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ABSTRACT

Rapid advances have occurred in Internet of Things technologies. Among
Internet of Things–related applications, Internet of Vehicles (IoV) is
regarded as integral infrastructure for next-generation intelligent trans-
portation systems. IoV requires vehicles to perceive their surroundings
reliably. In particular, researchers have focused on LiDAR sensing be-
cause it is robust in extreme weather. However, IoV sensing data are
transmitted between vehicles and the cloud, and LiDAR requires a large
quantity of data; thus, communication for cloud computing might be
challenging. To address this difficulty, a LiDAR-based detection method
for an IoV edge node is proposed. Small-object detection through LiDAR
sensing is difficult because of the sparsity of point clouds. Although
some researchers have attempted to solve this problem by fusing raw
point cloud details, existing approaches still reduce model efficiency and
memory cost, which is unsuitable for IoV. To overcome the problem,
this paper proposes a novel model that enhances three-dimensional (3D)
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structural information for preserving the details of voxel features while
maintaining the high efficiency and low memory usage of voxel-based
methods. Experimental results indicate that the proposed method out-
performs state-of-the-art LiDAR-based 3D detection methods on the
widely used KITTI dataset and achieves competitive performance for
all classes.

Keywords: Edge computing, intelligent transportation system, internet of vehi-
cles, LiDAR-based detection, voxel-based detectors.

1 Introduction

In smart cities, developing an Intelligent Transportation System (ITS) is a
critical task that can improve the safety and efficiency of mobility. Internet
of Vehicles (IoV), which is enabled by advanced sensing, communication, and
networking technology, is commonly regarded as an integral technology for
ITSs. As shown in Figure 1, IoV is a network comprising a cloud service and
sensor-equipped vehicles; all data are constantly exchanged over the Internet.
See [13]. Robust vehicle sensing is indispensable in IoV. Light detection and
ranging (LiDAR) sensors have demonstrated promising sensing ability in many
applications related to autonomous cars and Advanced Driver Assistance
Systems (ADAS). See [21]. However, compared with RGB cameras, LiDAR
systems produce a considerably larger quantity of data, which might reduce
latency in IoV applications. To address this problem, a LiDAR-based detection
method for edge nodes (i.e., vehicles) is proposed in this paper.

Methods for three-dimensional (3D) LiDAR object detection tasks are
gradually maturing. Because of the precise 3D structural information provided
by LiDAR sensors, their performance far surpasses that of other detection
methods. Although powerful, LiDAR has some unique properties that must be
handled explicitly. For example, the irregular distribution of the point cloud
might require unique methods to avoid the permutation variance problem;
that is, the model output might change because of an input permutation
despite an identical input. To solve this problem, researchers have proposed
several effective methods. On the basis of the representation of the point
cloud, these methods can be divided into two categories: point- and voxel-
based approaches. In point-based approaches, raw point cloud are usually
directly manipulated using a symmetric function (e.g., max pooling) to solve
the permutation variance problem. See the discussion in [33], [25], [3] and [35].

By contrast, in voxel-based approaches, the entire point cloud is divided
into voxels to regularize the irregular distribution so that it can be input into a
3D convolution process. See [6], [34], [36] and [26]. However, both approaches
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Figure 1: Application of the proposed method. In the era of IoV, the edge nodes of the
network (i.e., each vehicle) should not only capture environmental sensing data but also
process some preliminary data to reduce bandwidth and latency. To address this problem, a
LiDAR-based detection method for edge nodes (i.e., vehicles) is presented. The developed
model was modified to ensure that it has high efficiency.

have drawbacks and often exhibit poor performance in detecting cars or other
small objects, respectively.

In real scenarios, cars and pedestrians must be considered equally to achieve
traffic safety. A model that ignores either of them is inappropriate for an
ITS. Some researchers have combined point- and voxel-based approaches into
point–voxel (PV)-based methods to improve the detection of all these objects.
In PV-based methods, voxel features are fused with raw point cloud features to
regain the 3D structural information lost in the voxelization and convolution
processes. For example, [24] proposed PV-RCNN that contains a pointwise
feature extraction branch that uses the Voxel Set Abstraction (VSA) module
to fuse pointwise and voxelwise features to generate a better representation
to support the 3D voxel backbone. Although PV-based methods can improve
performance across all classes, they also increase the computation cost of
the model because of the inclusion of raw point cloud details. Thus, PV-
based methods might not be the best approach to adopt. Therefore, as our
research focuses on the edge computing mode, which requires relatively low
computation costs and memory usage. One must determine whether the voxel
representation is adequate for small-object detection or whether point cloud
distribution details are essential. Consequently, in this paper, we propose a
novel 3D voxel backbone that uses only voxel features to improve our model
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and avoid the high loading caused by additional point cloud calculations. The
proposed backbone not only uses a novel module to transform the features in
the feature space but also learns the foreground voxel probability through an
auxiliary supervision task.

