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ABSTRACT

In this work, we focus on lightweight and accurate face alignment.
For that purpose, we propose an algorithm design that promotes a
most recently published face alignment method in terms of model size
and computing cost while maintaining high accuracy of face alignment.
Specifically, we construct a lightweight two-stage neural network. The
first stage estimates boundary heatmaps on the facial region, which are
then used to guide the facial landmark position prediction in the second
stage. For the first stage, we compress an HourglassNet-based structure
by reducing the numbers of feature channels and convolutional kernels
and optimizing the structure of Hourglass block by ShuffleNet modules.
For the second stage, we compress the subnet by utilizing DeLighT, a
recently published lightweight version of Transformer. Experimental
results on several standard facial landmark detection datasets show that
the proposed algorithm achieves sharp advances in model compactness
and computing efficiency while keeping a state-of-the-art level of accuracy
in facial landmark detection.
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1 Introduction

Facial landmark detection, or named face alignment, can identify the positions
and sizes of various key parts of the face, which may provide useful information
for subsequent tasks. It is frequently an indispensable task for other computer
vision tasks such as face recognition, face pose estimation and face expression
recognition.

Traditional facial landmark detection algorithms are mainly based on
handcrafted features and require a lot of computation and manual tuning.
These methods usually have difficulty dealing with complex scenes. By contrast,
deep learning based facial landmark detection algorithms have strong feature
extraction capabilities and are able to process highly complex scenes. As such,
recent advances in face alignment are usually based on deep learning technology.

On the one hand, more and more deep learning based face alignment models
have been proposed, which are increasingly capable of accurate and robust
detection of facial landmarks. On the other hand, these models tend to be
increasingly complex in terms of model size and inference speed. In order to
deploy face-related vision applications on low-end computing platforms, it is
often crucial to make lightweight neural network models for the face alignment
task. This has motivated our research in this work.

We propose a lightweight neural network model for face alignment in this
work. Instead of devising a new model completely from scratch, we choose
to optimize an existing state-of-the-art (SOTA) face alignment model [6] that
conducts boundary-aware face alignment with enhanced hourglassNet and
transformer. It has achieved superior accuracy of face alignment. We call it
BAFA model and use it as reference model. Specifically, we follow a two-stage
framework with the first stage estimating the boundary heatmaps and the sec-
ond stage utilizing the estimated boundary heatmaps to guide the prediction of
landmark positions. On each stage, we conduct significant compression to the
network structure, which sharply reduces model complexity and floating-point
computation at comparable prediction accuracies. Major contributions of this
work can be summarized as follows.

• Concise HourglassNet-based subnet for boundary heatmap re-
gression. For the boundary heatmap regression in the first stage, we op-
timize the original reference subnet by utilizing ShuffleNet [19] techniques
and reducing the volumes of feature channels and convolutional kernels.

• Concise Transformer-based subnet for landmark coordinate re-
gression. For the landmark coordinate regression in the second stage, we
also make a major improvement to the original reference subnet by using
DeLighT [9], a recently published lightweight version of Transformer.
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• Superior efficiency and accuracy of the holistic model. With
the two concise subnets integrated, the proposed model reduces the size
and computation of the original reference SOTA model by around 50%
with nearly negligible degradation in accuracy of face alignment in our
experiments.

2 Related Works

2.1 Traditional Machine Learning Based Algorithms

In traditional facial landmark detection methods, handcrafted feature descrip-
tors such as SIFT [7] and HOG [1] are commonly used. Among these methods,
the pose normalization algorithm (PNU) [2] is a representative algorithm
that normalizes facial images to a unified pose, selects landmarks manually,
and learns landmark positions using support vector regression (SVR) [10].
Compared to other traditional algorithms, the PNU algorithm can better
handle problems such as changes in facial pose, occlusion, and expressions.
However, it requires a lot of manual intervention and design, and entails a
high computational cost.

2.2 Deep Learning Based Algorithms

In recent years, many facial landmark detection methods have been proposed
based on deep learning technology. Among these, coordinate regression and
heatmap regression have become two mainstream approaches to facial landmark
detection.

