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ABSTRACT

In remote dynamic hand-gesture recognition, uncertainties in tim-
ing and distance of gesture occurrences, coupled with the subtle
bodily perturbations induced by arm movements, pose substantial
challenges to the accurate extraction of gesture features. In this
paper, we propose a lightweight real-time gesture recognition sys-
tem based on support vector machines. By analyzing the Doppler
features of different motion states, a Doppler weighting factor
was constructed to suppress bodily micro-motion interference in
the range-time spectrum, and achieve foreground extraction of
gesture signals concurrently. Furthermore, prior to the extrac-
tion of HOG features, we employ Gaussian filtering to suppress
abrupt transitions and noise inherent in the gesture signals. This
preprocessing significantly enhances the stability of feature extrac-
tion. Subsequently, the extracted features are input into an SVM
for training and classification. Experimental results demonstrate
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that, for five distinct gestures exhibited in two different states
–– standing and seated –– within a range of 1 to 5 meters, the
recognition accuracy reaches 96%. This proves the feasibility of
the proposed methodology, and its potential to realize real-time
gesture recognition.

Keywords: FMCW radar, hand gesture recognition, machine learning, light-
weight

1 Introduction

As an intuitive human-computer interaction (HCI) technique, remote gesture
recognition has great potential in various applications, such as smart home
control [17] and human behavior recognition [7], garnering widespread attention
in the research field. Various gesture recognition techniques ranging from
camera [1], wearable gloves [8], ultrasound [2] and millimeter wave radar
[9, 10, 14] have been studied. Compared to traditional wearable gloves,
radar has the advantages of non-contact and can recognize gestures without
touching the users. Compared with the gesture recognition of the camera,
millimeter wave radar has a lower cost and can protect the privacy of users
well [15]. Leveraging the azimuth and elevation resolution capabilities of
multi-transmit multi-receive radar systems allows for the acquisition of point
cloud information from targets. The distinctive characteristics of point cloud
features across diverse gestures enable gesture recognition. Literature [16] has
proposed a mobile scatter center model to represent three-dimensional point
clouds, and devised a multi-channel, three-layer convolutional neural network
(CNN) for the learning and classification of multi-dimensional gesture features,
ultimately achieving a remarkable peak classification accuracy of 98.9%. In
another study, Salami et al. [12] point cloud information was employed as
input and subjected to message-passing neural networks for classification and
learning. This approach attained a classification accuracy of 98.1% for 21
gestures at distances ranging from 1.5 to 5 meters, demonstrating efficacy.
The model could be deployed on a Raspberry Pi 4 for real-time recognition,
albeit with inference times of 0.3 to 0.4 seconds per instance. Beyond point
cloud utilization, some scholars have explored gesture recognition at long
distances based on spectrogram data derived from radar signal processing. By
capitalizing on variations in distances across distinct gestures, a study by Suh
et al. [13] employed distance-profile images as classification features. Employing
a three-dimensional convolutional neural network (3-D CNN) and Long-Short
Term Memory (LSTM), the approach achieved a 96% accuracy rate for eight
gestures at a working distance of 1.5 meters. Moreover, Dong et al. [5] utilize
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short-time Fourier transforms to generate feature spectrograms for six gestures.
Classic VGG16 networks were then employed for feature extraction, followed
by the application of traditional machine learning methods for classification,
yielding accuracy surpassing 96%. In summary, the majority of radar-based
remote gesture recognition research has revolved around intricate deep learning
algorithms.

Although many attempts have been made to streamline models, achieving
real-time performance on compact embedded systems remains a significant
challenge. This predicament escalates the practical application costs and
hampers deployment within real-world scenarios. Therefore, there is an urgent
need to delve into lightweight recognition methods to mitigate the application
costs associated with this technology. In response to the constraints posed by
processor and memory resources, along with the challenge of extracting angular
and Doppler spectral information from low signal-to-noise ratio long-range
echoes, this paper introduces a real-time recognition approach that exclusively
extracts features from the range-time spectrum. Through the analysis of
Doppler features corresponding to distinct motion states, a construction of
Doppler weighting factors is proposed to mitigate the influence of bodily micro-
movements on gesture actions, concurrently achieving foreground extraction
of gesture feature spectra. Subsequently, the gesture foreground images are
subjected to Gaussian filtering, then the HOG algorithm is used for feature
extraction and Support Vector Machine (SVM) is used for gesture recognition.
Ultimately, the feasibility of the proposed algorithm is validated through
experimental verification. The contributions of this study can be summarized
as follows:

• We propose a machine learning-based lightweight remote gesture recog-
nition system. By segmenting and extracting gesture spectrum, SVM
algorithm with smaller model parameters can be used to accurately
recognize dynamic gestures of people at different distances and postures.