Specifically, our model predicts each voxel’s foreground probability to
support the backbone and refinement stage. The proposed semantic-split
feature transform (SSFT) module can calculate a pair of adjustment factors
for each voxel feature from the corresponding predicted probability. These
produced factors enhance the structural details in the feature space without
directly interfering with the convolutional features. Compared with the vanilla
3D voxel backbone proposed by [6], our structure has better small-object
detection performance because its additional transform module provides finer
spatial information. Moreover, we constructed a new formula for the region of
interest (RoI) pooling process to achieve a better representation of sampled
features. To increase the effectiveness of the sampling features, we first use the
distance to each grid point as a factor to avoid sampling the same point for
different grid points. Furthermore, we again use the predicted probability map
to improve the sampling candidate quality by providing foreground information
to the refinement module. In this research, our proposed methods can be
summarized by the following contributions. First, our proposed LiDAR-based
3D object detection architecture uses an edge deployment strategy to reduce
network latency and ensure that the detection system can respond promptly
to any given situation. Second, we propose the use of voxel features to improve
small-object detection, even in the absence of raw point cloud support. Third,
we designed a novel SSFT module with an additional auxiliary task to enhance
the fine-grained spatial information of the 3D convolutional features. Fourth,
we designed a novel RoI pooling method to improve the sampled candidate
quality to improve the feature representation.

The remainder of this article is structured as follows: Section 2 presents a
discussion on the related works. Section 3 describes our model’s entire structure,
implementation details, and formulas. Section 4 presents the experimental
results, including the results of an ablation study and a comparison of the
proposed model with other state-of-the-art (SOTA) models. Section 5 provides
the conclusions of our study and potential directions for future research.

2 Related Works

This section describes the techniques used in 3D LiDAR object detectors.
Because of the sparse and irregular distribution of LiDAR point cloud data,
specific operations are required to process these data effectively. These tech-
niques can be broadly classified into three categories according to the selected
data representation: point-, voxel-, and PV-based methods.
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2.1 Point-Based Methods

In point-based methods, raw point cloud features, which are distributed
throughout real-world coordinates, are directly used as model input. However,
these methods can result in the permutation variance problem. [19] proposed
PointNet which is a novel model that addresses this problem by using the max-
pooling function as a symmetry function. Nevertheless, the numerous points
of LiDAR point clouds can result in high computational burden. To overcome
this problem, [20] introduced PointNet++, which has a hierarchical point-set
feature learning module that uses a farthest point sampling (FPS) algorithm
for downsampling. The FPS algorithm considers the distance between two
points and selects the farthest points from the current point to create a more
uniformly distributed sampled subset. Furthermore, [25] proposed PointRCNN
which adopts the PointNet++ model as its backbone to construct a two-stage
detector. And due to the vanilla FPS algorithm only considers distance. [33]
introduced 3DSSD that uses a novel Feature-FPS technique in which semantic
feature distance is also considered for preserving helpful information (e.g.,
foreground features) and discarding redundant information. Moreover, [3] and
[35] proposed the SASA model with semantics-guided FPS and the IA-SSD
model with Ctr-aware sampling, respectively; both methods had excellent
performance.

2.2 Voxel-Based Methods

In contrast to point-based methods, voxel-based methods involve dividing the
space into predefined voxels for model input. This regular voxel representation
enables the exploitation of common convolution processes. For example,
[37] proposed VoxelNet with a voxel feature encoding module was proposed
to extract features for each voxel and feed them into convolution layers to
predict 3D bounding boxes. Although the convolution process improves
model performance, it requires traversing the entire 3D space; thus, this
process is extremely inefficient. However, because LiDAR point clouds are
sparse, many voxels are meaningless or redundant. In the SECOND model,
which was proposed in [32], the convolutional layers are replaced with a
SparseCNN module to overcome the aforementioned problem, thereby reducing
computational costs. SparseCNN only considers the necessary input, thereby
reducing memory costs and improving model efficiency. Since the introduction
of SparseCNN, many studies have used this module as a part of their model
backbone to achieve better performance. For example, Part-A2, which proposed
by [26], based on the SparseCNN backbone while focus on distinguishing the
intraobject part location of an RoI. [6] introduced Voxel-RCNN which is a
simple but effective voxel-based model that indicates the importance of 3D
structural information for 3D LiDAR object detection. [31] proposed a new
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concept that calculates the occlude shape probability to support the 3D voxel
backbone for better performance. [4] further introduced a novel convolution
technique including an attention mechanism to enhance the voxel features
according to their importance.