Coordinate regression methods utilize neural networks to learn the
mapping from an input image to facial landmarks coordinates. This method
directly obtains precise coordinates of facial landmarks, but it requires more
training samples and complex network structures. Some effective methods
include: LAB [17] introduces a boundary-aware face alignment algorithm that
estimates boundary heatmaps and utilizes boundary information to accurately
predict facial landmarks. Wing Loss [3] introduces a novel loss function for
robust facial landmark localization using convolutional neural networks. ODN
[20] places a specific emphasis on encoding features in occluded regions and
merging facial geometric features with semantic features. SLPT [18] introduces
a sparse local patch transformer to achieve robust face alignment. BAFA [6]
proposes a boundary-aware face alignment model that firstly predicts boundary
heatmaps and then uses them to guide the landmark coordinates prediction.

Heatmap regression methods utilizes the prediction of heatmaps sur-
rounding facial landmarks to achieve landmark localization. This method is
relatively simple and does not rely on direct coordinate regression, making it
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capable of handling issues such as occlusion and blurriness. However, due to
the discrete nature of heatmap predictions, there may be cases of inaccurate
localization, which may require post-processing or interpolation. Some effective
methods include: AWing [15] enhances the Wing loss function by making
its value approach zero for small errors, resulting in improved accuracy and
robustness. HRNetV2 [14] enhances the network’s perception of details and
local features by multi-branch modules and feature fusion across resolutions.
LUVLi [5] provides a method for predicting the visibility of each landmark
and the algorithm’s confidence, which helps us better understand and analyze
the landmarks in the image. HIH [4] utilizes two types of heatmaps, namely
the original heatmap and the quantization-robust heatmap, to collaboratively
counteract the impact of quantization on the results. MMDN [13] explores the
high-order feature correlations to enhance the robustness of detection. PIPNet
[4] predicts landmark heatmaps and offset values that are used to finally derive
the landmarks positions.

The deep learning based models proposed so far tend to be complex in terms
of size and computation. Therefore, it is crucial to compress face alignment
models while maintaining a good accuracy, such that they may be suited for
applications on low-end platforms.

3 Method

We build our lightweight boundary-aware face alignment (LW-BAFA) model
with reference to BAFA [6], a SOTA face alignment model that has been most
recently published. As BAFA, our proposed lightweight model is composed of
two stages. The first stage estimates boundary heatmaps and the second stage
predicts landmarks positions under the guidance of the estimated boundary
heatmaps. In both stages, careful designs are made to make them lightweight.
The structural diagram is shown in Figure 1, where the first (resp. second)
row corresponds to the first (resp. second) stage. Details about the two stages
(or subnets) are provided in the following subsections.

3.1 Boundary Heatmap Estimation

As in the BAFA architecture, the first stage (or boundary heatmap estimation
subnet) in LW-BAFA is composed of a preprocessing block, four Hourglass
blocks with SDFusion (shallow and deep feature fusion) blocks in between
and a convolution layer, as shown in Figure 1. BAFA [6] mentioned that
the SDFusion module is to connect adjacent hourglass modules and generate
attention maps to enhance the fusion of shallow convolutional outputs and
features obtained from the pyramid pooling module. The module utilizes two
1 × 1 convolutions and one residual module for feature fusion. Additionally,
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Figure 1: Architectural overview of our proposed lightweight boundary-aware face alignment
model. The first row represents the subnet responsible for estimating the boundary heatmap,
while the second row represents the subnet responsible for predicting landmark coordinates.
The remaining portion illustrates the fine structures within the neural network. Further
details about the model can be found in Section 3.

each SDFusion module can predict boundary heatmaps, which can be used
not only for intermediate supervision but also for generating attention maps.
Different from BAFA, the first stage in our proposed LW-BAFA is compressed
by reducing convolution filters and channels and modifying Hourglass blocks
by ShuffleNet modules, as detailed below.

As shown in Figure 1, the preprocessing block contains three residual blocks.
We compress each residual block by reducing the numbers of filters in the
first and second convolution layers. Specifically, the residual block in BAFA is
shown on the left part of Figure 2 and, after the simplification, the residual
block in LW-BAFA is shown on the right.

