
APSIPA Transactions on Signal and Information Processing, 2023, 12, e34
This is an Open Access article, distributed under the terms of the Creative Commons
Attribution licence (http:// creativecommons.org/ licenses/ by-nc/4.0/), which permits un-
restricted re-use, distribution, and reproduction in any medium, for non-commercial use,
provided the original work is properly cited.

Overview Paper

Order Learning – An Overview
Seon-Ho Lee, Nyeong-Ho Shin and Chang-Su Kim∗

School of Electrical Engineering, Korea University, Seoul, Korea

ABSTRACT

Order learning aims to learn the ordering relationship among objects
by comparing them. Recently, several order learning techniques have
achieved great performances on various computer vision tasks. In this
paper, we provide an overview of these order learning techniques. First,
we briefly discuss conventional rank estimation algorithms related to
order learning. Second, we review the order learning techniques in detail.
Third, we discuss the results of order learning on three vision applications:
facial age estimation, historical color image (HCI) classification, and
aesthetic quality assessment.

Keywords: Order learning, ordinal regression, rank estimation.

1 Introduction

In rank estimation, we attempt to find the rank (or ordered class) of an object
instance. It is different from ordinary classification, for its classes are arranged
in a natural order. For example, in online user ratings of a product or service,
classes can be ordered from ‘excellent’ to ‘good,’ ‘satisfactory,’ ‘poor,’ and
‘very poor.’ Rank estimation is widely used for various computer vision tasks,
including facial age estimation [35], aesthetic quality assessment [37], and HCI
classification [31].

With the great success of convolutional neural networks (CNNs) [42],
many CNN-based techniques [17, 22, 26, 35, 43, 44] have been proposed for

∗Corresponding author: Chang-Su Kim, changsukim@korea.ac.kr.

Received 25 April 2023; Revised 10 July 2023
ISSN 2048-7703; DOI 10.1561/116.00000226
© 2023 S-H. Lee, N-H. Shin and C-S. Kim

http://creativecommons.org/licenses/by-nc/4.0/

2 Lee et al.

rank estimation. Most such techniques [22, 26] adopt the ordinal regression
framework in which the rank of an instance is directly estimated via a classifier
or a regressor. On the other hand, some algorithms [35, 44] regard rank
estimation as an ordinary classification problem. Also, Lee and Kim [17]
and Souri et al. [43] exploit the relationship between instances via pairwise
comparison. However, rank estimation is still challenging because there is
no clear distinction between ranks in many cases. For example, in facial age
estimation, the aging process has large individual differences, so some people
look younger or older than their actual ages.

Recently, several order learning algorithms, which exploit order relations
between instances, have been proposed for rank estimation, providing excellent
results. In [24], Lim et al. first proposed the notion of order learning, which
learns ordering relationship between objects and determines the rank of an
unseen object by comparing it with multiple references with known ranks. It
provides promising results since relative assessment is easier than absolute
assessment in general. In [18], Lee et al. improved the performance of order
learning by finding optimal references for comparison. Also, Shin et al. [41]
introduced a regression framework for order learning, and Lee et al. [20]
simplified the training and testing processes of order learning by constructing a
well-sorted embedding space. Moreover, Lee and Kim [19] developed a weakly
supervised order learning scheme by extending topological sorting.

To the best of our knowledge, there is no review paper to provide a holistic
view of order learning. Thus, in this paper, we review these order learning
algorithms in detail. In Section 2, we first summarize conventional rank
estimation approaches related to order learning. Then, we explain the order
learning algorithms in Section 4. Section 5 describes the results of order
learning on various applications, including age estimation, HCI classification,
and aesthetic quality assessment. Lastly, Section 7 concludes this overview
paper.

2 Related Work

Various techniques have been developed to estimate the ordinal class or rank
of an object. As in Figure 1, they can be grouped into three categories:
classification, ordinal regression, and pairwise comparison.

2.1 Classification

Classification algorithms [35, 44] predict ranks by training a classifier to
categorize each instance into one of discrete ordinal classes, as in ordinary
classification [42]. Figure 2(a) illustrates the framework of classification algo-
rithms. In [35], tens of classifiers are trained and their predictions are averaged

Order Learning – An Overview 3

Figure 1: Categorization of rank estimation algorithms.

to yield the output. In [44], the entire rank range is covered by overlapping
rank intervals so that each rank belongs to several intervals. Then, binary
classifiers are trained to predict whether an instance belongs to each interval
or not. However, typical losses for classification, such as cross-entropy, may
not be optimal for rank estimation. Unlike ordinary classification, different
errors have different levels of severity in rank estimation. But, regardless of
whether the rank of 13 is mistaken as 6 or 70, they may be considered as the
same amount of errors in typical classification losses. Therefore, by its design,
the classification approach may be sub-optimal for rank estimation.

2.2 Ordinal Regression

Ordinal regression methods estimate the rank of an instance directly using
classifiers or regressors. Figure 2(b) shows the overall framework of ordinal
regression. In [9, 30], multiple binary classifiers are used, and each classifier
predicts whether the rank of an instance is higher than a specific rank or not.
Then, the rank is estimated by combining the binary classification results. In
[27], a simple ordinal regressor is trained for small datasets. In [47], a regressor
is employed to estimate the rank from multi-scale patches of an input instance.

Figure 2: Different frameworks for rank estimation: (a) classification, (b) ordinal regression,
(c) LTR, and (d) order learning.

4 Lee et al.

However, in many cases, the direct estimation of ranks is challenging even for
human beings. Hence, in [10], soft labels are used to train a regressor more
reliably by avoiding too big penalties on close estimates. Note that there are
several review papers [13, 45] on ordinal regression. On the other hand, we
review the order learning algorithms for the first time in this paper.

2.3 Pairwise Comparison

Pairwise comparison also has been used to estimate object ranks because
relative evaluation is easier than absolute evaluation in general. In aesthetic
quality assessment, Lee and Kim [17] predict the aesthetic score ratio of a
given instance pair and apply the Saaty’s scaling method [36] to regress an
absolute score. In age estimation, some learning-to-rank (LTR) methods [5, 6,
43] use a ranking network, which outputs the relative priorities of instances,
as shown in Figure 2(c).

Order learning belongs to this pairwise comparison category and is similar
to LTR in that both approaches attempt to estimate ordering relationship
between instances. However, whereas LTR compares instances during the
network training only, order learning estimates the rank of a test instance by
comparing it with reference instances with known ranks. Figure 2(d) illustrates
the framework of order learning.

3 Preliminary – Order

Mathematically, order [38] is a binary relation, often denoted by ≤, on a set
Θ = {θ0, θ1, . . . , θM−1}, which satisfies the three properties of

• Reflexivity: θi ≤ θi for all i,

• Antisymmetry: θi ≤ θj and θj ≤ θi imply θi = θj ,

• Transitivity: θi ≤ θj and θj ≤ θk imply θi ≤ θk.

In practice, an order describes the priorities of classes (or ranks), where
each class θi represents one or more object instances. For example, in age
estimation, θi may represent i-year-olds, and θ17 < θ35 represents that 17-year-
olds are younger than 35-year-olds. Let θ(·) be the class function, and let x
and y be instances. Then, for example, θ(x) = θ20 means that person x is
20-year-old. Also, for two object instances x and y, their ordering relationship
is defined according to their class difference as

x ≻ y if θ(x)− θ(y) > τ,

x ≈ y if |θ(x)− θ(y)| ≤ τ,

x ≺ y if θ(x)− θ(y) < −τ,
(1)

Order Learning – An Overview 5

where τ is a threshold. We use the expression ordering to describe instance
relations, while using order exclusively for class relations. Also, to represent the
ordering between instances, we use ‘≺,≈,≻,≼,≽’ instead of ‘<,=, >,≤,≥’ to
avoid confusion. Specifically, x ≺ y, x ≈ y, and x ≼ y mean that θ(x) < θ(y),
θ(x) = θ(y), and θ(x) ≤ θ(y), respectively.