2.3 Point-Voint-Based Methods

Although point- and voxel-based methods achieve excellent performance, they
have certain limitations. Point-based methods preserve the point cloud distri-
bution in real coordinates and typically perform well for small-object detection
(e.g., pedestrian and cyclist detection) but might struggle with car detection.
By contrast, voxel-based methods can implement the convolution process but
might also lose object details during calculations. Therefore, some researchers
have attempted to fuse point- and voxel-based methods. In PV-based methods,
point and voxel representations are used to obtain excellent results for all
classes. For example, in [24], PV-RCNN with a VSA module was proposed
for sampling voxel features in each layer with key points to enhance the RoI
feature representation. [23] proposed CT3D that adopts a voxel backbone to
produce RoI proposals and then samples raw point cloud features for further
refinement. [1] proposed a deformable self-attention module that aims to get a
representative subset that aggregates global context. [12] further introduce
PDV which uses density information and voxel point centroids to enhance the
fine-grained details of voxel features.

2.4 RoI Grid Pooling Strategies

The RoI pooling module is essential for a two-stage detector when processing
in the refinement stage. However, implementing conventional RoI pooling
methods in three dimensions is challenging because of the unusual data dis-
tribution of LiDAR point clouds. To overcome this problem, [25] uses the
point-cloud-region pooling method, in which all the features within the RoI
are pooled for further refinement. [26] discovered that this method might
result in the ambiguous boxes problem and proposed Part-A2, which includes
RoI-aware pooling, to address it. Furthermore, [24] uses predefined grid points
to sample RoI features, thereby increasing the sampling range for encoding
more useful features. [18] proposed Pyramid-RCNN which adopts the attention
module in the RoI pooling strategy, thereby enabling adaptive point features
sampling. More, instead of using predefined grid points, [23] introduced CT3D
that randomly samples point features, which is an effective strategy if the
sample size is sufficiently large.



An Edge Lidar-Based Detection Method in Intelligent Transportation System 7

Figure 2: An overview of our model structure. The input point cloud will first voxelized and
go through three of ours 3D backbone layer to produce RoIs. Then, the convolution features
and the predicted foreground score will be used in further refinement stage. In refinement
stage, we will utilize the score and calculate the distance to the corresponding grid points as
the sample criteria.

3 Methodology

To improve small-object detection while avoiding excessive computational
load, we decided to use voxel representations throughout the entire developed
model. As shown in Figure 2, the point cloud is first voxelized and encoded
to obtain voxel features which are fed into the proposed backbone. In each
layer of the backbone, an auxiliary supervision branch is added to predict the
foreground’s probability, and a transformation function is used to manipulate
the convolutional features in the feature space. The transformed features are
used in the proposal network and refinement stage. In the refinement stage,
each refinement layer only uses the features from the corresponding backbone
layer to extract the RoI features separately. The foreground probability
prediction and point-to-grid distance are used as evaluation factors to optimize
the sample quality to produce the refined features. Finally, the sampled
features from each refinement layer are concatenated and further fed into the
prediction head of the model for the final prediction.

3.1 3D Foreground Voxel Supervision

Structural information is usually vital for a 3D LiDAR object detection task.
As mentioned in [6], 3D structural information strongly influences the final
detection performance of the VoxelRCNN model. In [6], the addition of
connections between the backbone layers and the refinement stage resulted
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in considerable improvement in the model performance. Furthermore, some
researchers have attempted to use not only structural information but also
the foreground distribution to improve model performance. Most of these
researchers have used an additional auxiliary supervision task to predict
the foreground probability for further model implementation. For example,
[34] proposed SegVoxelNet which uses a supervision branch to predict the
foreground probability of the bird’s-eye-view feature map to support the model
backbone.

However, to the best of our knowledge, most previous studies have only
simply implemented the auxiliary branch on the two-dimensional (2D) feature
map or in the final layer of the backbone. Although these approaches can
improve the model performance, precise structural information might be lost
during several convolution processes, thereby reducing the model effectiveness.
To obtain precise 3D structural information, we attempt to exploit the auxiliary
supervision concept in each backbone layer while maintaining the 3D voxel
representation at each scale. Moreover, instead of repeatedly checking whether
the voxel is a foreground label, training labels are generated by masking the
voxels from the beginning and calculating them throughout the backbone for
achieving higher efficiency. We follow the similar label definition in [34], in
which voxels not only overlap with ground truth objects but also contain raw
points (i.e., nonempty voxels) that can be determined as foreground labels.