• Constructing Doppler weighting factors based on distinct motion char-
acteristics enables the suppression of bodily micro-movements while
retaining gesture motion information. A foreground extraction algorithm
is designed on the basis of the factor, effectively reducing subsequent
feature extraction computational complexity while enhancing feature
accuracy.

• Gaussian filtering is applied to the extracted range-time Spectrum, cur-
tailing data fluctuations and noise interference. This operation enhances
the stability of features extracted through Histogram of Oriented Gradi-
ents (HOG), consequently further augmenting the precision of recogni-
tion.
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The rest of this paper is organized as fallows: Section 2 introduces the
details of the proposed method, including FMCW radar signal model, feature
extraction and gesture recognition method. Section 3 presents the experimental
design, results and analysis. Finally, we provide the conclusion of this paper
in Section 4.

2 Methodology

2.1 FMCW Radar Signal Pre-processing

The FMCW radar system utilized in the paper is illustrated in Figure 1. The
synth is employed to generate a FMCW signal, which consists of multiple
frames, with each frame comprising multiple chirps. Three transmitting
antennas are utilized for transmitting the FMCW signal, while four receiving
antennas are used to capture the echo signals reflected by the target. The
transmitted and received signals are mixed together via a mixer to obtain the
analog intermediate frequency (IF) signal. Subsequently, the analog IF signal
is processed by an analog-to-digital converter to obtain the digital IF signal.

Figure 1: The structure of FMCW radar system.
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The FMCW signal from the transmitting antenna can be expressed as

ST (t) = AT cos

(
2π

(
fct+

1

2
µt2
)
+ φ0

)
(1)

where AT is the amplitude of transmitted signal, fc indicates the start fre-
quency, µ = B/T denotes the frequency modulation slope, B is the frequency
modulation bandwidth, T is the frequency modulation period and φ0 signifies
the initial phase of transmitted signal.

Echo signal received by the receiving antenna can be expressed as

SR (t) = AR cos

(
2π

(
fc (t− τ) +

1

2
µ(t− τ)

2

)
+ (φ0 +∆φ)

)
(2)

AR represents the amplitude of received signal, τ = 2 (R0 + vrt) /c indicates
the time delay of received signal, R0 represents the initial range of target to
radar. c is the velocity of light and ∆φ = 4πvrt/λ is the phase shift.

The transmitted FMCW signal and the received echo signal are passed
through a mixer to simplify the sampling operation. Subsequently, the low-
frequency signal is selected as the IF signal. This process can be expressed
as

SIF (t) = AIF cos

(
2π

(
µτt− 1

2
µτ2

)
−∆φ

)
(3)

where AIF is the amplitude of IF signal. Substituting the time delay τ into
(3), the IF signal can be expressed as

SIF = AIF cos

(
2π

(
µ
2 (R0 + vrt)

c
t− 1

2
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2

)
−∆φ

)
(4)

Since τ is very small, the higher power of τ can be ignored. Therefore, the
frequency of IF signals can be simplified as

fIF = µτ = µ× 2 (R0 + vrt)

c
= R× 2µ

c
(5)

According to (6), the range of target relative to the radar can be calculated
by

R = fIF × c

2µ
=

cTfIF
2B

(6)

The range resolution of the radar is defined as the minimum interval
between two adjacent targets that can be expressed as



6 Chen et al.

rres =
c

2B
(7)

Assuming that a target’s radial velocity does not change during a chirp
period, the phase difference in each echo caused by the target motion can
be expressed as ω = (4π∆r) /λ = (4πv · T ) /λ. To measure an unambiguous
velocity, |ω| ≤ π should be met, so that the maximum unambiguous velocity is

vmax =
λ

4T
(8)

where λ is the wavelength corresponding to the start frequency fc.
Assume that the target and radar equipment are far enough away, the rays

of the echo reaching the receiving antenna are parallel to each other. The
arrival time difference of two adjacent Rx can be calculated as ∆t = dr sin θ/c,
and the phase difference δ can be expressed as

δ =
2πdr sin θ

λ
(9)

where θ is the azimuth. To measure an unambiguous azimuth, |δ| < π should
be met. When dr = λ/2, the maximum field of view can be achieved. Then
the azimuth of arrival can be expressed as

θ = sin−1

(
δ

π

)
(10)

After mixing the received FMCW signal to obtain the IF signal, FFT is
performed in the fast time dimension and the slow time dimension respectively,
also known as 2D FFT, as shown in the following equation

S (p, q, t) =

L∑
l=0

(
N∑

n=0

s (n, l, t) e−j2πpn/N

)
e−j2πql/L (11)

where s (n, l, t) is the beat signal, which is first transformed, corresponding to
the transmitted chirp signal and this signal is transformed to the frequency
domain to obtain Doppler–FFT expressed in S (p, q, t).

