
X + α√

∆
G
)]

in (8) with an explicit formula. For
example, when the distribution of the unknown vector is given by the Bernoulli-
Gaussian distribution as

pX(x) = p0δ0(x) + (1− p0)pG(x), (11)

the expectation can be easily computed with the PDF and CDF of the stan-
dard Gaussian distribution, where δ0(·) denotes the Dirac delta function and
p0 ∈ (0, 1). For details of the derivation, see Section A.2. For the Bernoulli
distribution given by

pX(x) = p0δ0(x) + (1− p0)δ0(x− 1), (12)

1The uniqueness can be proven under some conditions. For example, if the set of
minimizers of the problem over α is bounded, the uniqueness of α∗ is guaranteed. However,
it would be difficult to eliminate the assumption completely in the general case. For detailed
discussions, see [65, Remark 19].
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Figure 1: Objective function and residual for the optimizer (N = 100, M = 90, p0 = 0.8,
λ = 0.001, pX(x): Bernoulli-Gaussian distribution).

we can also obtain the explicit form of the expectation in a similar way. In
such case, we can easily optimize F (α, β) by line search techniques such as
ternary search and golden-section search [44]. When the exact computation of
the expectation is difficult, we can approximate it by the Monte Carlo method
with many realizations of X and G.

From Theorem 1, we can predict the optimal value of the objective function
and the residual in the empirical reconstruction for compressed sensing prob-
lems. Figure 1 shows the comparison between the empirical values and their pre-
diction, where N = 100 and M = 90. The distribution of the unknown vector
x is Bernoulli-Gaussian in (11) with p0 = 0.8. In the figure, ‘empirical’ means
the empirical value of the objective function 1

N

(
1
2 ∥y −Ax̂(λ)∥22 + λf (x̂(λ))

)
and the residual 1

N ∥y −Ax̂(λ)∥22, where x̂(λ) is obtained by the ℓ1 opti-
mization in (4) with λ = 0.001. The empirical results are averaged over
100 independent trials. For the reconstruction, we use the LASSO solver of
scikit-learn [56]. In Figure 1, we also plot the asymptotic value obtained from
Theorem 1 as ‘prediction’. We can see that the empirical value agrees well
with the theoretical prediction for both the objective function and the residual.

5 Proposed Noise Variance Estimation

In this section, we propose an algorithm for the estimation of the noise variance
σ2
v on the basis of the asymptotic analysis in Section 4.
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5.1 Asymptotic Residual Matching

The proposed method uses the fact that the residual Res (x̂(λ)) := 1
N

∥y −Ax̂(λ)∥22 can be approximated by (β∗)
2 from (10) when N and M are

sufficiently large. Since the function F (α, β) to be optimized depends on
the regularization parameter λ, the noise variance σ2

v, and the probability
of zero p0, the value of the optimal β∗ can be considered as a function of
(λ, σ2

v, p0). To explicitly show the dependency, we denote β∗ as β∗(λ, σ2
v, p0)

hereafter. On the other hand, we can calculate the empirical estimate x̂(λ)
and the corresponding residual Res (x̂(λ)) from (4) without using σ2

v in the
reconstruction. We can thus estimate the noise variance by choosing σ2 which
minimizes the difference

∣∣β∗(λ, σ2, p̂0)
2 − Res (x̂(λ))

∣∣, where p̂0 is the estimate
of the probability p0. Hence, the proposed estimate of the noise variance is
given by

σ̂2
v = arg min

σ2>0

∣∣β∗(λ, σ2, p̂0)
2 − Res (x̂(λ))

∣∣ . (13)

In the proposed optimization problem (13), we need the estimate of the
probability p0 when p0 is unknown. In this paper, we use the rough estimate
given by p̂0 = 1 − ∥y∥22 /M on the basis of [42, Eq. (10)], which means
that N

M ∥y∥22 is an estimate of ∥x∥22 for the measurement matrix satisfying
Assumption 1. For simplicity, we here assume that the second moment of the
non-zero value of X ∼ pX is 1 as in (11) and (12). The problem in (13) is
a scalar optimization problem over σ2, and hence the optimal value can be
obtained by line search methods such as the ternary search and the golden-
section search [44].