4 Order Learning Algorithms

4.1 Order Learning

4.1.1 Pairwise Comparison

OL [24] is the first algorithm for order learning. It is based on the idea that it
is easier to predict ordering relationship between instances than to estimate
their ranks directly; telling the older one between two people is easier than
estimating their exact ages. Therefore, order learning attempts to learn the
pairwise ordering relationship from training data. To this end, Lim et al. [24]
developed a pairwise comparator, which predicts the ordering relationship
between two input instances x and y. As shown in Figure 3, the comparator
consists of an encoder and a ternary classifier. The encoder hx = h(x), which
is a VGG16 network without fully connected layers, maps an input instance
x to a feature vector hx. Also, it extracts the feature vector hy = h(y)
from the other instance y. Then, the classifier, which is implemented by a
series of fully connected layers, takes hx and hy as its input and yields the
softmax probabilities for the ordering relationship pxy = [pxy≺ , pxy≈ , pxy≻]t. Given
a training instance pair (x, y), the comparator is trained to minimize the
cross-entropy loss

lce(x, y) =
∑

qxy≺ log pxy≺ + qxy≈ log pxy≈ + qxy≻ log pxy≻ (2)

where qxy = [qxy≺ , qxy≈ , qxy≻]t is the ground-truth one hot vector.

Figure 3: An overview of the pairwise comparator, where c○ denotes concatenation.

6 Lee et al.

4.1.2 Rank Estimation

OL estimates the class θ(x) of a test instance x by comparing it with m
reference instances y0, y1, . . . , ym−1. The references are selected from the
training set X based on the reliability scores, given by

s(yi) =
∑

yj∈X ,j ̸=i

−lce(yi, yj). (3)

For each class θi, OL selects the m/|Θ| instances with the highest reliability
scores as the references. Note that the ground-truth ranks of the reference
instances are known, for they are selected from the training set.

After selecting the references, the comparator predicts the ordering rela-
tionship between x and yi. If θ′ is an estimate of the true class θ(x), the
consistency between the comparator result and the estimate is defined as

ϕcon(x, yi, θ
′) = [x ≺ yi][θ

′ − θ(yi) > τ] + [x ≈ yi][|θ′ − θ(yi)| ≤ τ]

+ [x ≻ yi][θ
′ − θ(yi) < −τ] (4)

where [·] is the indicator function. The consistency function ϕcon outputs either
0 for an inconsistent case or 1 for a consistent case. Note that an inconsistent
case can occur due to the error in the comparator prediction and/or the error in
the estimate. OL determines θ̂(x) = θ′ such that θ′ maximizes the consistency
with all references, given by

θ̂(x) = argmax
θ′∈Θ

m−1∑
i=0

ϕcon(x, yi, θ
′). (5)

This is called the maximum consistency (MC) rule.

4.1.3 K Chain Hypothesis

In the default mode of OL, it is assumed that ordered classes form a single
chain (1CH). However, in the K chain hypothesis (KCH), the classes are
assumed to form K disjoint chains. Note that a chain denotes a linearly
ordered and maximal subset of an ordered set. Therefore, classes in different
chains are incomparable. For example, in age estimation, chains can be divided
according to the gender in {female, male} and the ethnic group in {African,
Asian, European}. This is because it is difficult to compare the ages of people
of different genders or in different ethnic groups. Thus, people in different
chains are assumed incomparable for age estimation. In this case, there are 6
chains in total. Also, 2CH or 3CH can be obtained by considering genders or
ethnic groups only.

Order Learning – An Overview 7

In KCH, the comparator is trained similarly to 1CH. However, only the
pairs of instances belonging to the same chain are used for training. Also, a
K-way chain classifier is trained additionally, which predicts the chain that
an input instance belongs to. During the test, given an input instance, OL
determines its chain using the chain classifier, compares it with the references
in the same chain, and then estimates its class using the MC rule.

4.2 DRC-ORID

4.2.1 Motivation

In OL [24], additional information, such as gender or race in age estimation, is
needed to divide an ordered dataset into multiple chains reliably. However,
there are many datasets in which such information is not available. Therefore,
Lee and Kim [18] proposed a new chain-division scheme called DRC-ORID.
It is based on the idea that some characteristics of objects are not related
to their ranks, and the ranks of objects sharing such characteristics can be
compared more reliably; for example, it is easier to tell the older one between
people of the same gender than between people of different genders.

4.2.2 Order-Identity Decomposition

DRC-ORID [18] aims to partition an ordered dataset X into k clusters by
grouping the elements according to their characteristics unrelated to their ranks.
These characteristics are referred to as ‘identity’ features. In general, object
instances can be compared more easily when they have more similar identity
features irrelevant to order. Therefore, DRC-ORID decomposes the information
of each instance into an order feature and an identity feature exclusively. To
this end, it uses the order-identity decomposition (ORID) network, which is
composed of three parts: autoencoder, classifier, and discriminator. Figure 4
shows the architecture of the ORID network.

First, in autoencoder, the encoder, hx = f(x), extracts feature vector hx

from input instance x, while the decoder, x̂ = g(hx), reconstructs x̂ from hx.
The autoencoder is trained by minimizing the reconstruction loss ||x − x̂||.

Figure 4: An overview of the ORID network. This figure is excerpted from [18].

8 Lee et al.

Also, the first dor-dimensional sub-vector in hx ∈ Rdor+did is regarded as the
order feature hor

x . The last did-dimensional sub-vector in hx is normalized and
regarded as the identity feature hid

x .
To divide order-related information and its complementary information

into hor
x and hid

x respectively, a classifier is employed. For a pair of instances x
and y, it classifies their ordering relationship into one of three categories in
(1) from the order features hor

x and hor
y . It is trained using the cross-entropy

loss, as done in [24]. Note that the autoencoder and classifier are trained
jointly. Hence, to minimize both the reconstruction loss and the cross-entropy
loss with the limited capacity of hx, the information deciding the ordering
relationship tends to be encoded into the order features. On the other hand,
the remaining information necessary for the reconstruction of x̂ and ŷ are
encoded into the identity features hx

id and hy
id. Also, the discriminator that

tells real images from reconstructed images helps the decoder to reconstruct a
more realistic output x̂.

4.2.3 Deep Repulsive Clustering

After obtaining the identity features of all instances x ∈ X , they partition
them into k clusters C0, C1, . . . , Ck−1. They measure the overall quality of
clustering by

J({Cj}k−1
j=0 , {cj}

k−1
j=0) =

k−1∑
j=0

∑
x∈Cj

(
(hid

x)tcj − α
1

k − 1

∑
l ̸=j

(hid
x)tcl

)
(6)

where the first term is the similarity of an instance in Cj to the centroid cj ,
the second term with the negative sign quantifies the average dissimilarity
of the instance from the other centroids, and α is a nonnegative weight. For
high-quality clustering, each instance should be located around the centroid of
its cluster and be far from the other clusters.