Then a Range–Doppler Matrix can be obtained from S (p, q, t), as shown
in the following equation

RD (r, v, t) =

∣∣∣∣S ( r

∆rf
,

v

∆vf
, t

)∣∣∣∣ (12)

2.2 Feature Extraction Method

2.2.1 Gesture Recognition Algorithm Overview

The remote gesture recognition process proposed in this paper can be divided
into three segments: data preprocessing, feature extraction, model training
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and classification, as shown in Figure 2. The following is a comprehensive
exposition of each component of the algorithm.

Figure 2: Gesture recognition processing chain.

Data Preprocessing: The data undergoes radar signal processing, encom-
passing distance and velocity dimension FFT operations. The static clutter
suppression is employed to mitigate interference from stationary scenes, and
two pulse cancellation is used to achieve Moving Target Indication (MTI). In
this paper, we introduce a Doppler weighting technique to counteract bodily
micro-movement interference. This method successfully mitigates disturbances
caused by bodily micro-movements during gesture execution, consequently
enhancing recognition accuracy. Furthermore, Doppler-weighting coefficients
are employed to realize dynamic gesture foreground extraction, leading to the
segmentation of range-time spectra produced by gesture motions.

Feature Extraction: The spectra obtained from data preprocessing are sub-
jected to feature extraction. This involves dimension reduction of image data,
yielding one-dimensional feature vectors, thereby reducing the input volume
for classification and recognition algorithms. In this study, the incorporation
of Gaussian filtering techniques prior to HOG feature extraction significantly
enhances the effectiveness of dynamic gesture feature extraction.

Model Training and Recognition: Leveraging the SVM algorithm from the
realm of machine learning, the feature vectors obtained from preprocessing
undergo model training, subsequently facilitating gesture recognition and
classification.
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2.2.2 Body-motion Suppression Algorithm

When an individual performs gesture actions in a standing posture, the swinging
of the arms induces slight bodily oscillations, generating a low-frequency
interference signal. Due to the significant difference in scattering area between
the body and the arms, the resulting echoes from the body overpower those from
the arms. This exerts considerable influence on subsequent feature extraction.
While two-pulse cancellations can suppress static clutter and exhibit certain
inhibitory effects on low-frequency signals, the motion of continuous waving
gestures at far distances is characterized by relatively slow radial velocities
in relation to the radar. Although slightly higher in frequency than bodily
shaking, these gestures still constitute low-frequency signals. Consequently,
designing Moving Target Indication (MTI) filters for both suppressing bodily
micro-movements and retaining gesture signals proves challenging.

In this paper, we propose a Doppler weighting algorithm to suppress bodily
micro-movements while retaining echoes generated by waving gestures. The
underlying principle of this algorithm is rooted in the
disparate Doppler frequency characteristics corresponding to body and gesture
motions. Specifically, gesture actions result in higher Doppler frequencies owing
to their rapid radial velocities, whereas bodily micro movements engender
lower Doppler frequencies due to slower velocities. By leveraging this inherent
distinction, a weighting factor is formulated. This factor magnifies the distance
image associated with the gesture component and diminishes the distance
image linked to bodily micro movements. As a consequence, interference
generated by bodily micro movements is mitigated. Upon analyzing collected
gesture signals, as shown in Figure 3, the following observations are made:

(1) Gesture actions entail higher speeds, leading to Doppler amplitude curves
with peak positions skewed toward the ends, exhibiting asymmetric
distributions.

(2) Due to the relatively low velocities of bodily micro-movements, Doppler
amplitude curves feature larger values around zero, showcasing more
pronounced symmetrical distributions.