Remark 1 (Advantage of Using Residual of ℓ1 Optimization). The proposed
estimation method uses the asymptotic result for the residual of the ℓ1 opti-
mization problem. Although we can use the asymptotic value of the objective
function in (9) for the noise variance estimation, the performance would be
worse in that case. This is because the line of the objective function is flat
especially when the noise variance σ2

v is small as shown in Figure 1. The
conventional SNR estimation method in [62] has the same problem because it
utilizes the asymptotic result for the objective function of the ridge regularized
least squares. In fact, the simulation results in [62] show that the estima-
tion performance becomes worse when the linear system is underdetermined.
Another reason for the performance degradation is that the reconstruction
performance of the ridge regularized least squares severely degrades for under-
determined problems like compressed sensing. On the other hand, as shown
in Figure 1, the residual of the ℓ1 optimization decreases more rapidly than
the objective function as the noise variance σ2

v decreases. We thus conclude
that we should use not the objective function but the residual for the noise
variance estimation.
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5.2 Initialization of λ

Since the prediction of the residual from Theorem 1 is not exactly accurate
for finite N , the estimation performance of the proposed optimization prob-
lem (13) depends on the parameter λ. Figure 2 shows the asymptotic residual
β∗(λ, σ2, p0)

2 for different values of λ when ∆ = 0.8 and p0 = 0.9. From the
figure, we can see that the slope of the line depends on λ. In the case of
Figure 2, it is difficult to distinguish the noise variance between 10−6 and
10−4 if we use the regularization parameter λ = 0.1 because the line of the
asymptotic residual with λ = 0.1 is flat in the range. Moreover, if the empirical
value of the residual is smaller than the line unfortunately, there might be no
positive candidate of σ2

v. From the above discussion, it would be better to
use λ = 0.005 when the true noise variance σ2

v is small. On the other hand,
when σ2

v = 10−1, for example, the choice λ = 0.1 seems the best of the four
in Figure 2 because it has the steepest slope around σ2

v = 10−1. We need to
choose an appropriate value of λ to achieve better estimation performance.

Figure 2: Asymptotic residual of the ℓ1 optimization (∆ = 0.8, p0 = 0.9).

To tackle this problem, we propose an initialization method based on the
max-min approach. We define the quantity

D(λ, σ2, p̂0) =
β∗ (λ, (1 + ε)σ2, p̂0

)2
β∗ (λ, σ2, p̂0)

2 , (14)

which represents how much β∗ increases when the value of σ2 increases to
(1+ε)σ2 (ε > 0). Since the scale of β∗ is quite different for different λ and σ2 as
shown in Figure 2, we take the ratio of β∗ (λ, (1 + ε)σ2, p̂0

)2 to β∗ (λ, σ2, p̂0
)2.

The larger D(λ, σ2, p̂0) is, the more rapidly (β∗)
2 increases along with the
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increase of σ2. Hence, from the discussion of the previous paragraph, λ should
be chosen so that D(λ, σ2) becomes large. Since the noise variance σ2 is
unknown of course, we here adopt the max-min approach to obtain the proper
regularization parameter as

λprop(p̂0) = arg max
0≤λ≤λmax

{
min
σ2∈Σ

D(λ, σ2, p̂0)

}
, (15)

where λmax restricts the range of λ and Σ denotes the set of the candidate
values for the noise variance, e.g., Σ =

{
10−5, 10−3, 10−1

}
. Note that we do

not require that the true noise variance σ2
v is included in Σ. From (15), we can

choose a reasonable regularization parameter λ in the sense that it maximizes
D(λ, σ2, p̂0) for the worst σ2 ∈ Σ, without the empirical reconstruction of x.

5.3 Iterative Estimation

To improve the performance, we also propose an iterative approach as in
Algorithm 1. We firstly compute the initial regularization parameter λ0 =
λprop(p̂0) with (15), and then iterate the updates of the estimated noise variance
σ̂2
v,t and the regularization parameter λt, where t denotes the iteration index.

At the t-th iteration, the estimate of the noise variance σ̂2
v,t is calculated

by solving (13) with λ = λt−1. Using the estimate σ̂2
v,t, we update the

regularization parameter as

λt = arg max
0≤λ≤λmax

D(λ, σ̂2
v,t, p̂0). (16)

Algorithm 1 Proposed Asymptotic Residual Matching (ARM)

Input: measurement vector y, measurement matrix A, estimated probability
p̂0

Output: estimated noise variance σ̂2
v,T

1: λ0 = arg max
0≤λ≤λmax

{
min
σ2∈Σ

D(λ, σ2, p̂0)

}
2: for t = 1 to T do
3: Solve (4) with λ = λt−1 and obtain x̂(λt−1).