Furthermore, we modify the Hourglass blocks in BAFA by drawing inspi-
ration from ShuffleNetV2 [8]. In ShuffleNetV2, the residual module adopts
depthwise separable convolution that significantly reduces the parameter count
and computational cost of the model. Moreover, ShuffleNetV2 introduces
channel shuffling operation to enhance the model’s representational capacity
in the channel dimension and improve its nonlinear modeling ability. Other
advantages of the ShuffleNetV2 residual module include reduced correlation
between channels and adaptiveness to inputs of different resolutions. Therefore,
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Figure 2: Comparison between the original residual module and the improved residual
module.

we are motivated to replace the residual units in a traditional Hourglass block
with the lighter-weight residual units from ShuffleNetV2, as shown in Figure 3.
Note that we choose to make the replacement on only the decoder side but
not throughout the whole Hourglass block. This is an empirical decision.

Figure 3: Structural overview of the improved Hourglass block.

3.2 Landmark Coordinate Prediction

The second stage (or landmark coordinate prediction subnet) in LW-BAFA is
composed of convolutional and blur pooling layers, a SAFeature (self-attention-
based feature re-extraction) module and a DeLighT encoder [9], as shown in
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Figure 1. BAFA [6] mentioned that the SAFusion module consists of multiple
branches and utilizes matrix outer product to generate new feature maps,
which are then fused using self-attention mechanism. The purpose of this
module is to extract and integrate key information among different inputs,
thereby aiding in the final prediction results. Compared with BAFA, the major
contribution by LW-BAFA in the second stage is the utilization of DeLighT
encoder instead of vanilla Transformer decoder.

Although Transformer has achieved great successes in addressing various
vision tasks, its multi-head attention mechanism [12, 16] and many layers of
feed-forward networks make the model have a large number of parameters,
heavy computational burden and high storage requirements.

Our work involves replacing the Transformer decoder in BAFA with the
DeLighT encoder, which can make the model more lightweight. Specifically, the
DeLighT encoder reduces the number of heads in the attention mechanism, uses
fewer self-attention mechanisms and feed-forward network layers, and replaces
the ordinary convolution operation with separable convolution. These changes
make the model more compact, lightweight, and still able to maintain high
prediction performance. Therefore, by replacing the Transformer decoder with
the DeLighT encoder, we can reduce the computational burden and storage
requirements of the model without significant impairment to its prediction
accuracy. Note that this replacement strategy was fixed through empirical
study. We explored alternative strategies like replacing the encoder instead of
the decoder in the Transformer, or using the decoder instead of the encoder from
the DeLighT. Among all the replacement strategies we explored, replacing the
Transformer decoder with the DeLighT encoder yielded the best results, and
we ultimately chose it. In order to accommodate the DeLighT encoder in the
network pipeline, necessary interface changes and feature reshapings are made.

3.3 Loss Function

The complete loss function, Loss, is composed of two components, Llm and
Lbh, representing the losses incurred by the landmark coordinates prediction
and the boundary heatmap estimation, respectively. It is specifically defined by

Llm =
1

Nlm

Nlm∑
i=1

||pi − p̂i||2. (1)

Lbh =
1

Nbh

Nbh∑
i=1

ωi||Hi − Ĥi||2. (2)

Loss = Llm + βLbh. (3)

In (1), Nlm denotes the number of facial landmarks, pi and p̂i denote the
predicted coordinates and the ground truth, respectively. In (2), Nbh denotes
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the number of predicted boundary heatmaps (equal to the number of hourglass
blocks), Hi and Ĥi are the i-th predicted boundary heatmap and the i-th
ground truth, respectively, ωi is the weight. In (3), β is a hyperparameter to
regulate the two types of losses, which is set to 0.0001 by default.

4 Experiments

4.1 Implementation Details

Each input image undergoes cropping and resizing to a size of 256 × 256.
Each boundary heatmap is sized to 64× 64. In order to enhance the training
data, random translation (±10%), rotation (±30◦), horizontal flipping (50%),
illumination adjustments (±20%), blurring (10%) and occlusion are performed.
During training, we employ an Adam optimizer with an initial learning rate
of 1× 10−4 and β1 and β2 values of 0.5 and 0.9, respectively. The network is
trained on one GPU (NVIDIA 3090 24GB) for 150 epochs, and the learning
rate is reduced to 1/10 of the previous value for twice at the 90th and the 120th
epochs. The batch size is 16 and, in the loss function, the weights ωi=1,2,3,4

are 0.25, 0.5, 0.75 and 1.0, respectively.