Furthermore, to preserve a better feature granularity, we utilize the pooling
module for generating training labels instead of the convolutional process.
Specifically, the average-pooling module is implemented repeatedly to produce
the foreground mask in each layer. It is worth noting that we also evaluate
the performance of the max-pooling module, and the relevant results are
provided in Section 4.3. We attribute the poor performance of the max-
pooling module to the fact that it does not consider the differences within each
foreground object. In contrast, average pooling can preserve and distinguish
these differences and thus might produce results that are more similar to
the real distribution. Moreover, by implementing the pooling module, the
predicted foreground probability map can match the same size of the original
convolutional features, and thereby can further support the model’s backbone.
Finally, our loss function for the auxiliary supervision task is expressed as
function (1).

Lfg =
1

Nne
[βCi · Lcls(Pi, Ci)], ∀i = 1, . . . , Nne, (1)

where Nne denotes the number of nonempty voxels; Pi and Ci represent the
predicted probability and corresponding ground truth, respectively; βCi is
the balance factor for each class; and Lcls indicates the focal loss function for
classification.
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Figure 3: The structure of the proposed SSFT module and the foreground prediction network.
The SSFT module (lower part) inputs the prediction from the foreground prediction network
(upper part) to the SFT module to produce the scale and shift factors for guiding voxels of
the main convolution feature map.

3.2 Semantic-Split Feature Transform

In a 3D object detection task, the performance for detecting small objects
might strongly depend on the feature granularity. For example, point-based
methods in which raw point features (which provide information on the point
cloud distribution with real-world coordinates) are directly used usually achieve
high detection performance for pedestrians and cyclists. However, voxel-based
methods involve dividing the space into several voxels; this process might cause
a quantitative error that harms the feature granularity. Moreover, the 3D voxel
backbone comprises several convolution blocks; thus, the aforementioned error
might be produced repeatedly and considerably affect small-object detection.

Therefore, a technique that can enhance spatial details is desired to elimi-
nate the aforementioned drawback. The spatial feature transform (SFT), which
has been used in image super-resolution tasks, aims to recover a low-resolution
image by calculating a pair of scale and shift factors from the high-resolution
condition map. See [30], [9] and [29]. The produced scale and shift factors
are then applied to the original low-resolution image in the feature space.
To take advantage of the SFT, the specific condition map for our task must
be determined. Because the condition map requires high-resolution spatial
information, a straightforward method is implementing the feature map from
the previous layer. However, we realize that using the foreground probability
prediction described in Section 3.1 is more suitable than the aforementioned
method as the prediction map can describe more details of the distribution
about the foreground voxel features.
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As displayed in the upper part of Figure 3, the output of the prediction
network is concatenated into our 3D backbone for each layer. Our prediction
method is not directly implemented on the convolution feature map; two
processes are used before its implementation. First, the foreground prediction
is padded to match the feature map size to produce the SFT factors for all
voxels before multiply with the convolution features. Without this process, the
SFT module might only produce factors for foreground voxels, which might
reduce feature consistency. Second, the padding predictions are used as the
weighted factors to enhance the original foreground voxels. By ignoring the
original features, the SFT module will eliminate all the effects from background
features. [18] claimed that those background features can further improve
model performance. Thus, we designed function (2) to produce the scale and
shift factors.

αi, γi = M(Di + Pi ·Di), i = 0, 1, 2, 3, (2)

where Di indicates the condition map for each layer after several convolution
processes; M is the combination of mapping and padding functions; α and γ
are the predicted scale and shift factors, respectively.

We determined that the goal of the SFT module is to enhance the spatial
features instead of the entire original feature map. To optimize the effectiveness
of this module, spatial and semantic features should be extracted separately.
Several researchers have used multiple branches to extract features within
convolution blocks. For example, [36] found that implementing different
processes in separate feature branches for the spatial and semantic features can
improve the detection performance of the model. We believe that this finding is
attributable to the different usages of the aforementioned two types of features.
Spatial features require finer structural information than do semantic features,
whereas semantic features might require a larger receptive field that can contain
more useful information. Thus, in our model, the SFT module is implemented
on the extracted spatial features alone. The design of the semantic branch of
our model is same as that in the [36] so that a large receptive field is ensured.
We evaluated the effect of the aforementioned two-branch concept through
an ablation study, which is described in Section 4.3. Finally, we designed our
backbone according to the two-branch concept displayed in the lower part of
Figure 3. Also, we design the whole SSFT module as the following function (3).