4: Res (x̂(λt−1)) =
1

N
∥y −Ax̂(λt−1)∥22

5: σ̂2
v,t = arg min

σ2>0

∣∣∣β∗ (λt−1, σ
2, p̂0

)2 − Res (x̂(λt−1))
∣∣∣

6: λt = arg max
0≤λ≤λmax

D
(
λ, σ̂2

v,t, p̂0
)

7: end for



Noise Variance Estimation Using Asymptotic Residual in Compressed Sensing 13

to obatin a good regularization parameter for σ̂2
v,t. If the estimate σ̂2

v,t is closer
to the true value σ2

v than σ̂2
v,t−1, the new parameter λt is expected to be better

than the preivious parameter λt−1. After T iterations, the proposed ARM in
Algorithm 1 outputs the final estimate of the noise variance σ̂2

v,T .

6 Extension to Other Structured Vectors

Although we have focused on the reconstruction of the sparse vector in the
previous sections, the proposed approach using the asymptotic residual can
also be applied to the reconstruction of other non-sparse structured vectors.
For example, the noise variance estimation with the proposed ARM approach
can be utilized in the reconstruction of discrete-valued vectors because the
CGMT-based analysis has been applied to the problem [36, 67]. In this
section, we mainly describe the noise variance estimation for the binary vector
reconstruction as the simplest example.

In the binary vector reconstruction, we estimate the unknown binary vector
xb ∈ {1,−1}N from its linear measurements yb = Axb + v ∈ RM . In this
seciton, we consider the unknown vector xb with the distribution

pX,b(x) =
1

2
δ0(x+ 1) +

1

2
δ0(x− 1). (17)

Such problem often appears in several communication systems, such as the
MIMO signal detection [15, 74] and the multiuser detection [72]. As in the
sparse vector reconstruction discussed in the previous sections, we require the
information on the noise variance to obtain better performance with various
methods [20, 21, 33, 59] for the binary vector reconstruction.

A simple approach for the binary vector reconstruction is the box relaxation
method [64, 67, 75], which solves the optimization problem

x̂b = arg min
s∈[−1,1]N

{
1

2
∥yb −As∥22

}
. (18)

Using the indicator function

fb(s) =

{
0 (s ∈ [−1, 1]

N
)

∞ (s /∈ [−1, 1]
N
)
, (19)

we can rewrite the box relaxation problem in (18) as

x̂b = arg min
s∈RN

{
1

2
∥yb −As∥22 + fb(s)

}
. (20)
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The asymptotic analysis in Theorem 1 can be applied to the optimization
problem in (20). The following corollary shows the result of the analysis, which
can be proven in the same way as Theorem 1.

Corollary 1. We assume that Assumption 1 is satisfied. We also assume
that the optimization problem minα>0 maxβ≥0 Fb(α, β) has a unique optimizer
(α∗

b, β
∗
b), where

Fb(α, β) =
αβ

√
∆

2
+

σ2
vβ

√
∆

2α
− 1

2
β2 − αβ

2
√
∆

+
β
√
∆

α
E

[
env α

β
√

∆
fb

(
Xb +

α√
∆
G

)]
(21)

and Xb ∼ pX,b, G ∼ pG. Then, the asymptotic value of the objective function
in (18) and the residual for the optimizer x̂b are given by

plimN→∞
1

N

(
1

2
∥yb −Ax̂b∥22

)
= Fb (α

∗
b, β

∗
b) , (22)

plimN→∞
1

N
∥yb −Ax̂b∥22 = (β∗

b)
2, (23)

respectively.

Thus, we can estimate the noise variance in the binary vector reconstruction
by using the proposed ARM. It should be noted that we do not require the
tuning of the regularization parameter in this case because the optimization
problem in (18) does not contain any regularization parameter. Hence, the
estimate of the noise variance can be obtained by the non-iterative approach
as shown in Algorithm 2. Note that the information of the noise variance is
useful for other reconstruction methods such as [20, 21, 33, 59], though the
box relaxation does not include any parameter to be tuned.

Algorithm 2 Proposed ARM for binary vector reconstruction
Input: measurement vector yb, measurement matrix A
Output: estimated noise variance σ̂2

v

1: Solve (18) and obtain x̂b.

2: Res(x̂b) =
1

N
∥yb −Ax̂b∥22

3: σ̂2
v = arg min

σ2>0

∣∣∣β∗
b

(
σ2
)2 − Res(x̂b)

∣∣∣
The left hand sides of (22) and (23) differ only by a factor of two because

fb(x̂b) = 0. It might be interesting to investigate the relation between the
right-hand sides of (22) and (23).



Noise Variance Estimation Using Asymptotic Residual in Compressed Sensing 15

The proposed ARM can also be applied to the binary sparse vector recon-
struction and more general discrete-valued vector reconstruction [3, 36, 51]
by using Theorem 1 with the corresponding distribution pX and the proper
regularizer f(·).

7 Simulation Results

In this section, we show some simulation results to demonstrate the performance
of the proposed noise variance estimation. In the simulations, we compare the
following methods.