To find the clustering result maximizing the objective function J , they use
an iterative algorithm called DRC,

1. Centroid rule: After fixing the clusters {Cj}k−1
j=0 , DRC updates the

centroids {cj}k−1
j=0 to maximize J in (6). Since identity features are

normalized and lie on the unit sphere, DRC constrains all centroids also
to be on the unit sphere. Then, the optimization problem is given by

maximize J({cj}kj=1) subject to ctjcj = 1 for all j = 0, . . . , k − 1. (7)

Using Lagrangian multipliers [2], the optimal centroids are obtained as

cj =

(∑
x∈Cj

hid
x − α 1

k−1

∑
x∈X\Cj

hid
x

)∥∥∑
x∈Cj

hid
x − α 1

k−1

∑
x∈X\Cj

hid
x

∥∥ . (8)

Order Learning – An Overview 9

2. Nearest neighbor (NN) rule: On the other hand, after fixing the centroids,
DRC updates the membership of each instance to maximize J in (6).
The optimal cluster Cj is given by

Cj =
{
x | (hid

x)tcj ≥ (hid
x)tcl for all 0 ≤ l ≤ k − 1

}
. (9)

In other words, an instance should be assigned to Cj if its nearest centroid
is cj .

DRC applies the centroid rule and the NN rule iteratively until convergence.
Also, the traning and clustering of the ORID network are alternately repeated.

4.2.4 Rank Estimation

To estimate the rank of an unseen test instance x, DRC-ORID first extracts
the identity feature hid

x using the ORID encoder. Then, by comparing hid
x with

the centroids {cj}k−1
j=0 based on the NN rule, it finds the most similar centroid

cl. Then, x is declared to belong to cluster Cl. Without loss of generality,
let us assume that the classes (or ranks) are the first m natural numbers,
Θ = {1, 2, . . .m}. For each i ∈ Θ, DRC-ORID selects a reference instance yi
with rank i from cluster Cl, so that it is the most similar to x. Specifically,

yi = argmax
y∈Cl : θ(y)=i

(hid
x)thid

y . (10)

Then, by comparing x with yi, the comparator yields the probability
vector pxyi = (pxyi

≻ , pxyi
≈ , pxyi

≺) for the three cases in (1). Thus, given yi, the
probability of θ(x) = θ′ can be written as

Pθ(x)(θ
′ | yi) = pxyi

≻ · Pθ(x)(θ
′ |x ≻ yi) + pxyi

≈ · Pθ(x)(θ
′ |x ≈ yi)

+ pxyi
≺ · Pθ(x)(θ

′ |x ≺ yi). (11)

If x ≻ yi, θ(x)− θ(yi) = θ′− i > τ from (1). Also, the maximum possible rank
is m. Hence, it is assumed that θ(x) has the uniform distribution between
i+ τ + 1 and m. In other words,

Pθ(x)(θ
′ |x ≻ yi) ∼ U(i+ τ + 1,m) (12)

where U denotes a discrete uniform distribution. Similarly, it is assumed that
Pθ(x)(θ

′ |x ≈ yi) ∼ U(i−τ, i+τ) and Pθ(x)(θ
′ |x ≺ yi) ∼ U(1, i−τ−1). Then,

DRC-ORID has the a posteriori probability Pθ(x)(θ
′ | y1, . . . ym) by averaging

those single-reference inferences in (11);

Pθ(x)(θ
′ | y1, . . . ym) =

1

m

m∑
i=1

Pθ(x)(θ
′ | yi). (13)

Finally, the MAP estimate of the rank of x is obtained by

θ̂(x) = argmax
θ′∈Θl

Pθ(x)(θ
′ | y1, . . . ym). (14)

10 Lee et al.

4.3 Moving Window Regression

4.3.1 Motivation

Unlike OL, which is based on ternary classification, the moving window
regression (MWR) algorithm [41] exploits a continuous regression score, which
is obtained by comparing the test instance with two references at once. Hence,
MWR can yield a more precise order relationship than OL. In this section, we
provide details about the MWR algorithm.

4.3.2 ρ-Rank

MWR uses a continuous regression score, called ρ-rank

ρ(x, y1, y2) =
θ(x)− µ(y1, y2)

τ(y1, y2)
(15)

where y1 and y2 are two references with θ(y1) ≤ θ(x) ≤ θ(y2). Also, µ(y1, y2) =
1
2 (θ(y1) + θ(y2)) is the average rank of the two references, and τ(y1, y2) =
1
2 (θ(y2) − θ(y1)) is half of the rank difference between them. The ρ-rank
quantifies the ordinal relations among the ranks of input and reference instances:
it measures how much greater the input is than the first reference and how
much smaller it is than the second reference. Note that ρ ∈ [−1, 1]. From the
the ρ-rank, the absolute rank θ can be reconstructed by

θ(x) = ρ(x, y1, y2) · τ(y1, y2) + µ(y1, y2). (16)

Hence, after predicting the ρ-rank, θ is obtained via (16).

4.3.3 ρ-Regressor

To estimate the ρ-rank in (15), ρ-regressor, which consists of an encoder h(·)
and a regression module g(·), is employed. Since the ρ-rank of x is determined
in the context of two references y1 and y2, the encoder extracts the features
h(y1) and h(y2) as well as the feature h(x). Then, the regression module takes
the triplet (h(x), h(y1), h(y2)) and obtains an estimate of the ρ-rank in (15),
which is given by

ρ̂(x, y1, y2) = g(h(x), h(y1), h(y2)). (17)

To train the ρ-regressor effectively and lower the learning difficulty, a triplet
(x, y1, y2) is formed by selecting the references with a fixed

τ =
1

2
(θ(y2)− θ(y1)). (18)

Order Learning – An Overview 11

By fixing τ , the ρ-regressor needs to consider a much smaller subset of
{(x, y1, y2)} and can achieve more reliable regression. The ρ-regressor is
trained to minimize the squared error between the ground-truth ρ and the
estimate ρ̂. When θ(x) < θ(y1) or θ(x) > θ(y2), the ground-truth ρ is set to
−1 or 1, respectively.

4.3.4 Moving Window Regression

To predict the absolute rank θ̂(x) of an unseen test instance x, the process
that moves a window [θ(y1), θ(y2)] and estimates the ρ-rank ρ̂(x, y1, y2) in (17)
using the ρ-regressor is performed iteratively. This process is called MWR.

First, an initial prediction is performed to obtain an initial estimate θ̂0(x),
where the superscript indicates the iteration index. In Figure 5(a), the initial
prediction process is visualized. After the feature vector f(x) is extracted
from the encoder, the K NNs are found among all training instances in terms
of the Euclidean distances in the feature space. Then, the initial estimate
θ̂0(x) is yielded by averaging the ranks of these neighbors. Note that feature
vectors are sorted according to their ranks in the feature space, as visualized
in Figure 5(b). Therefore, this prediction procedure is reasonable.

Next, the estimate is iteratively refined, as in Figure 5(c). At iteration step
t, the previous estimate θ̂t−1(x) is refined to θ̂t(x). A pair of references yt1 and
yt2, whose ranks are θ(yt1) = θ̂t−1(x)− τ and θ(yt2) = θ̂t−1(x) + τ , are chosen
among the training instances. Note that the search window is designated as
[θ(yt1), θ(y

t
2)] and centered around the previous estimate θ̂t−1(x). Within the

Figure 5: An example of the MWR process in facial age estimation when the ground-truth
age of input x is 22 and τ equals 3: (a) initial prediction, (b) t-SNE visualization of the
embedding space, and (c) iterative MWR refinement. This figure is excerpted from [41].