4.2 Metrics and Datasets

We use Normalized Mean Error (NME), Failure Rate (FR) and Area under
the Curve (AUC) to measure the prediction accuracy. NME is defined as

NME(P, P̂ ) =
1

N

Nlm∑
i=1

||pi − p̂i||2

d
× 100%. (4)

where P and P̂ denote the predicted and annotated coordinates of landmarks,
respectively, pi and p̂i indicate the coordinates of the i-th landmark in P and
P̂ , respectively, N is the number of the facial landmarks, and d is the reference
distance (i.e. the inter-ocular distance) to normalize the error. FR refers to
the percentage of the failed images whose NMEs are above a certain threshold
in the test set. AUC is calculated based on the cumulative error distribution
curve, and a larger AUC value means more images well estimated.

In addition, we use Parameters (Param.), Giga Floating-Point Operations
(GFLOPs) and Frames per Second (FPS) to measure the model complexity.
Param. refers to the number of optimizable weight parameters and measures
the memory requirements of a model, while GFLOPs and FPS measure the
computational efficiency of a model.

The 300 W [11] dataset contains 3,148 images for training and 689 images
for testing. Following the widely used evaluation setting, the test sets usually



Lightweight Boundary-Aware Face Alignment 9

consist of he common set (554 images), the challenging set (135 images) and
the full set (the total 689 images). Each image in 300W is annotated with 68
facial landmarks.

The WFLW dataset [17] contains 7,500 images for training and 2,500
images for testing with 98 landmarks and rich attribute labels. It also has six
different test subsets with attribute labels, such as occlusion, make-up and
illumination.

4.3 Results and Analysis

Figure 4 depicts some results of selected test images from the 300W and WFLW
datasets. For each test image, the ground-truth and predicted landmark
locations are marked with red and green colors in the left image, respectively,
and the boundary heatmap estimated by the proposed method is shown in
the right image. From these examples, it can be observed that our proposed
model can adapt well to various challenging situations. In most of the cases
shown here, the predicted results are close to the ground truth.

(a) 300W

(b) WFLW

Figure 4: Selective results on test images from the 300W and the WFLW datasets. For each
test image, the ground-truth and predicted landmark locations are respectively represented
by red and green points in the left image, while the boundary heatmap estimated by the
first network stage is displayed in the right image.

Evaluation of accuracy on 300W. We conducted a comparative analysis
between our proposed method and various advanced techniques using three
different sets of test, including the common, challenging, and full sets. The
outcomes of the evaluation are presented in Table 1. Among them, BAFA
[6] and AWing [15] achieve the best results. Although our proposed model is
slightly inferior to them, it is still comparable with PIPNet [4] and superior to
all the rest models.

Evaluation of accuracy on WFLW. We conducted a comparison of
different methods on the Testset as well as several subsets, including large
pose, expression, illumination, make-up, occlusion, and blur (we respectively
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Table 1: Comparing with state-of-the-art methods on 300W. Key: [Best, Second Best, Third
Best].

Method Common Challenging Full

AnchorFace 3.12 6.19 3.72
SRN 3.08 5.86 3.64
SRN+HG 3.03 5.38 3.49
LAB 2.98 5.19 3.49

NME(%) ↓ HRNetV2 2.87 5.15 3.32
ACHR 2.83 7.04 4.23
PIPNet 2.78 4.89 3.19
AWing 2.72 4.52 3.07
BAFA 2.71 4.70 3.10

Ours 2.78 4.98 3.21

Table 2: Comparison with state-of-the-art methods on WFLW (Testset). Key: [Best, Second
Best, Third Best].

Method NME(%)↓ FR(%)↓ AUC ↑
LAB 5.27 7.56 0.5323
Wing 5.11 6.00 0.5504
MMDN 4.87 - -
LUVLi 4.37 3.12 0.5777
AWing 4.36 2.84 0.5719
AnchorFace 4.32 2.96 0.5769
PIPNet 4.31 - -
HIHC 4.18 2.96 0.5970
BAFA 4.16 2.32 0.5927

Ours 4.31 2.68 0.5817

substitute lp, exp, ill, m-u, occ and blu to represent them in Table 3). The
comparison results are presented in Table 2 and Table 3. From these tables,
it can be observed that BAFA [6] and HIH [4] consistently achieve the best
results in most cases. Although our proposed model is slightly inferior to them,
it is still comparable with PIPNet [4] and superior to all the rest models.