• ARM : the noise variance estimation with the proposed ARM in Algo-
rithms 1 or 2. For the optimization of σ2 in (13) and λ in (15), (16),
we use the solver scipy.optimize.minimize_scalar for scalar minimization
in scipy [73]. The set Σ in (15) is fixed as Σ =

{
10−5, 10−3, 10−1

}
and

λmax = 1 in the simulations. The value of ε in (14) is set as ε = 0.1.

• AMP-LASSO : the estimation method using AMP-LASSO given by (6) [6].
Since the tuning of the regularization parameter for AMP-LASSO has
not been discussed in the paper, we use the proposed value λprop(p̂0)
unless otherwise stated.

• scaled residual : the estimation method using the scaled residual given
by (5).

• ridge regularization-based method : the conventional SNR estimation
method in [62] based on the asymptotic analysis of ridge regularized least
squares. The regularization parameters are the same as those in [62].

• ML (oracle): the maximum likelihood (ML) approach when the true
sparse vector x is known. The estimate of σ2

v is given by σ̂2
v = 1

M ∥y −Ax∥22.
Note that x is unknown in the other methods.

In all methods, the noise variance is estimated in the range [10−6, 1]. The
measurement matrix A and the noise vector v satisfy Assumption 1 in the
simulations.

7.1 Sparse Vector Reconstruction

We first examine the effect of the regularization parameter λ in the noise
variance estimation for the sparse vector reconstruction. Figure 3 shows
the estimate of the noise variance σ̂2

v versus the regularization parameter
λ for N = 200 and ∆ = 0.7. The distribution of the unknown vector is
the Bernoulli-Gaussian distribution in (11) with p0 = 0.9. The true noise
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Figure 3: Estimated σ̂2
v versus λ (N = 200,∆ = 0.7, p0 = 0.9, pX(x): Bernoulli-Gaussian

distribution).

Figure 4: CDF of estimated σ̂2
v (N = 200, ∆ = 0.6, p0 = 0.9, pX(x): Bernoulli-Gaussian

distribution).

variance is set as σ2
v = 0.01, 0.001, and 0.0001 in Figures 3(a), 3(b) and 3(c),

respectively. To solve (4) in ARM, AMP-LASSO, and scaled residual, we use
the LASSO solver of scikit-learn [56]. The estimated value is averaged over
100 independent trials. In the figures, the black vertical line shows the value of
the proposed regularization parameter λprop(p0) with the true probability p0.
Although the estimation performance depends on λ, the proposed regularization
parameter can achieve good performance in both ARM and AMP-LASSO for
σ2
v = 0.01, 0.001, and 0.0001. We can also see that the performance of the

scaled residual is worse than the other methods.
Figure 4 shows the histogram of the empirical CDF of the estimated σ̂2

v,
where N = 200, ∆ = 0.6, and p0 = 0.9. The histogram is obtained from
1000 independent trials. Since the true noise variance is set to σ2

v = 0.01 in
Figure 4(a), it is better that the CDF rapidly increases around σ2

v = 0.01.
From the figure, we can see that the CDF of the proposed ARM with T = 3
increases around σ2

v = 0.01 more rapidly than AMP-LASSO and the ridge
regularization-based method. This means that the proposed method obtains
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Figure 5: Estimated σ̂2
v versus σ2

v (N = 200, ∆ = 0.6, p0 = 0.9, pX(x): Bernoulli-Gaussian
distribution).

the estimate near the true value with a higher probability. The figure also
shows that the performance of the proposed ARM improves as the number
of iterations T increases. Figure 4(b) shows the performance for σ2

v = 0.001,
where the proposed ARM and AMP-LASSO achieves similar performance.
However, it should be noted that we use the proposed regularization parameter
λprop(p̂0) for AMP-LASSO. The performance of AMP-LASSO degrades if we
use an inappropriate parameter value as shown in Figure 3. We can see that
the proposed ARM with T = 2, 3 achieves a similar performance for both
σ2
v = 0.01 and σ2

v = 0.001, whereas the performance of AMP-LASSO and the
ridge regularization-based method largely depends on the true value of σ2

v.
We then evaluate the estimation performance for a wide range of noise

variances. In Figure 5, we plot the estimate σ̂2
v versus its true value σ2

v when
N = 200, ∆ = 0.6, and p0 = 0.9. The performance is obtained by averaging
the result of 100 independent trials. The figure shows that the proposed ARM
with T = 3 can achieve good estimation performance close to ‘ML (oracle)’
for the whole range of σ2

v in the figure. On the other hand, the performance
of AMP-LASSO and the ridge regularization-based method degrades for the
large σ2

v and small σ2
v, respectively.