12 Lee et al.

search window, the ρ-rank ρ̂(x, yt1, y
t
2) is yielded by the ρ-regressor. Then,

ρ̂(x, yt1, y
t
2) is converted to

θ̂t(x) = round
(
ρ̂(x, yt1, y

t
2) · τ(yt1, yt2) + µ(yt1, y

t
2)
)

= round
(
ρ̂(x, yt1, y

t
2) · τ + θ̂t−1(x)

)
. (19)

The equality in (19) holds since τ is a fixed value and µ(yt1, y
t
2)
)
= θ̂t−1(x).

The iterative MWR process is terminated when θ̂t(x) = θ̂t−1(x) is satisfied,
as shown in Iteration 4 in Figure 5(c), or a predefined number of iterations is
reached.

4.3.5 Reference Selection

To estimate the rank of a test instance effectively, it is compared with selected
reference pairs. Those are chosen from the training set before testing, based
on the regression error γe, which corresponds to the average estimation error
of ρ-ranks, when (y1, y2) is employed as the reference pair. The regression
error γe is defined as

γe(y1, y2) =
1

|W |
∑
x∈W

|ρ̂(x, y1, y2)− ρ(x, y1, y2)| (20)

where W = {x | θ(x) ∈ [θ(y1)− α, θ(y2) + α]}. Hence, at iteration t during the
MWR process, for reliable regression, the optimal reference pair (y1, y2) with
the lowest γe(y1, y2), which satisfies the constraints of θ(y1) = θ̂t−1(x)− τ and
θ(y2) = θ̂t−1(x) + τ , is selected.

4.4 Geometric Order Learning

4.4.1 Motivation

In rank estimation, an order and a metric convey complementary information:
the order provides directional information between ranks, while the metric
does length (or magnitude of difference) information. However, previous order
learning algorithms, including OL and DRC-ORID, only consider the ordering
relationship between two instances x and y and disregard how much x is
different from y. In other words, it ignores metric information. In contrast,
geometric order learning (GOL) [20] exploits both order and metric relations
to estimate the rank of an instance more reliably. Figure 6 is an overview of
GOL.

Order Learning – An Overview 13

Figure 6: An overview of GOL algorithm. This figure is from [20].

4.4.2 Embedding Space Construction

GOL aims to construct an embedding space in which the direction and distance
between instances represent their order and metric relations. To this end,
GOL adopts two types of geometric constraints in an embedding space: the
order constraint and the metric constraint. Specifically, the order constraint
sorts instances directionally according to the ranks, while the metric constraint
separates two instances further if their rank difference is larger.

Order constraint: Suppose that there are m ranks in a training set X .
Without loss of generality, the ranks are assumed to be consecutive integers
in Θ = {0, 1, . . . ,m− 1}. As in other order learning techniques, GOL maps
each instance x ∈ X into a feature vector hx = h(x) in an embedding space.
Also, the output of the last pooling layer in the encoder h is normalized so
that ht

xhx = 1.
The order constraint encourages instances to be sorted according to their

ordering relationships. In other words, for two instances x and y with ordering
x ≺ y, the vector from hx to hy should be aligned with the direction of the
rank increment in the embedding space. To model such rank directions, GOL
introduces m reference points, r0, r1, . . . , rm−1, which are learnable parameters
and guide the positions of the m ranks in the embedding space.

The direction vector v(r, s) = (s− r)/∥s− r∥ represents the direction from
point r to point s on the unit hypersphere. Then, v(ri, rj) is called the rank
direction from rank i to rank j. Also, the rank direction v(ri, rj) is forward if
i < j, and backward if i > j. Note that forward directions may differ from
one another.

If x ≺ y, GOL determines the forward and backward rank directions as

vf = v(rθ(x), rθ(y)), (21)
vb = v(rθ(x), rθ(x)−1). (22)

Then, the encoder is trained so that the embedded features hx and hy satisfy
the order constraint:

x ≺ y ⇔ vtfv(hx, hy) > vtbv(hx, hy). (23)

14 Lee et al.

In other words, the direction vector v(hx, hy) should be aligned more with the
forward direction vf than with the backward direction vb.

To enforce the order constraint in (23), we compute the softmax probability
pxy = [pxyf , pxyb]t, where

pxyf =
ev

t
f v(hx,hy)

ev
t
f v(hx,hy) + ev

t
bv(hx,hy)

(24)

and pxyb = 1− pxyf . We then define the order loss Lorder as the cross entropy
between pxy and qxy = [qxyf , qxyb]t = [1, 0]t, given by

Lorder = qxyf log pxyf + qxyb log pxyb . (25)

The order loss for case x ≻ y is formulated similarly in a symmetric manner.

Metric constraint: A metric constraint aims to make the distance between
instances in the embedding space reflect their rank difference. Specifically, in
GOL, the metric constraint is defined as

|θ(x)− θ(y)| > τ ⇔ de(hx, hy) > δ (26)

where de is the Euclidean distance in the embedding space, and δ is a margin.
Since |θ(x)− θ(y)| > τ means that either x ≺ y or x ≻ y, the metric constraint
in (26) is equivalent to

x ≈ y ⇔ de(hx, hy) ≤ δ. (27)

If x ≺ y, to satisfy the metric constraint in (26), GOL defines a loss Lx≺y

as

Lx≺y =
∑

i:i≤θ(x)

max(de(ri, hx)− de(ri, hy) + δ, 0)

+
∑

j:j≥θ(y)

max(de(rj , hy)− de(rj , hx) + δ, 0). (28)

To minimize the first sum, de(ri, hx) should be reduced, while de(ri, hy) should
be increased. Thus, reference points ri, 0 ≤ i ≤ θ(x), are trained to attract
hx and repel hy. The second sum in (28) is similar. Lx≻y is formulated
symmetrically.

On the other hand, to encourage the constraint in (27), GOL uses another
loss

Lx≈y =
∑
i∈Θ

max(|de(ri, hx)− de(ri, hy)| − δ, 0). (29)

Readers more interested in the derivation of the metric loss are referred to [20].

Order Learning – An Overview 15

Loss function: In addition to the order loss and the metric loss, GOL
employs the center loss,

Lcenter = de(rθ(x), hx) + de(rθ(y), hy). (30)

Finally, the encoder parameters and the reference points ri are jointly
optimized by minimizing the total loss, given by

Ltotal = Lorder + Lmetric + Lcenter. (31)

Notice that reference points play essential roles in embedding space construc-
tion. Specifically, in Lorder, they guide forward and backward rank directions,
so that instances are sorted directionally according to the ranks. In Lmetric,
reference points attract and repel instances to satisfy the metric constraint. In
other words, GOL uses the reference points to satisfy both order and metric
constraints simultaneously and thus construct a well-arranged, well-clustered
embedding space.

4.4.3 Rank Estimation

For rank estimation, GOL uses the simple k-NN rule for rank estimation.
Hence, unlike other order learning algorithms, it does not need a complex
reference selection process. Given a test instance x, in the embedding space,
GOL finds a set N of its k NNs among all training instances in X . Then, the
rank of x is estimated by

θ̂(x) =
1

k

∑
y∈N

θ(y). (32)

4.5 Chainization

Let L = {(x, y) : x ≼ y and x, y ∈ X} be the set of increasingly ordered pairs
of instances whose ordering relations are known. Here, X is a set of n training
instances. Other order learning algorithms [18, 20, 24, 41] assume that the
ordering relation for every pair of training instances is known. In other words,
it is assumed that L is a linear ordering of instances:

(x, y) ∈ L or (y, x) ∈ L for all x, y ∈ X . (33)

Note that both (x, y) and (y, x) belong to L if x ≈ y.
However, such complete ordering information is not always available.