Evaluation of efficiencies on WFLW. Besides the accuracy, we also
compare the efficiencies of the SOTA models by the metrics of parameter
count, GFLOPs, and FPS on the WFLW dataset. Since we need to run all
these models on our computing platform for this comparison, we are only able
to compare with a subset of the benchmark algorithms that have source codes
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Table 3: Comparison with state-of-the-art methods on WFLW (Subset). Key: [Best, Second
Best, Third Best].

Method lp exp ill m-u occ blu

LAB 10.24 5.51 5.23 5.15 6.79 62.3
Wing 8.75 5.36 4.93 5.41 6.37 5.81
MMDN 8.15 4.99 4.61 4.72 6.17 5.72
LUVLi - - - - - 4.79
AWing 7.38 4.58 4.32 4.27 5.19 4.96
PIPNet 7.51 4.44 4.19 4.02 5.36 5.02
HIHC 7.20 4.19 4.45 3.97 5.00 4.81
BAFA 7.20 4.46 4.07 4.10 4.87 4.66

Ours 7.50 4.67 4.21 4.39 5.10 4.81

Table 4: Comparison with state-of-the-art methods on Parameter count, GFLOPs and FPS
on WFLW. Key: [Best, Second Best, Third Best].

Method Param.(M) GFLOPs FPS(GPU)

PIPNet 45.7 10.5 51.2
AWing 25.1 26.7 32.7
MMDN 16.2 86.46 15.7
SLPT 13.19 6.12 16.1
HRNet 9.7 4.8 7.6
BAFA 19.96 22.23 32.1

Ours 9.48 11.4 34.1

released. Specifically, we are only able to compare with PIPNet [4], AWing
[15], MMDN [13], SLPT [18], HRNet [14] and BAFA [6] of all the benchmark
algorithms reported in Table 1, Table 2 and Table 3. The comparison results
are shown in Table 4. Our model has the smallest number of parameters. In
particular, its parameter count is about 1/5 that of PIPNet, less than 1/2 that
of BAFA and less than 1/2 that of AWing. In terms of GFLOPs, it is inferior
to HRNet abd SLPT but comparable to PIPNet and superior to the rest. In
terms of FPS, it ranks second only to PIPNet.

As shown in Table 4, compared with BAFA, Ours promotes the FPS but
the increase of FPS does not match the sharp decrease of GFLOPs. This can be
explained as follows. On the one hand, the proposed model compression is done
mainly by reducing convolution kernels, reducing convolution to depthwise
separable convolution and reducing heads of attention in the transformer. On
the other hand, convolution and multi-head attention computing have been
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highly parallelized by current systems and environments for deep learning
and, therefore, kernel number, kernel size and head count may not impact the
inference time too much with decent GPU configurations. But, in any way,
reduction of GFLOPs is important since it saves energy for computing and
facilitates running inferences on low-configuration platforms.

Considering all the accuracy and efficiency statistics in Table 1, Table 2,
Table 3 and Table 4, we conclude that our proposed model achieves superior
efficiencies, especially so in terms of parameter count, while maintaining the
SOTA level of accuracy.

5 Conclusion

In this paper, we have proposed a lightweight boundary-aware face alignment
algorithm. It promotes a SOTA two-stage reference face alignment model.
In the first stage for boundary heatmap estimation, it applies ShuffleNet
techniques and reduces feature channel volumes and convolutional kernels to
simply the subnet. In the second stage, it then introduces a concise Transformer-
based subnet for landmark coordinate regression. This improvement is achieved
by utilizing DeLighT, a lightweight version of Transformer. By integrating
these concise subnets, our proposed model achieves superior efficiency compared
to the original reference model with nearly negligible degradation in accuracy.
Compared with other SOTA face alignment models, our proposed model also
achieves superior performance taking both efficiency and accuracy into account.

In the future, we plan to further lighten the network structure as well
as make efficient model design adaptive to various hardware platforms and
operating systems.
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