Next, we demonstrate the reconstruction performance of the optimization
problem in (4) with the proposed noise variance estimation. Figure 6 shows the
CDF of the MSE 1

N ∥x̂− x∥22 (x̂: estimate of x) obteind with 1000 independent
trials, where ∆ = 0.7, p0 = 0.8, and σ2

v = 0.001. The dimension of the
unknown vector is set as N = 100, 200, and 500 in Figures 6(a), 6(b), and 6(c),
respectively. In the figures, ‘LASSO with ARM’ shows the performance of the
optimization problem (4) with the parameter tuning by the proposed ARM.
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Figure 6: CDF of MSE (∆ = 0.7, p0 = 0.8, σ2
v = 0.001, pX(x): Bernoulli-Gaussian

distribution).

Specifically, we first obtain the estimate of the noise variance σ̂2
v with the

proposed ARM, and then calculate the optimal value of λ in terms of asymptotic
MSE by using the estimated σ̂2

v and p̂0 via the CGMT framework. For
comparison, we also plot the performance of LASSO with the proposed initial
regularization parameter λ = λprop(p̂0) in (15) as ‘LASSO (λ = λprop(p̂0))’.
Moreover, we show the performance of the AMP algorithm with the optimal
thresholding parameters [49] as ‘AMP’, for which the distribution of the
unknown vector pX is assumed to be perfectly known. In addition, ‘OMP’
denotes the performance of the OMP algorithm with the tolerance of 10−3,
which is implemented by using the solver of scikit-learn. In the figure, the
vertical black line shows the asymptotically optimal MSE, which can be
obtained by the CGMT or AMP framework. From the figure, we can see that
LASSO outperforms the other methods especially when N is small. On the
other hand, the CDF of the AMP algorithm is far from one when N = 100
and N = 200, which means that the AMP algorithm results in a large MSE or
even diverges. This is because the large system limit is usually assumed in the
AMP framework to obtain the low-complexity algorithm and the insightful
analysis. Since the AMP algorithm achieves similar performance to LASSO
when N = 500, it would be a suitable candidate for large-scale problems. The
performance of the OMP algorithm is worse than the other methods, and hence
somehow we need to choose an appropriate tolerance parameter. These results
show that the proposed noise variance estimation enables us to obtain good
reconstruction performance even when the true noise variance is unknown and
the problem size is relatively small.

Figure 7 shows the CDF of the MSE obtained with 1000 independent trials,
where ∆ = 0.7, p0 = 0.8, and σ2

v = 0.005. We obsereve that the performance
of LASSO with λ = λprop(p̂0) degrades compared to the case with Figure 6.
On the other hand, LASSO with ARM can achieve good performance even in
this case, which shows the effectiveness of the noise variance estimation for
the parameter tuning.
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Figure 7: CDF of MSE (∆ = 0.7, p0 = 0.8, σ2
v = 0.005, pX(x): Bernoulli-Gaussian

distribution).

Figure 8: CDF of estimated σ̂2
v (N = 200, ∆ = 0.8, σ2

v = 0.01, pX,b(x): Binary distribution).

7.2 Binary Vector Reconstruction

We then investigate the performance when the unknown vector is a binary
vector with the distribution in (17). Figure 8 shows the histogram of the
empirical CDF of the estimated σ̂2

v when N = 200, ∆ = 0.8, and σ2
v = 0.01.

In the simulation, we use ADMM [10, 18, 27, 31] to solve the optimization
problem (18). Since the estimate by AMP-LASSO in (6) cannot be directly
applied to the binary vector reconstruction, we compare the performance of the
proposed method with the ridge-regularization based method [62]. As is the
case with the Bernoulli-Gaussian distribution in Figure 4, the proposed ARM
in Algorithm 2 achieves better performance than the ridge regularization-based
method.

Finally, we evaluate the estimation performance versus the true noise
variance σ2

v. Figure 9 shows the performance when N = 200 and ∆ = 0.7.
The performance is obtained by averaging the result of 100 independent trials.
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Figure 9: Estimated σ̂2
v versus σ2

v (N = 200, ∆ = 0.7, pX,b(x): Binary distribution).

We observe that the proposed method achieves good estimation performance
for a wide range of noise variances as is the case with Figure 5. We thus
conclude that the proposed noise variance estimation is effective for the binary
distribution pX,b(x).

8 Conclusion and Future Work

In this paper, we have proposed the noise variance estimation algorithm for
compressed sensing with the Gaussian measurement matrix. The proposed
ARM algorithm utilizes the asymptotic property of the estimate obtained
by the ℓ1 optimization problem. Specifically, we estimate the noise variance
by choosing the value whose corresponding asymptotic residual matches the
empirical residual obtained by the actual reconstruction. The main advantages
of the proposed approach can be summarized as follows:

• The proposed method can estimate a wide range of noise variances even
in underdetermined problems.