Chainization [19] assumes that only the binary ordering information between
some selected pairs of instances may be available. In other words, a partial
ordering of instances is given,

P = {(x, y) : It is known that x ≼ y} ⊂ L. (34)

16 Lee et al.

The chainization algorithm aims to linearly extend or ‘chainize’ a partial
ordering P to a linear ordering L. Furthermore, if L is estimated reliably, order
learning performance can be enhanced by using L as auxiliary information for
training. Let us describe the chainization process in detail.

Graph representation of ordering: A partial ordering P of instances in X
is represented by a directed acyclic graph G = (V, E). Let V = {v1, v2, . . . , vn}
and E = {(vi, vj) : (xi, xj) ∈ P} be the vertex set and the edge set, respectively.
In the initial graph, each vertex vi corresponds to an instance xi ∈ X . However,
all vertices, whose corresponding instances are equal (≈) to each other, are
merged into a single vertex. In such a case, incident edges are modified
accordingly. Therefore, each vertex represents a set of one or more instances.

After constructing the graph G, the linear extension of P to L can be
regarded as finding a vertex sorting function

σ : V → {1, 2, . . . , |V|} (35)

satisfying the constraint

σ(vi) < σ(vj) for all (vi, vj) ∈ E . (36)

Note that σ(·) is a sorting index. For example, σ(vi) = 1 means that vi is the
first in the sorted list of all vertices. If σ is obtained, a linear ordering L can
be easily derived from σ;

L = {(xi, xj) : σ(vi) ≤ σ(vj) and xi, xj ∈ X} (37)

where vi and vj are the vertices containing xi and xj , respectively. Note that a
linearly extended ordering L is not unique in general. There are many possible
linear orderings extended from the same partial ordering P . Among them, we
aim to determine a desirable linear ordering, which sorts all instances in X in
a meaningful way.

Comparator: To obtain such an ordering, the chainization algorithm [19]
uses a pairwise comparator. It has the same architecture as the comparator in
OL [24], except that it classifies the ordering between instances x and y into
two cases: x ≼ y or x ≽ y. Chainization first trains the comparator using the
known ordered pairs in P. The training loss is given by

ℓ = [x ̸≈ y]ℓce(p
xy, qxy) + [x ≈ y]D(pxy∥qxy) (38)

where [·] is the indicator function. Also, pxy = (pxy≼ , pxy≽) and qxy = (qxy≼ , qxy≽)
are the softmax probabilities yielded by the comparator and ground-truth
one-hot vector. If x ≺ y or x ≻ y, they use the cross-entropy loss ℓce as in
OL [24]. However, if x ≈ y, they set qxy≼ = qxy≽ = 0.5 and use the KL-divergence
D, instead of the cross-entropy.

Order Learning – An Overview 17

Algorithm 1 Chainization
Input: Directed acyclic graph G = (V, E) for P
1: Train a comparator on P for warm-up epochs;
2: repeat
3: Q ← ∅; t← 1;
4: Add all vertices v ∈ V with δ(v) = 0 to Q;
5: while Q ≠ ∅ do
6: Remove the optimal v∗ in (40) from Q;
7: σ(v∗)← t; t← t+ 1;
8: for all adjacent vertex w of v∗ in G do
9: Remove edge (v∗, w) from E ;

10: if δ(w) = 0 then
11: Add w to Q;
12: end if
13: end for
14: end while
15: Obtain a chain from the sorting function σ;
16: Shorten it to yield the linear ordering L in (41);
17: Build a set T of pseudo pairs;
18: Fine-tune the comparator on P ∪ T ;
19: until predefined number of epochs;
Output: Linear ordering L, comparator

Chainization: To determine the sorting function σ in (35), Lee and Kim
[19] developed the chainization algorithm in Algorithm 1, by extending Kahn’s
topological sorting algorithm [15]. However, whereas the Kahn’s algorithm
obtains an arbitrary linear extension of P, chainization yields a meaningful
linear ordering by estimating missing ordering information, not included in P ,
using the pairwise comparator.

Chainization iteratively selects a vertex v from the graph G and appends
it to the sorted list. In other words, at iteration t, it selects v and set σ(v) = t.
First, it forms a set Q = {v : δ(v) = 0 and v ∈ V}, where δ(·) denotes the
indegree of a vertex. Second, it selects an optimal vertex v∗ from Q, which
is most likely to contain the smallest instances (e.g. the youngest people in
age estimation). To this end, the probability that a vertex v precedes another
vertex w is defined as

p(v, w) =
1

kl

k∑
i=1

l∑
j=1

p
xiyj

≼ (39)

where v = {x1, . . . , xk} and w = {y1, . . . , yl}. It also defines the priority score
π of each vertex v ∈ Q as π(v) =

∑
w∈Q:w ̸=v p(v, w). Then, it chooses the

18 Lee et al.

highest-priority vertex

v∗ = argmax
v∈Q

π(v) (40)

and set σ(v∗) = t. Chainization repeats this process until Q = ∅ and thus
σ(v) is determined for all v ∈ V.

Pseudo pair sampling: The sorting function σ lists all vertices in V in-
creasingly, which can be represented by a chain as illustrated in Figure 7. Let
(w1, w2, . . . , w|V|) denote this chain, where wi = vj if σ(vj) = i. Note that
adjacent vertices in the chain may contain instances equal to another, since
the graph representation is performed without full annotations of instance
equalities (≈).

Therefore, chainization merges vertices in the chain, which likely come
from the same underlying class. Specifically, it merges the adjacent vertices wi

and wi+1 with the lowest probability p(wi, wi+1) in (39) into one vertex. This
is because a low p(wi, wi+1) implies that the instances in wi are not clearly
smaller (≺) than those in wi+1, and all those instances may belong to the
same class.

The linear ordering L can be derived from the shortened chain by

L = {(x, y) : x ∈ wi, y ∈ wj and i ≤ j}. (41)

Notice that L is obtained using the output of the comparator in (39), which is
trained on the partial ordering P. The additional information in L, in turn,
can be used to fine-tune the comparator. To this end, as shown in Figure 7,
chainization forms a set T of pseudo training pairs by sampling ordered pairs
(x, y), where x ∈ wi, y ∈ wj , and j − i > τ , and add them to T . Here, τ is a
sampling threshold.

Then, chainization fine-tunes the comparator using the augmented training
set P∪T and re-estimates the linear ordering L with the fine-tuned comparator
alternately.

Figure 7: An overview of chainization. This figure is from [19].

Order Learning – An Overview 19

5 Applications

In this section, we summarize and compare the results of the order learning
algorithms in various applications, including facial age estimation, HCI clas-
sification, and aesthetic quality assessment. Note that these order learning
algorithms can also be applied to other tasks as well, such as image retrieval,
aesthetic image cropping, and medical assessment, but we do not address such
tasks in this survey paper.

5.1 Facial Age Estimation

Facial age estimation is a vision task to predict the real or apparent age from
a person’s facial image. It is one of the most popular rank estimation tasks.