Fi+1 = F spa
i + F sem

i = (Fi · α+ γ) + Conv(Fi), i = 0, 1, 2, 3, (3)

where Fi indicates the input convolutional features from the previous layer;
Conv denotes several convolutional blocks; and F spa

i and F sem
i are the spatial

and semantic features, respectively.
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3.3 Discriminative RoI Grid Pooling

The refinement stage in two-stage detectors is critical to the final model
performance. To implement the detection head with different proposal sizes,
techniques such as RoI pooling and RoI Align are used. See [8], [22], [5] and
[10]. For 3D cases, we may consider the voxel representation can enables the
easy extension of conventional RoI pooling techniques from pixels to voxels.
However, the difference between LiDAR point clouds and 2D images is not that
simple. For example, because of the sparsity of the point cloud, empty voxels
are generated within objects, which might considerably reduce the quality of
the extracted RoI information for further refinement. Therefore, conventional
2D RoI pooling techniques might be unsuitable for exploitation.

Fortunately, researchers have attempted to solve the aforementioned chal-
lenge. For example, in [24], RoI grid pooling was developed to improve the
refinement effectiveness substantially. By using a set of predefined grid points,
which are spread over the entire RoI, they can sample features that are inside
or near the RoI bounding boxes. However, most recent methods only focus
on improving the sampled coverage while ignoring some potential problems.
See the discussion in [6], [24] and [12]. We identified two problems of concern.
First, because the number of sampled candidates is fixed, the sampling priority
order is crucial. The final performance might highly depend on the quality of
the sampled candidates. Second, in contrast to the conventional RoI pooling
method, in which the RoI is divided into blocks without overlap, the features
sampled from grid points within a specific range might have overlapping re-
gions. These overlapping regions might cause repeat sampling, which reduces
the diversity of the sampled information. Thus, a method that can be used to
evaluate feature quality and filter out high-quality subsets is required.

Fortunately, the downsampling process used in point-based methods might
meet our requirements. These methods usually aim to reduce the total number
of raw point clouds while maintaining the entire point cloud’s quality. They
use a sampling evaluation formula to consider not only the semantic scores
but also the distance between points to construct several meaningful clusters.
Inspired by them, an evaluation process is adopted within the RoI pooling
module of our model. Also, to overcome the aforementioned two problems, the
effects of the foreground score and point-to-grid distance factor are considered
in this module.

With regard to the first problem, high-quality candidates are usually also
foreground features because they might carry considerable object information.
Thus, foreground probability prediction is performed again to increase the
probability of foreground-like features being sampled. Moreover, to overcome
the overlapping problem, an attempt is made to maximize the differences
between the sampled subsets of all grid points. Intuitively, the shorter the
distance from a point to a grid point, the longer is the distance from the
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point to other points. This property is exploited to construct our sampling
formula 5. Specifically, in this formula, the ratio of the point-to-grid distance
to the predefined sampled range is considered as the distance factor df . Also,
because the shorter distance to grid points the higher probability that need to
be sampled. To meet this requirement, the distance factor should be modified
as 1− df . Therefore, this modification will reduces the probability of sampling
features near the sampled boundary. Finally, the complete sampling formula
is as function (4).

S′ = Sµ(1− df ), df =
dgrid
Rgrid

, (4)

where S is the predicted probability score; µ is a hyper-parameter for balancing
the evaluation factor, which is the same as that used in [3]; dgrid and Rgrid

are the point-to-grid distance and the pre-defined sample range, respectively.

4 Experiments

4.1 Implement Details

4.1.1 Dataset

We evaluated our model on the famous KITTI dataset that introduced by [7],
which contains 7481 scans of training scenes and 7518 scans of testing scenes.
Our results were evaluated on a validation dataset and an online testing server.
We split the training scenes into two parts: 3712 scenes comprised the training
set, and 3769 scenes comprised the validation set. In the online testing, we
randomly selected 80% of the training dataset for training, and the remaining
data were used as the validation dataset

4.1.2 Network Architecture

The proposed 3D voxel backbone is based on those used in [6] and [24]. Within
each backbone layer, a SparseCNN module with a stride of 2 is used to
downsample the feature map, and this module is followed by a Submanifold
CNN with a stride of 1. To match the foreground prediction map with the
convolutional feature map, the pooling module is implemented with a 2× 2× 2
kernel. The hyperparameter µ used in the function 5 is set as 1. The pooling
range of our module is the same as that in [6].

4.1.3 Training and Inference Details

The proposed model was end-to-end trained with the Adam optimizer, which
proposed in [14], for approximately 80 epochs. During training, the batch size
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was set as 2, and the initialized learning rate was set as 0.01. For the additional
auxiliary loss that present in function 1, we set the balance and focal factors
to 0.25 and 2, respectively, to construct the focal loss that introduced in [16].
Finally, we implemented the same data augmentation strategies used in [6, 24,
33] to strengthen our model.