Based on the above analysis, by incorporating the peak position of the
Doppler amplitude curve and the cumulative values around zero into the
weighting factor formula, we introduce the Doppler weighting factor calculation
formula in this paper:

Wd (m) = kp ·Wmax (m) + (1− kp) ·Wamp (m) (13)

Wd (m) denotes the value of the weighting factor corresponding to the m
distance bin. kp represents an empirical parameter constrained within the
range of [0, 1]. It serves as a proportionality factor employed to harmonize
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Figure 3: The difference between Doppler generated by bodily micro-movements and gesture
movements.

the weighting of peak position and amplitude accumulation. In this study, in
order to ensure equal consideration of the impact on the two weighting factors,
we set the kp value to 0.5. Wmax (m) and Wamp (m) denote the weighting of
peak position and amplitude accumulation, respectively, for the m distance
bin. The explicit formulations for these parameters are provided as follows:

Wmax (m) =
2|vmax p|
vmax

· max(z)·I
I−1∑
i=0

zi

Wamp (m) = max

 I/2−1∑
i=0

zi

I−1∑
i=I/2+1

zi

,

I−1∑
i=I/2+1

zi

I/2−1∑
i=0

zi

 (14)

For the m distance bin, a fast Fourier transform(FFT) to the slow time
dimension is performed, resulting in the Doppler amplitude sequence z. vmax p

signifies the velocity corresponding to the peak of the Doppler amplitude
sequence, vmax represents the maximum unambiguous velocity, and max (·)
signifies the chosen maximum. The formulation of Wmax (m) is primarily
grounded in the swift nature of gesture motion, where larger values of vmax p

correspond to faster velocities. Furthermore, to account for the influence of
noise, the ratio of the maximum value to the mean is introduced to prevent
noise amplification. Regarding the formulation of Wamp (m), it is mainly
based on the uneven distribution of the Doppler amplitude curve of gesture
movements around the zero point, while the bodily micro-motion Doppler
amplitude curve does not have the above characteristics, so the gesture part can
also be enhanced. As shown in Figure 4, the bodily micro- motion interference
in the processed distance time spectrum has been effectively suppressed.
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Figure 4: Doppler weighting algorithm processing flow.

2.2.3 Foreground Segmentation Algorithm

In remote gesture recognition, the time and distance of gesture actions are
uncertain, which leads to significant differences in the range-time(RT) spectrum
of the same gesture in both time and distance dimensions. The design of
recognition algorithms must address this diversity to accurately extract distinct
gesture features. One approach involves collecting a substantial number of
samples and performing feature extraction on the entire image. This strategy
aims to ensure that gesture distance-profile images, regardless of variations in
time and distance, are correctly recognized. However, this method presents
challenges. On one hand, it increases the length of feature vectors required
to represent a broader range of images, thereby augmenting the number of
parameters in the final recognition model, which is not conducive to the
lightweight of the model. On the other hand, due to the presence of features
that do not belong to gestures, it will inevitably increase the recognition
difficulty of the classifier, resulting in a decrease in recognition accuracy.

To address the aforementioned challenges, this paper introduces a fore-
ground segmentation algorithm based on Doppler weighting factors. Through
statistical analysis of the Doppler amplitude accumulation values within the
weighting factor, this approach facilitates the determination of the starting
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and ending positions of dynamic gestures. Additionally, during the course of a
gesture, continual detection of the foremost edge of the gesture enables the
spatial and temporal segmentation and extraction of gesture motion, thereby
ameliorating the identified issues.

Taking into consideration the Doppler amplitude accumulation coefficient
constructed in the preceding section, denoted as Wamp (m), which characterizes
the Doppler spectral distribution of the distance bin, it can be observed
that when this distance bin exhibits substantial amplitude motion, the ratio
of Wamp (m) will surpass 1 due to the unevenness of the Doppler spectral
distribution. Conversely, when only bodily micro-movements or noise is present,
the ratio of Wamp (m) will tend to approach 1. As a result, by conducting
statistical analysis on the Doppler amplitude accumulation coefficient, it
becomes feasible to ascertain the presence of gesture actions. The algorithm
proposed is delineated as shown in Algorithm 1.

Algorithm 1 Foreground Extraction Algorithm.
Input: Range Profile Ri of size w × 1, Doppler factor Wamp, Arm length in

Range Profile bins narms.
Output: Gesture Foreground Spectrum RText

1: Record the Wamp difference values of the last 10 frames as Wdif .
2: Calculate standard deviation of Wdif and sum up as wgate.
3: Gstart = 0; Gend = 0; Gfront = w.
4: while Gstart = 0 or Gend = 0 do
5: if wgate > 1.2 and Gstart = 0 then
6: Get current frame fstart, Gstart = fstart.
7: Start accumulating Range Profile Ri as RT Spectrum.
8: else if Gstart > 0 and Gend = 0 and wgate ≥ 1 then
9: Find the max value of the Ri position nmax.