5.1.1 Datasets

MORPH II [33]: It is the most widely used dataset for facial age estimation,
containing about 55,000 facial images of 13,617 subjects in the age range [16,
77]. In each image, the gender and race labels are annotated as well. Most
rank estimation algorithms employ the four evaluation settings A, B, C, and
D.

• Setting A: 5,492 images of Caucasians are sampled and then randomly
split into train and test sets with a ratio of 8:2.

• Setting B: About 21K images of Caucasians and Africans are randomly
chosen so that the ratio between Caucasians and Africans is 1:1 and that
between females and males is 1:3. Then, it is divided into three subsets
(S1, S2, S3). The training and testing are repeated twice; 1) training
on S1, testing on S2+S3, and 2) training on S2, testing on S1+S3. The
average scores of two evaluations are reported.

• Setting C: The whole dataset is randomly divided into five folds with
the constraint that images of the same person should belong to only one
fold. Then, the 5-fold cross-validation is performed.

• Setting D: The whole dataset is randomly split into five folds without
any constraint. Then, the 5-fold cross-validation is performed.

CACD [8]: It contains about 160,000 images of 2,000 celebrities, which are
divided into three subsets by celebrities: 1,800 for training, 80 for validation,
and 120 for testing. The age range is [14, 62].

UTK [49]: It provides about 20,000 facial images, which are divided into
13,147 for training and 3,287 for testing, in the age range [0, 116].

20 Lee et al.

Adience [21]: It is for age group estimation. It contains 26,580 facial images
of 2,284 subjects, which are grouped into 8 classes: 0-2, 4-6, 8-13, 15-20,
25-32, 38-43, 48-53, and over 60-year-olds. The 5-fold subject-exclusive (SE)
cross-validation evaluation setting is widely used.

IMDB-WIKI [34]: It contains about 500,000 celebrity images, crawled
from IMDB and Wikipedia. It is only used for network pre-training [23, 32,
34, 44, 46].

5.1.2 Comparative Assessment

Table 1 compares the rank estimation results on MORPH II. For evaluation,
the mean absolute error (MAE) and cumulative score (CS) metrics are adopted.
MAE is the average absolute error between predicted and ground-truth ages,
and CS is the percentage of test instances whose absolute errors are less than
or equal to 5. Note that all algorithms in Table 1 employ VGG16 as the
encoder backbones, except for C3AE using a shallow CNN.

In most tests, order learning algorithms outperform other age estimators,
indicating that order learning is effective for age estimation. Non-order-learning
algorithms BridgeNet and AVDL — which are based on ordinal regression —
show good results. However, DRC-ORID, MWR, and GOL achieve better or
comparative scores than these non-order-learning algorithms.

Table 1: Comparison of facial age estimation results in the four evaluation settings (A, B, C,
and D) of MORPH II. Here, * means that IMDB-WIKI pre-training is performed.

Setting A Setting B Setting C Setting D

Algorithm MAE CS(%) MAE CS(%) MAE CS(%) MAE CS(%)

OR-CNN [30] - - - - - - 3.27 73.0
Tan et al. [50] - - 3.03 - - - - -
Ranking-CNN [9] - - - - - - 2.96 85.0
DEX [34]* 2.68 - - - - - - -
DMTL [14] - - - - 3.00 85.3 - -
CMT [48] - - - - 2.91 - - -
DRFs [39] 2.91 82.9 2.98 - - - 2.17 91.3
AGEn [44]* 2.52 85.0 2.70 83.0 - - - -
MV [32]* - - - - 2.79 - 2.16 -
C3AE [7]* - - - - - - 2.75 -
BridgeNet [23]* 2.38 91.0 2.63 86.0 - - - -
AVDL [46]* 2.37 - 2.53 - - - 1.94 -

OL [24]* 2.41 91.7 2.75 88.2 2.68 88.8 2.22 93.3
DRC-ORID [18]* 2.26 93.8 2.51 89.7 2.58 89.5 2.16 93.5
MWR [41]* 2.24 93.5 2.55 90.1 2.61 89.5 2.16 93.0
GOL [20] 2.17 93.8 2.60 89.3 2.51 90.0 2.09 94.2

Order Learning – An Overview 21

Table 2: Comparison in the train and validation settings of CACD and also on UTK and
Adience. OL and DRC-ORID do not provide their results on these datasets.

Train Validation UTK Adience

Algorithm MAE MAE MAE Acc. MAE

OR-CNN [30] - - - 56.7 0.54
dLDLF [40] 4.73 6.77 - - -
AGEn [44] 4.68 - - - -
CNNPOR [26] - - - 57.4 0.55
DRFs [39] 4.64 5.77 - - -
GP-DNNOR [28] - - - 57.4 0.54
SORD [10] - - - 59.6 0.49
CORAL [3] - - 5.47 - -
Gustafsson et al. [12] - - 4.65 - -
POE [22] - - - 60.5 0.47
Berg et al. [1] - - 4.55 - -

MWR [41] 4.76 5.75 4.49 62.2 0.46
GOL [20] 4.52 5.58 4.35 62.5 0.43

Next, Table 2 compares the performances on the CACD, UTK, and Adience
datasets. The order learning algorithms provide decent results on these datasets
as well. Note that [12] and [1] adopt the deeper ResNet50 as their encoder
backbones, while the order learning algorithms employ VGG16. Nevertheless,
both MWR and GOL outperform them on the UTK dataset. Also, the order
learning algorithms outperform the other algorithms with a large performance
gap on the Adience dataset.

Table 4 compares the complexities of some age estimators. We see that
the order learning algorithms demand fewer parameters than the conventional
non-order-learning algorithms DEX and MV. Even with relatively lightweight
architecture, the order learning algorithms estimate the ranks more effectively.

5.2 HCI Classifiacation

HCI is a task to determine the decade when a photograph was taken. The
HCI dataset [31] contains images from five decades 1930s ∼ 1970s. There
are 265 images in each decade. These images are randomly split into three
subsets: 210 for training, 5 for validation, and 50 for testing. Then, the 10-fold
cross-validation is performed.

Table 3 shows the results on the HCI dataset. The order learning algo-
rithms [20, 41] outperform the conventional rank estimators. This indicates

22 Lee et al.

Table 3: Accuracy (%) and MAE comparison on the HCI dataset. OL does not provide its
results on this dataset.

Algorithm Acc. MAE

Frank & Hall [11] 41.4 0.99
Cardoso et al. [4] 41.3 0.95
Palermo et al. [31] 44.9 0.93
RED-SVM [25] 35.9 0.96
Martin et al. [29] 42.8 0.87
OR-CNN [30] 38.7 0.95
CNNPOR [26] 50.1 0.82
GP-DNNOR [28] 46.6 0.76
POE [22] 54.7 0.66

DRC-ORID [18] 44.7 0.80
MWR [41] 52.2 0.60
GOL [20] 56.2 0.55

Table 4: Comparison of model complexities.

Algorithm DEX MV OL DRC-ORID MWR-G GOL Chainization

Parameters (M) 138 138 15.51 45.86 15.77 14.75 15.51

that the order learning algorithms perform well even when only a small number
of training images are available.

5.3 Aesthetic Quality Assessment

Aesthetic quality assessment aims to estimate the aesthetic score of an image.
It is challenging because aesthetic criteria are subjective and ambiguous.

5.3.1 Datasets

Aesthetics [37]: It contains about 15,687 Flickr images in four categories:
nature, animal, urban, and people. Each image was scored from 1 to 5 by
more than five annotators. The median score is regarded as the ground-
truth. As in [10], we randomly divide the whole dataset into three subsets:
75% for training, 5% for validation, and 20% for testing. Then, the 5-fold
cross-validation is performed.