4.2 Results on KITTI Dataset

We evaluated our model on the KITTI dataset. The model performance was
evaluated in terms of mean average precision (mAP) and an intersection-
over-union threshold, which was 0.7, 0.5, and 0.5 for the three classes of car,
pedestrian, and cyclist, respectively. For the validation set and online testing
server, all performance indicators were calculated for 40 recall positions.

We compared the performance of our model with that of three powerful
PV-based methods in Tables 1 and 2. Our model had higher performance at
the moderate level (i.e., the main criteria for ranking in the KITTI dataset)
for all three classes, especially the pedestrian class. Specifically, the pedestrian
detection performance of the proposed model surpassed that of the other

Table 1: Performance comparison with state-of-the-art models on the KITTI val set for
pedestrian 3D detection in all three difficulties and also the comparison of the GPU memory
usage (MiB) and the inference time (FPS). All the 3D detection results are evaluated with
average precision and calculated by 40 recall positions.

3D Pedestrian
Models Easy Mod. Hard Mem. FPS
PV-RCNN, [24] 62.72 54.51 49.87 8243 17
CT3D, [23] 61.04 55.55 51.05 6485 19
PDV, [12] 66.90 60.80 55.85 7302 21
Ours 68.53 61.01 56.41 5669 27
Note: Our model’s results are shown in bold, and the best results are underlined. Also, the
above results are reproduced by the publicly release model ([28]).

Table 2: Performance comparison on the KITTI val set for car and cyclist 3D detection in
the moderate difficulty. All the 3D detection results are evaluated with average precision
and calculated by 40 recall positions.

Models 3D Car Mod. 3D Cyclist Mod.
PV-RCNN, [24] 84.33 70.40
CT3D, [23] 84.99 71.89
PDV, [12] 85.29 74.23
Ours 85.37 74.27
Note: Our model’s results are shown in bold, and the best results are underlined. Also, the
above results are reproduced by the publicly release model ([28]).
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models for all difficulty levels. More, we visualize both the detections from our
model and the voxel-based method (i.e. Voxel-RCNN) to further verify our
model’s performance on those difficult cases. In Figure 4, we show the highly
occluded objects which are missed by voxel-based methods but successfully
detected by ours. In Figure 5, we demonstrate the performance of our model for
detecting crowds which still successfully detects each of them while voxel-based
methods miss some of them.

Furthermore, we adopt the IPC which is equipped with an Intel XEON
E-2288G @ 3.70 Hz computer processing unit and a CVB-CD1024 industrial
solid-state drive; thus, it had a minimum write speed of 510 MB/s to minimize
transmission latency and data loss. Also, we test the Pytorch model on one
RTX3090 which shows the details in the right part of Table 1, compared to
the other strong PV-based methods, our model exhibited considerably lower
computational cost and memory usage. As they usually include additional
point cloud calculations, point-voxel features interaction, or even the strong
but heavy transformer module. Our model only utilizes existing voxel features
without the additional raw point support which relieves nearly half of the
memory cost from PV-RCNN. Also, as we only utilize a simple convolution
structure to enhance spatial features, we can maintain the high efficiency of

Figure 4: The visualization of highly occluded objects detections on KITTI val set. Note
that the green, yellow and cyan boxes indicates the class of car, cyclist and pesdestrian,
respectively. Also, the red circle denotes the main differences amoing the models’ detection.
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Figure 5: The visualization of dense crowd detections on KITTI val set. Note that the
green, yellow and cyan boxes indicates the class of car, cyclist and pesdestrian, respectively.
Also, the red circle denotes the main differences amoing the models’ detection.

voxel-based methods which is usually the PV-based methods’ weakness. These
two advantages make our model more suitable for edge deployment.

The results obtained with the different models on the KITTI official testing
server are listed in Table 3. In Table 3, the proposed model performs well for
all the classes and achieves the best 3D mAP performance among the tested
models no matter which type of method. We can see that although voxel-based
methods are usually worse on small object detection, we prove that voxel
representation is still adequate for small-object detection as our performance
on pedestrian detection surpasses several point-based and PV-based methods.
On the other hand, although raw point cloud distribution details are not
essential in our case, we still realize that utilizing finer voxel features to mimic
the point cloud distribution details is still helpful for small-object detection.