• We can design the choice of the regularization parameter λ on the basis
of the asymptotic results.

• The proposed idea using the asymptotic residual can be extended for the
reconstruction of some non-sparse structured vectors other than sparse
ones as shown in Section 6.

• The proposed methods can achieve good performance even when the
problem size is relatively small.



Noise Variance Estimation Using Asymptotic Residual in Compressed Sensing 21

Simulation results demonstrate that the proposed method can achieve better
estimation performance than some conventional methods. Moreover, by using
the estimate of the noise variance, we can choose an appropriate regularization
parameter even when the noise variance is unknown. We have shown that
the LASSO with the proposed noise variance estimation can achieve better
performance than the AMP algorithm for small-scale problems.

Compared to AMP-LASSO in (6) and the scaled residual method in (5),
the procedure of the proposed ARM is slightly complicated. For example, we
need to estimate the probability p0 of the unknown vector and solve some
scalar optimization problems in the estimation. Although we have focused on
the evaluation via computer simulations in this paper for the above reason, the
proof of the consistency of the proposed method is important as a theoretical
justification. Moreover, it would be an interesting research direction to apply
the proposed idea for the choice of the regularization parameter λ to the
AMP-based methods. Although we have focused on the compressed sensing
problem from the perspective of signal processing in this paper, the application
of the proposed approach to statistics would also be a fascinating topic. The
extension of the proposed method to the case with unknown distribution pX
is also an important research direction. One possible approach is to iterate
the estimation of σ2 and x until the convergence, where we approximate the
distribution pX with the empirical distribution of the estimated vector x̂.

Extensions of the proposed approach to some variants of LASSO (e.g.,
constrained version) could be an interesting issue. It would be possible to
apply the idea of the proposed approach to the case with other structured
signals or other optimization problems because CGMT can be used for various
optimization problems [43, 65–68]. Since CGMT has also been applied to
an optimization problem in the complex-valued domain [1], the extension
to the complex-valued case could also be an interesting research direction.
The generalization beyond the setting of Assumpsion 1, e.g., partial Fourier
measurements and non-i.i.d. measurement matrices [8, 14], would be also
beneficial and left as an open problem. Application of conventional approaches
as in [8] to binary vector reconstruction and the fair comparison with the
proposed method would be important to reveal the advantage of each method.

A Appendix

A.1 Proof of Theorem 1

In this section, we give the proof of Theorem 1. Although the procedure of
the proof partly follows some CGMT-based analyses (e.g., [36, 65, 67]), we
here show the sketch of the proof to derive the explicit formula in Theorem 1.
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A.1.1 CGMT

We firstly summarize CGMT [65, 69] before the proof of Theorem 1. CGMT
associates the following primary optimization (PO) and auxiliary
optimization (AO).

(PO) : Φ(G) = min
w∈Sw

max
u∈Su

{
u⊤Gw + ξ(w,u)

}
(A1)

(AO) : ϕ(g,h) = min
w∈Sw

max
u∈Su

{
∥w∥2 g

⊤u− ∥u∥2 h
⊤w + ξ(w,u)

}
(A2)

Here, G ∈ RK×L, g ∈ RK , and h ∈ RL are composed of i.i.d. standard
Gaussian variables. The constraint sets Sw ⊂ RL and Su ⊂ RK are assumed to
be closed compact. The function ξ(·, ·) is a continuous convex-concave function
on Sw × Su.

As in the following theorem, we can relate the optimal costs Φ(G), ϕ(g,h)
and the optimizer ŵΦ(G) of (PO) (For more details, see [65, Theorem 3]
and [67, Theorem IV.2]). Intuitively, the theorem enables us to analyze (AO)
instead of (AO).

Theorem 2 (CGMT).

1. For all µ ∈ R and c > 0, we have

Pr(|Φ(G)− µ| > c) ≤ 2Pr(|ϕ(g,h)− µ| ≥ c). (A3)

2. Let S be a open set in Sw and Sc = Sw \ S. Moreover, we denote
the optimal cost of (AO) with the constraint w ∈ Sc by ϕSc(g,h). If
there exists constants ϕ̄ and η (> 0) such that ϕ(g,h) ≤ ϕ̄ + η and
ϕSc(g,h) ≥ ϕ̄+ 2η with probability approaching 1 as L → ∞, we then
have

lim
L→∞

Pr(ŵΦ(G) ∈ S) = 1, (A4)

where L → ∞ means that K and L go to infinity with a fixed ratio.