10: Find the front position of gesture nfront.
11: if |nfront − nmax| < narms then
12: Gfront = min(Gfront, nfront)
13: end if
14: else if Gstart > 0 and Gend = 0 and wgate < 1 then
15: Get current frame fend, Gend = fend.
16: End accumulating Range Profile Ri.
17: end if
18: end while
19: RText = RT [Gstart : Gend, Gfront : Gfront + narms].
20: return RText
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2.2.4 HOG Feature Extraction With Gauss Filtering

The HOG algorithm, introduced by Dalal and Triggs [4], is an image feature
extraction method designed to effectively capture and extract edge contour
information from images. It has found wide applications in fields such as object
detection. When combined with traditional machine learning methods such as
SVM, it enables rapid and accurate classification and recognition of simple
images.

Due to the substantial influence of Radar Cross Section (RCS) variations
on millimeter-wave radar detection results, significant fluctuations and ran-
dom fluctuations arise in detection outcomes during gesture motion due to
changing body RCS. When the HOG algorithm is directly applied to feature
extraction from the distance-time spectrogram obtained from radar signal pro-
cessing, these intense changes lead to unstable gradient information extraction,
consequently yielding subpar classification results.

In classical edge detection algorithms like the Canny algorithm for image
edge detection, Gaussian filtering is applied to images as a preliminary step
[3]. In image processing, classic filtering operations include mean filtering,
Gaussian filtering, and median filtering [6]. Due to the possibility of blurred
image details caused by mean filtering, while median filtering is mainly used to
remove salt and pepper noise, which is not common in radar signal processing.
Recognizing the analogous nature of feature extraction and edge detection
from the distance-time spectrogram, this paper employs Gaussian filtering
on the distance-time spectrogram obtained from foreground segmentation
before conducting HOG feature extraction, enhancing the stability of feature
extraction.

As the features along the distance dimension lose distinctiveness following
foreground segmentation, the HOG feature extraction method employed in
this study partitions only the temporal dimension direction in terms of cells
and blocks. Furthermore, acknowledging the potential inconsistency in input
feature image sizes due to various algorithmic processes, this paper applies
the HOG algorithm with a fixed number of cells, adaptively computing the
number of image rows contained in each cell. The workflow of the feature
extraction algorithm is depicted below.

2.3 Classification Method

The classifier employed in this study is SVM. SVM is a binary linear clas-
sification model that determines a separating hyperplane by solving for the
parameters corresponding to the maximum margin between two classes of
feature vectors in the feature space, thereby achieving classification [11]. The
conceptual illustration of SVM classification is presented as shown in Figure 5,
with vectors closest to the hyperplane referred to as support vectors. The
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Figure 5: Schematic diagram of SVM.

training process of SVM involves the pursuit of parameters that define the
hyperplane.

Suppose w be the normal vector of the hyperplane, and b represent the
bias term. Through the constraints imposed by support vectors, the optimal
parameters can be determined, maximizing the classification margin. The
equation for the SVM decision hyperplane can be expressed as follows:

wTx+ b = 0 (15)

w is an n dimensional vector parameter, b is a real number, and x represents
a feature vector. Based on the above equation, the distance l from an n
dimensional space point to a line is given by:

l =

∣∣wTx+ b
∣∣

∥ w ∥
(16)

The objective is to find a set of parameters (w, b) that the distances from
the support vectors of the two classes to the hyperplane are maximized. The
hyperplane equation passing through the classes y1 and y2 can be constrained
as: {

wTx+ b = 1 , y = y1
wTx+ b = −1 , y = y2

(17)

Subsequently, the classification interval can be calculated as r = 2/ ∥w∥ .
This further leads to the classification equation:{

wTx+ b ≥ 1 , y = 1
wTx+ b ≤ −1 , y = −1

(18)
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The aim of solving for the optimal hyperplane parameters is to maximize
r2, which is equivalent to minimizing w. This is subject to the constraint:{

min
w,b

1
2∥w∥

2

s.t.y
(
wTx+ b

)
≥ 1

(19)

Introducing Lagrange multipliers gives rise to the dual problem, through
the utilization of the Sequential Minimal Optimization(SMO) algorithm, the
hyperplane parameters (w, b) are determined.