4.3 Ablation Studies

Table 4 presents the results of an ablation study on the proposed model. In
experiment 1, we determined the performance of the baseline model, which uses
the same model structure in [6], to verify our improvements over voxel-based
detectors. However, because this model was originally designed for car detection
only, we had to modify several hyperparameters to enable multiclass detection
in the subsequent experiments. In experiment 2, the auxiliary supervision
network was conducted to provide foreground information to the backbone.
The foreground prediction was then directly added to the convolutional features
voxel by voxel in each backbone layer. However, because this connection is
simple, it only resulted in a small increase in performance. This result might
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Table 3: Performance comparison on the KITTI test set for all classes 3D detection in the
moderate difficulty and also the comparison of the 3D mean average precision (mAP). All
the 3D detection results are evaluated with average precision and calculated by 40 recall
positions.

3D Mod. 3D
Models Car Ped. Cyc. mAP
PointRCNN, [25] 75.64 39.37 58.82 60.33
Point-GNN, [27] 79.47 43.77 63.48 63.90
3DSSD, [33] 79.57 44.27 64.10 65.01
IA-SSD, [35] 80.32 41.03 66.25 64.39
SECOND, [32] 75.96 35.52 60.82 59.29
PointPillars, [15] 74.31 41.92 58.65 60.65
TANet, [17] 75.94 44.34 59.44 61.71
Part-A2, [26] 78.49 43.35 63.52 63.99
SVGA-Net, [11] 80.47 40.39 62.28 62.92
PV-RCNN, [24] 81.45 43.29 63.71 64.74
SA-Det3D, [1] 81.46 40.89 68.54 65.04
PDV, [12] 81.86 40.56 67.81 65.31
Ours 82.00 42.25 66.46 65.64
Note: Our model’s results are shown in bold, and the best results are underlined.

be attributable to the corruption of the different receptive fields between the
predicted foreground probability and the convolutional features.

In experiment 3, we replaced the simple addition process in the second
experiment with the proposed SSFT module. The feature transformation and
additional convolution processes were clearly beneficial; the model performed
well in not only car detection but also small-object detection. In particular,
the model performance for cyclist detection in experiment 3 was approximately
1.31% higher than that in experiment 2. Finally, experiment 4 demonstrated
the effectiveness of the proposed RoI pooling module. In contrast to the
original RoI grid pooling method proposed by [24], the point-to-grid distance
and predicted foreground probability are considered in the proposed RoI
pooling method; thus, the final model performance was 1.15% higher than the
performance of the original baseline model in pedestrian detection.

Although Table 4 clearly demonstrates the effectiveness of the SSFT module,
our assumptions regarding the usage of the SFT module must still be validated.
In Section 3.2, an improved performance is assumed to be achieved when SFT
factors are only implemented on the spatial branch. Therefore, we designed
two experiments for further validation. In the first experiment, the unmodified
SFT that used in [30] module was used; this module implements its produced
factors on the entire feature map. In the second experiment, the proposed
SSFT module was adopted. As presented in Table 5, the SSFT module
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Table 4: Ablation studies on the mod level of the KITTI val set for all classes 3D detection
and all the results are evaluated with average precision and calculated by 40 recall positions.

Experiments FG SSFT DP Car Pedestrian Cyclist
(1) 84.87 59.87 73.23
(2) V 85.08 59.91 73.02
(3) V V 85.34 60.30 74.33
(4) V V V 85.37 61.01 74.27
Note: FG: foreground prediction network; SSFT: semantic-split feature transform;
DP:discriminative RoI grid pooling.

Table 5: Ablation studies of the effectiveness of the semantic split concept for all classes 3D
detection in the moderate difficulty and all the results are evaluated with average precision
and calculated by 40 recall positions.

3D Moderate
Methods Car Pedestrian Cyclist
w/o sematic split 85.28 59.06 73.01
with sematic split 85.34 60.30 74.33

Table 6: Ablation studies of the comparison of the pooling strategies for all classes 3D
detection in the moderate difficulty and their average. All the results are evaluated with
average precision and calculated by 40 recall positions.

3D Moderate
Methods Car Pedestrian Cyclist Average
Max-pooling 85.30 57.31 73.52 72.05
Avg-pooling 85.34 60.30 74.33 73.32

outperformed the SFT module, especially for cyclist detection (improvement
of greater than 1%). Therefore, the ablation study successfully validated our
previous assumption.

To improve the precision of the foreground probability prediction, feature
granularity must be preserved during the pooling process. Thus, the selection
of the pooling method might influence the final model performance. We
designed a pair of experiments to compare the performance between the max-
pooling and average-pooling processes, and the results are listed in Table 6.
In the experiment, the performance achieved with max pooling for pedestrian
and cyclist detection was substantially lower than that achieved with average
pooling. This result might be attributable to the fact that the max-pooling
process might discard some of the distribution information, which results in
the loss of fine details. By contrast, the average-pooling process can preserve
the feature distribution of high-granularity features, which contain fine-grained
information.