A.1.2 (PO) Problem

To obtain the result of Theorem 1 by using CGMT, we rewrite the ℓ1 optimiza-
tion problem (4) as (PO) problem. We firstly define the error vector u = s−x
and rewrite (4) as

Φ∗
N := min

u∈RN

1

N

{
1

2
∥Au− v∥22 + λf(x+ u)

}
, (A5)
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where the objective function is normalized by N . From [65, Lemma 5], we can
introduce a compact set Su := {u | ∥u∥2 ≤ Cu} with a constant Cu (> 0) as

Φ∗
N = min

u∈Su

1

N

{
1

2
∥Au− v∥22 + λf(x+ u)

}
. (A6)

Since we have

1

2
∥Au− v∥22 = max

w∈RM

{√
Nw⊤(Au− v)− N

2
∥w∥22

}
, (A7)

the optimization problem can be represented as

Φ∗
N = min

u∈Su

max
w∈RM

{
1

N
w⊤

(√
NA

)
u− 1√

N
v⊤w − 1

2
∥w∥22 +

λ

N
f(x+ u)

}
.

(A8)

Moreover, by using [65, Lemma 6], we can introduce a sufficiently large
constraint set Sw := {w | ∥w∥2 ≤ Cw} (Cw > 0) which will not affect the
optimization problem with high probability as

Φ∗
N = min

u∈Su

max
w∈Sw

{
1

N
w⊤

(√
NA

)
u− 1√

N
v⊤w − 1

2
∥w∥22 +

λ

N
f(x+ u)

}
.

(A9)

In the standard analysis based on CGMT, the minimization problem for the
error vector u is analyzed. In our proof, however, we analyze the optimal
value of w to obtain the result for the residual. We thus exchange the order
of min-max from the minimax theorem and change the sign of the objective
function to obtain

−Φ∗
N = min

w∈Sw

max
u∈Su

{
1

N
w⊤

(√
NA

)
u+

1√
N

v⊤w +
1

2
∥w∥22 −

λ

N
f(x+ u)

}
,

(A10)

where we can keep the sign of the first term 1
Nw⊤(

√
NA)u because the

distribution of the matrix A is zero mean Gaussian and sign independent. The
optimization problem (A10) is the form of (PO) normalized by N . Note that
the optimal value of w can be written as

ŵ
(PO)
N =

1√
N

(
Aû

(PO)
N − v

)
(A11)

=
1√
N

(Ax̂(λ)− y) (A12)

from (A7), where û
(PO)
N = x̂(λ)− x is the optimal value of u in (PO).
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A.1.3 (AO) Problem

We then analyze the corresponding (AO) problem. Since the procedure is
similar to [36], we omit some details in the analysis. The (AO) problem
corresponding to (A10) is given by

−ϕ∗
N := min

w∈Sw

max
u∈Su

{
1

N
(∥w∥2 g

⊤u− ∥u∥2 h
⊤w)

+
1√
N

v⊤w +
1

2
∥w∥22 −

λ

N
f(x+ u)

}
. (A13)

Since the objective function in (A13) is not convex-concave, the order of
min-max cannot be exchanged in general. As described in [65, Appendix
A], however, we can flip the order in the asymptotic setting because the
corresponding (PO) satisfies the condition for the min-max theorem. Hence,
we exchange the order of min-max without detailed explanations hereafter.
By exchanging the order of min-max and changing the sign of the objective
function, we obtain

ϕ∗
N = min

u∈Su

max
w∈Sw

{
− 1

N
(∥w∥2 g

⊤u− ∥u∥2 h
⊤w)

− 1√
N

v⊤w − 1

2
∥w∥22 +

λ

N
f(x+ u)

}
. (A14)

Taking advantage of the fact that both h and v are Gaussian, we can rewrite
∥u∥2√

N
h− v as

√
∥u∥2

2

N + σ2
v h, where we use the slight abuse of notation h as

i.i.d. standard Gaussian variables. Using this technique, we can set ∥w∥2 = β
and obtain the equivalent optimization problem

ϕ∗
N = min

u∈Su

max
β≥0

{√
∥u∥22
N

+ σ2
v

β ∥h∥2√
N

− 1

N
βg⊤u− 1

2
β2 +

λ

N
f(x+ u)

}
.