AADB [16]: It provides 10,000 photographs of various themes such as
scenery and close-up. It is divided into 8,500 training, 500 validation, and

Order Learning – An Overview 23

Table 5: Comparison of aesthetic quality assessment results on the Aesthetics dataset.

Nature Animal Urban People Overall

Accuracy Accuracy Accuracy Accuracy Accuracy
Algorithm (%) MAE (%) MAE (%) MAE (%) MAE (%) MAE

OR-CNN [30] 69.8 0.31 69.1 0.33 66.5 0.35 70.4 0.31 69.0 0.33
CNNPOR [26] 71.9 0.29 69.3 0.32 69.1 0.33 69.9 0.32 70.1 0.32
SORD [10] 73.6 0.27 70.3 0.31 73.3 0.28 70.6 0.31 72.0 0.29
POE et al. [22] 73.6 0.27 71.1 0.30 72.8 0.28 72.2 0.29 72.4 0.29

GOL [20] 73.8 0.27 72.4 0.28 74.2 0.26 69.6 0.31 72.7 0.28

Table 6: Comparison of aesthetic quality assessment results on the AADB dataset.

Algorithm Reg-Net ASM DRC-ORID

MAE 0.1268 0.1141 0.1056

1,000 test images. Each image is annotated with an aesthetic score in [0, 1].
These continuous scores are quantized with a step size of 0.01.

5.3.2 Comparative Assessment

Table 5 compares the performances on the Aesthetics dataset. GOL, an order
learning algorithm, outperforms all conventional algorithms. This indicates
that order learning performs reliably in aesthetic assessment as well.

Table 6 compares the results on the AADB dataset. ASM [17] also adopts
pairwise comparison as order learning algorithms. However, DRC-ORID
achieves better results by finding optimal references for each test instance.

5.4 Weakly Supervised Order Learning

Let γ = 100× |P|
|L| denote the percentage of available known pairs in a partial

ordering P over all pairs in the linear ordering L. Hence, the supervised
learning scenario corresponds to γ = 100%. However, at a lower γ, the amount
of information available for training is reduced and the training becomes more
difficult.

Figure 8 compares the results of chainization [19] and OL [24] on the
Adience dataset. Both chainization and OL need reference instances with
known ranks to estimate the rank of an instance. Thus, for each rank, an
instance is randomly selected from the training set as a reference. At all
γ’s, chainization outperforms OL. Especially, at a low γ = 0.005%, OL fails
to obtain a reliable comparator due to the lack of training pairs, whereas
chainization achieves a much higher accuracy by optimizing the comparator

24 Lee et al.

Figure 8: Comparison of chainization with OL on the Adience dataset. The x-axis is in a
logarithmic scale.

Table 7: Comparison of rank estimation results on the Adience dataset.

Algorithm Accuracy (%) MAE

OR-CNN [30] 56.7 ± 6.0 0.54 ± 0.08
CNNPOR [26] 57.4 ± 5.8 0.55 ± 0.08
GP-DNNOR [28] 57.4 ± 5.5 0.54 ± 0.07
SORD [10] 59.6 ± 3.6 0.49 ± 0.05
POE [22] 60.5 ± 4.4 0.47 ± 0.06

Proposed (γ = 0.08%) 60.5 ± 4.2 0.48 ± 0.05
Proposed (γ = 0.03%) 59.7 ± 4.0 0.49 ± 0.05
Proposed (γ = 0.02%) 58.8 ± 4.2 0.51 ± 0.06
Proposed (γ = 0.01%) 58.3 ± 4.5 0.53 ± 0.06

over pseudo pairs. It demonstrates that order learning performance can be
improved via chainization under weakly supervised scenarios.

Table 7 compares results on the Adience dataset. Even with weak super-
vision, the order learning performances of chainization are competitive. For
example, using only 0.03% of the ordering relations in L, chainization performs
better than the others, except for POE [22]. Moreover, at γ = 0.08%, it
reaches the performances of POE. This confirms that order learning can be
effectively applied to weakly supervised scenarios as well.

6 Future Work

The order learning algorithms have shown promising results in various rank
estimation tasks. However, there is still plenty of room for improvement.

Order Learning – An Overview 25

First, these algorithms select a threshold τ heuristically. Note that τ in (1)
determines the ordering relationship between instances. Even though a few
schemes for selecting τ have been analyzed in [24, 41], these schemes require
multiple experiments, which may be too demanding, to find an optimal τ .
Hence, a more systematic way to select an optimal τ should be developed
for wider applications of order learning. Second, an optimal chain division
scheme should be developed. Even for human beings, not every comparison
is easy. Therefore, it is important to discover optimal chains, so instances in
each chain are easily compared with one another. To this end, DRC-ORID [18]
was proposed, but it is inefficient and may not be optimal because it performs
chain clustering and network training separately. One possible way to handle
this issue may be to combine GOL and DRC-ORID so as to enforce instances
to form parallel chains in the embedding space.

7 Conclusions

In this overview, we first provided a survey of the order learning algorithms for
rank estimation. First, we introduced conventional rank estimation algorithms
relevant to order learning. Then, we described the state-of-the-art order
learning algorithms in detail. Finally, we reported the results of order learning
on three representative rank estimation tasks — facial age estimation, HCI
classification, and aesthetic quality assessment — and demonstrated that order
learning performs excellently on these tasks.

References

[1] A. Berg, M. Oskarsson, and M. O’Connor, “Deep ordinal regression with
label diversity,” in ICPR, 2021.

[2] D. P. Bertsekas, Constrained Optimization and Lagrange Multiplier
Methods, Academic Press, 1996.

[3] W. Cao, V. Mirjalili, and S. Raschka, “Rank-consistent ordinal regression
for neural networks,” Pattern Recog. Lett., 140, 2020, 325–31.

[4] J. S. Cardoso and J. F. P. da Costa, “Learning to classify ordinal data:
The data replication method,” Journal of Machine Learning Research, 8,
2007, 1393–429.

[5] K.-Y. Chang and C.-S. Chen, “A learning framework for age rank esti-
mation based on face images with scattering transform,” IEEE Trans.
Image Process., 24(3), 2015, 785–98.

[6] K.-Y. Chang, C.-S. Chen, and Y.-P. Hung, “A ranking approach for
human age estimation based on face images,” in ICPR, 2010.

26 Lee et al.

[7] Z. Chao, S. Liu, X. Xu, and C. Zhu, “C3AE: Exploring the limits of
compact model for age estimation,” in CVPR, 2019.

[8] B.-C. Chen, C.-S. Chen, and W. H. Hsu, “Face recognition and retrieval
using cross-age reference coding with cross-age celebrity dataset,” IEEE
Trans. Multimedia, 17, 2015, 804–15.

[9] S. Chen, C. Zhang, M. Dong, J. Le, and M. Rao, “Using ranking-CNN
for age estimation,” in CVPR, 2017.

[10] R. Diaz and A. Marathe, “Soft labels for ordinal regression,” in CVPR,
2019.

[11] E. Frank and M. Hall, “A simple approach to ordinal classification,” in
ECML-PKDD, 2001.

[12] F. K. Gustafsson, M. Danelljan, G. Bhat, and T. B. Schon, “Energy-based
models for deep probabilistic regression,” in ECCV, 2020.