18 Matsumoto et al.

We compared the proposed RoI pooling module with sampling formulas
proposed in Table 7. Because this module achieves the greatest improvement
for pedestrian detection, we focused on this class for detail comparison. Many
studies have demonstrated the effectiveness of including semantic information
in the sampling evaluation formula. See the discussion in [33], [3] and [35].
Experiment 1 revealed that performance reduced if foreground information
alone was used. This result indicates that the distance factor plays a key role in
the sampling evaluation formula and should not be removed. Therefore, on the
basis of [35], we designed a formula including the foreground probability and
the distance from a specific point to the RoI center. In experiment 2, although
this adjustment increased the final model performance, the performance was
still unsatisfactory, especially for the hard difficulty level. This result can be
attributed to the fact that point cloud downsampling techniques are different
from the method used by the proposed RoI pooling module. In downsampling
techniques, the instance center, of which only one exists per cluster that ensure
the sampling overlaps do not occur. By contrast, in RoI sampling, several grid
points might exist inside an RoI, which results in multiple overlapping regions.
Therefore, replacing the distance to the RoI center with the point-to-grid
distance improved the detection performance for all difficulty levels.

Also, to further validate that the SSFT module works well in our model,
we design an additional experiment that utilizes other feature enhancement
methods to compare. We refer to the attention mechanisms backbone that
has been proposed by [4], which has achieved a high ranking in KITTI, to be
our comparison model. Table 8 shows the comparison between the adoption
of different backbones. Our model gets better performance in all classes,
especially the Cyclist class which successfully shows our advantage. Moreover,
our model has a higher FPS than the heavy attention mechanisms backbone.

To further demonstrate the generalization ability of our model, we choose to
additionally validate several experiments on the nuScenes dataset proposed by
[2]. The experiments are shown in Table 9 where we compare all 10 classes of
nuScenes dataset against our baseline model (i.e. Voxel-RCNN). As the results
show, our model successfully improves most of the classes’ performance from

Table 7: Ablation studies of the comparison of the RoI pooling methods for the pedestrian
3D detection in the all difficulties and all the results are evaluated with average precision
and calculated by 40 recall positions.

3D Pedestrian
Methods Easy Moderate Hard
Foreground-only 66.13 59.12 54.76
Foreground + RoI distance 66.86 60.08 54.65
Ours 68.53 61.01 56.41
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Table 8: Ablation studies of the backbone structure adoption on the mod level of the KITTI
val set and all the results are evaluated with average precision and calculated by 40 recall
positions. Also, we provide FPS for the comparison of the model efficiency.

3D Moderate
Methods Car Pedestrian Cyclist FPS
Voxel-RCNN, [6] 84.87 59.87 73.23 30
FocalConv*, [4] 85.26 60.04 73.08 19
Ours 85.34 60.30 74.33 29
Note: The above results are reproduced by the publicly release model ([28]).
*: Note that we only adopt the attention backbone structure while the remaining part is the same
as the baseline model.

Table 9: Performance comparison with state-of-the-art models on the Nuscenes val set for
all 10 classes and all the 3D detection results are evaluated with average precision.

Models Car Truck CV Bus Trailer Barrier Motor. Cyc. Ped. Cone
Voxel-RCNN, [6] 68.88 28.03 6.04 54.34 17.99 25.37 22.39 7.21 59.55 25.39
Ours 69.25 28.95 6.83 54.31 18.04 26.57 23.75 8.46 59.56 25.08

Note: The above results are reproduced by the publicly release model ([28]). Note that CV
stands for construction vehicle and Cone for traffic cone.

the voxel-based methods which indicates the high generalization ability of our
model and proves the ability to handle more diverse classes in the IoV scenarios.
More, performance for small object detections (e.g. motorcycle, bicycle) also
achieve considerable improvements which show our model’s advantage. Note
that our results did not adopt the data augmentation proposed by [38] and
trained for 20 epochs.

5 Conclusion

In this paper, we propose a novel voxel-based model that aims to improve
small-object detection while reducing computational cost and memory usage.
By using local voxel features and corresponding foreground predictions, the
structural information within the feature space is enhanced. In addition, we
designed an RoI pooling module to consider the foreground probability and
point-to-grid distance to increase the sampling quality. The proposed model
outperformed SOTA methods on the KITTI dataset for three classes (cyclist,
pedestrian, and car). The results of this study indicate that our approach
effectively addresses the object detection challenge for IoV systems in which
the LiDAR data size can pose substantial communication challenges for cloud
computing methods. The proposed method has better performance and lower
computational and memory requirements than do existing approaches. In
the future, researchers can explore additional lightweight modifications to
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the proposed model and investigate its applicability to other datasets and
scenarios.
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