(A15)

To further rewrite the optimization problem (A15), we use the following
identity

χ = min
α>0

(
α

2
+

χ2

2α

)
(A16)
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for χ =

√
∥u∥2

2

N + σ2
v and obtain

min
α>0

max
β≥0

{
αβ

2

∥h∥2√
N

+
σ2
vβ

2α

∥h∥2√
N

− 1

2
β2

− 1

N

αβ ∥g∥22
2

√
N

∥h∥2
+

β

α

∥h∥2√
N

1

N

N∑
n=1

min
un∈R

Jn(un)

}
, (A17)

where we define

Jn(un) =
1

2

(
un −

√
N

∥h∥2
αgn

)2

+
αλ

β

√
N

∥h∥2
f(xn + un). (A18)

Here, un and gn are the n-th element of u and g, respectively. Note that
we have exchanged the order of min-max from (A15) with (A16) to (A17) by
using the fact that the objective function is convex for α,u and concave for β
(For a similar and detailed discussion, see [35, Eq. (57)]). Since we have

min
un∈R

Jn(un) = envαλ
β

√
N

∥h∥2
f

(
xn +

√
N

∥h∥2
αgn

)
, (A19)

the (AO) problem can be written as

ϕ∗
N = min

α>0
max
β≥0

FN (α, β), (A20)

where

FN (α, β) =
αβ

2

∥h∥2√
N

+
σ2
vβ

2α

∥h∥2√
N

− 1

2
β2 − 1

N

αβ ∥g∥22
2

√
N

∥h∥2

+
β

α

∥h∥2√
N

1

N

N∑
n=1

envαλ
β

√
N

∥h∥2
f

(
xn +

√
N

∥h∥2
αgn

)
. (A21)

We denote the optimal values of α and β in the (AO) problem by α∗
N and β∗

N ,
respectively.

A.1.4 Applying CGMT

By using the above analysis, we confirm (9) in Theorem 1. As N → ∞,
FN (α, β) in (A21) converges pointwise to F (α, β) in (8). Letting ϕ∗ =

F (α∗, β∗) be the optimal value of F (α, β), we can obtain −ϕ∗
N

P−→ −ϕ∗ and
(α∗

N , β∗
N )

P−→ (α∗, β∗) as N → ∞ by a similar approach to the proof of [67,
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Lemma IV. 1]. Hence, by setting µ = −ϕ∗ in (A3) of Theorem 2, we have
limN→∞ Pr(|−Φ∗

N − (−ϕ∗)| > c) = 0 for any c > 0, which means (9).
We can also demonstrate the convergence of the residual in (10) from the

second statement in Theorem 2. We denote the optimal value of w in (A13)
by ŵ

(AO)
N and define

S =

{
z ∈ RM

∣∣∣∣∣ ∣∣∣∥z∥22 − (β∗)
2
∣∣∣ < ε

}
. (A22)

We then have ŵ
(AO)
N ∈ S with probability approaching 1 for any ε (> 0)

because
∥∥∥ŵ(AO)

N

∥∥∥
2
= β∗

N from the definition of β and β∗
N

P−→ β∗. Considering
the strong concavity of the objective function in (A15) over β, we can see that
there exists η (> 0) satisfying the condition in Theorem 2 with ϕ̄ = −ϕ∗. We
thus have limN→∞ Pr

(
ŵ

(PO)
N ∈ S

)
= 1, i.e.,

plimN→∞

∥∥∥ŵ(PO)
N

∥∥∥2
2
= (β∗)2. (A23)

Combining (A12) and (A23) concludes the proof.

A.2 On Expectation in (8)

In this section, we derive the explicit formula of the expectation in (8) for the
Bernoulli-Gaussian distribution in (11). The expectation in (8) can be written
as

E

[
env αλ

β
√

∆
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(
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α√
∆
G

)]
=
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β
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∆
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[
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(
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∆
G

))]
+

1

2
E

[(
prox αλ

β
√

∆
f

(
X +

α√
∆
G

)
−
(
X +

α√
∆
G

))2
]
. (A24)

Since the proximity operator of γf(·) (γ > 0) is given by

proxγf (q) = sign(q)max(|q| − γ, 0), (A25)
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the expectation in the first term of (A24) can be further rewritten as

E

[
f

(
prox αλ

β
√

∆
f

(
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∆
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= p0

∫ ∞

−∞

∣∣∣∣prox αλ
β
√

∆
f

(
α√
∆
g

)∣∣∣∣ pG(g)dg
+ (1− p0)

∫ ∞

−∞

∣∣∣prox αλ
β
√

∆
f (z)
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= p0 ·
2α√
∆
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+ (1− p0) · 2
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β
√
∆

)
pZ(z)dz, (A27)

where pZ(z) is the PDF of the Gaussian distribution with zero mean and
variance 1 + α2

∆ . The expectation in the second term of (A24) can also be
rewritten as
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We can compute the above integrals by using∫ b
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where pR(r) is the PDF of the Gaussian distribution with zero mean and
variance σ2

r .
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