[13] P. A. Gutiérrez, M. Perez-Ortiz, J. Sanchez-Monedero, F. Fernandez-
Navarro, and C. Hervas-Martinez, “Ordinal regression methods: Survey
and experimental study,” IEEE Trans. Knowl. Data Eng., 28(1), 2015,
127–46.

[14] H. Hu, A. K. Jain, F. Wang, S. Shan, and X. Chen, “Heterogeneous face
attribute estimation: A deep multi-task learning approach,” IEEE Trans.
Pattern Anal. Mach. Intell., 40, 2017, 2597–609.

[15] A. B. Kahn, “Topological sorting of large networks,” Communications
of the ACM, 5(11), 1962, 558–62.

[16] S. Kong, X. Shen, Z. Lin, R. Mech, and C. Fowlkes, “Photo aesthetics
ranking network with attributes and content adaptation,” in ECCV,
2016.

[17] J.-T. Lee and C.-S. Kim, “Image Aesthetic Assessment Based on Pair-
wise Comparison – A Unified Approach to Score Regression, Binary
Classification, and Personalization,” in ICCV, 2019.

[18] S.-H. Lee and C.-S. Kim, “Deep Repulsive Clustering of Ordered Data
Based on Order-Identitiy Decomposition,” in ICLR, 2021.

[19] S.-H. Lee and C.-S. Kim, “Order Learning Using Partially Ordered Data
via Chainization,” in ECCV, 2022.

[20] S.-H. Lee, N.-H. Shin, and C.-S. Kim, “Geometric Order Learning for
Rank Estimation,” in NeurIPS, 2022.

[21] G. Levi and T. Hassner, “Age and gender classification using convolu-
tional neural networks,” in CVPR Workshops, 2015.

[22] W. Li, X. Huang, J. Lu, J. Feng, and J. Zhou, “Learning Probabilistic
Ordinal Embeddings for Uncertainty-Aware Regression,” in CVPR, 2021.

[23] W. Li, J. Lu, J. Feng, C. Xu, J. Zhou, and Q. Tian, “BridgeNet: A
continuity-aware probabilistic network for age estimation,” in CVPR,
2019.

[24] K. Lim, N.-H. Shin, Y.-Y. Lee, and C.-S. Kim, “Order learning and its
application to age estimation,” in ICLR, 2020.

Order Learning – An Overview 27

[25] H.-T. Lin and L. Li, “Reduction from cost-sensitive ordinal ranking to
weighted binary classification,” Neural Computation, 24(5), 2012, 1329–
67.

[26] Y. Liu, A. W. K. Kong, and C. K. Goh, “A constrained deep neural
network for ordinal regression,” in CVPR, 2018.

[27] Y. Liu, A. Wai Kin Kong, and C. Keong Goh, “Deep ordinal regression
based on data relationship for small datasets,” in IJCAI, 2017.

[28] Y. Liu, F. Wang, and A. W. K. Kong, “Probabilistic deep ordinal
regression based on Gaussian processes,” in CVPR, 2019.

[29] P. Martin, A. Doucet, and F. Jurie, “Dating color images with ordinal
classification,” in Proc. ACM ICMR, 2014.

[30] Z. Niu, M. Zhou, L. Wang, X. Gao, and G. Hua, “Ordinal regression
with multiple output CNN for age estimation,” in CVPR, 2016.

[31] F. Palermo, J. Hays, and A. A. Efros, “Dating historical color images,”
in ECCV, 2012.

[32] H. Pan, H. Han, S. Shan, and X. Chen, “Mean-variance loss for deep age
estimation from a face,” in CVPR, 2018.

[33] K. Ricanek and T. Tesafaye, “MORPH: A longitudinal image database
of normal adult age-progression,” in FGR, 2006.

[34] R. Rothe, R. Timofte, and L. V. Gul, “Deep expectation of real and
apparent age from a single image without facial landmarks,” Int. J.
Comput. Vis., 126(2-4), 2018, 144–57.

[35] R. Rothe, R. Timofte, and L. V. Gul, “DEX: Deep expectation of apparent
age from a single image,” in ICCV Workshops, 2015.

[36] T. L. Saaty, “A scaling method for priorities in hierarchical structures,”
Journal of Mathematical Psychology, 15(3), 1977, 234–81.

[37] R. Schifanella, M. Redi, and L. M. Aiello, “An image is worth more than
a thousand favorites: Surfacing the hidden beauty of Flickr pictures,” in
ICWSM, 2015.

[38] B. S. W. Schröder, Ordered Sets: An Introduction, Springer, 2003.
[39] W. Shen, Y. Guo, Y. Wang, K. Zhao, B. Wang, and A. Yuille, “Deep

regression forests for age estimation,” in CVPR, 2018.
[40] W. Shen, K. Zhao, Y. Guo, and A. Yuille, “Label distribution learning

forests,” in NeurIPS, 2017.
[41] N.-H. Shin, S.-H. Lee, and C.-S. Kim, “Moving window regression: A

novel approach to ordinal regression,” in CVPR, 2022.
[42] K. Simonyan and A. Zisserman, “Very deep convolutional networks for

large-scale image recognition,” in ICML, 2015.
[43] Y. Souri, E. Noury, and E. Adeli, “Deep relative attributes,” in ACCV,

2016.
[44] Z. Tan, J. Wan, Z. Lei, R. Zhi, G. Guo, and S. Z. Li, “Efficient group-n

encoding and decoding for facial age estimation,” IEEE Trans. Pattern
Anal. Mach. Intell., 40(11), 2017, 2610–23.

28 Lee et al.

[45] G. Tutz, “Ordinal regression: A review and a taxonomy of models,”
Wiley Interdisciplinary Reviews: Computational Statistics, 14(2), 2022.

[46] X. Wen, B. Li, H. Guo, Z. Liu, G. Hu, M. Tang, and J. Wang, “Adaptive
variance based label distribution learning for facial age estimation,” in
ECCV, 2020.

[47] D. Yi, Z. Lei, and S. Z. Li, “Age estimation by multi-scale convolutional
network,” in ACCV, 2014.

[48] B. Yoo, Y. Kwak, Y. Kim, C. Choi, and J. Kim, “Deep facial age esti-
mation using conditional multitask learning with weak label expansion,”
IEEE Signal Process. Lett., 25, 2018, 808–12.

[49] Z. Zhang, Y. Song, and H. Qi, “Age progression/regression by conditional
adversarial autoencoder,” in CVPR, 2017.

[50] T. Zichang, S. Zhou, J. Wan, Z. Lei, and S. Z. Li, “Age estimation based
on a single network with soft softmax of aging modeling,” in ACCV,
2016.

	Introduction
	Related Work
	Classification
	Ordinal Regression
	Pairwise Comparison

	Preliminary – Order
	Order Learning Algorithms
	Order Learning
	Pairwise Comparison
	Rank Estimation
	K Chain Hypothesis

	DRC-ORID
	Motivation
	Order-Identity Decomposition
	Deep Repulsive Clustering
	Rank Estimation

	Moving Window Regression
	Motivation
	-Rank
	-Regressor
	Moving Window Regression
	Reference Selection

	Geometric Order Learning
	Motivation
	Embedding Space Construction
	Rank Estimation

	Chainization

	Applications
	Facial Age Estimation
	Datasets
	Comparative Assessment

	HCI Classifiacation
	Aesthetic Quality Assessment
	Datasets
	Comparative Assessment

	Weakly Supervised Order Learning

	Future Work
	Conclusions