From the above analysis, it is obvious that the SVM classifier is applicable
solely to the optimization of the optimal separating hyperplane in linearly
separable two-class problems. In the case of non-linear problems, the SVM
algorithm employs kernel functions to map the data into higher-dimensional
spaces, thereby transforming them into linearly separable instances. Commonly
used kernel functions include linear, polynomial, and Gaussian kernels. For
addressing multi-class problems, SVM resorts to multiple binary classifications
and ultimately utilizes a voting mechanism to generate the final classification
outcome.

In this paper, the Gaussian kernel is utilized as the kernel function within
the SVM. The Gaussian kernel’s ability to map original data to an infinite-
dimensional feature space is pivotal in effectively capturing intricate data
relationships. Additionally, the Gaussian kernel, characterized by a singular
parameter, simplifies the model adjustment process. However, the selection of
this hyperparameter is critical to the model’s performance. Consequently, a five-
fold cross-validation method is employed for optimal parameter determination.
This approach is instrumental in preventing overfitting and enhancing the
model’s generalization capacity.

3 Experiment

3.1 Experimental Setup

3.1.1 Radar Parameters

Considering the authentic indoor gesture recognition scenarios and aiming for
comprehensive radar coverage, the radar is mounted on a tripod at a height of
2.5 meters with an inclination angle of 30 degrees for data collection. The data
collection scenarios are depicted in Figure 6, where the collection actions are
performed at distances of 1 meter, 3 meters, and 5 meters ahead to acquire
feature spectra at varying distances.

In the radar system, the design of parameters such as ADC sampling rate,
number of samples, pulse repetition period, frame period, and chirp slope is
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Figure 6: Remote gesture data collection scenario.

crucial to ensure both practicality and fulfillment of the application scenario
demands. The considerations are as follows:

(1) The effective range for recognizing remote gestures is within 1 to 5 meters,
taking into account the influence of multipath interference.

(2) Based on empirical tests, certain gesture movements exhibit radial veloc-
ities in the range of ±2m/s. Consequently, the velocity parameter design
necessitates considerations vmax ≥ 4m/s.

(3) To enhance the detection of subtle arm movements, a higher distance
resolution is essential to provide more detailed information.

Considering the above factors, the parameters for remote gesture classifica-
tion are presented in Table 1. From the parameter indicators in Table 2, it
can be seen that the radar parameter is reasonable and can meet the needs of
remote application scenarios.

3.1.2 Datasets Introduction

In the context of remote application scenarios, taking into account the prac-
tical usage of gestures in real-world settings and easy to distinguish from
radar signals, the following five gesture actions were designed. The specific
descriptions of these five gestures are as follows:

(1) Cross Hands: Both hands move upward together to the chest level and
then cross.
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Table 1: Radar parameters for data acquisition.

Parameters Values

Number of TX antennas 3
Number of RX antennas 4
Frequency modulation rate 30 MHz/us
ADC sampling rate 2000 Ksps
ADC samples per chirp 256
Sampling Bandwidth 3840 MHz
Number of chirps per frame 16
Time duration of per frame 40 ms

Table 2: Remote gesture recognition parameter indicators.

Parameters Values

Maximum unambiguous Range 10 m
Range resolution 0.0391 m
Maximum unambiguous Velocity ± 2.98 m/s
Velocity resolution 0.37 m/s

(2) Wave Hands: One hand is lifted to the head’s height, and then it rapidly
swings left and right for about two cycles before returning to the hanging
position.

(3) Click Three Times: One hand is lifted to the head’s height, and then it
quickly moves forward and backward three times in front of the radar
before returning to the hanging position.

(4) Click Two Times: Similar to the triple tap, but the forward-backward
motion is performed only twice.

(5) Click One Time: One hand is lifted to the head’s height and then quickly
returned to the hanging position. The raising and lowering motions
should be coherent.

To capture the genuine distribution of data as effectively as possible, this
datasets was collected from 9 participants in two postures, standing and sitting.
In total, 800 sets of experimental data were collected, forming the datasets for
remote gesture recognition in various poses. The quantities of each gesture
category’s data are depicted in Table 3.
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Table 3: Remote Gesture Datasets overview.

Number Gesture type Perform mode Data size

1 Cross Hands sit 80
stand 80

2 Wave Hands sit 80
stand 80

3 Click Three Times sit 80
stand 80

4 Click Two Times sit 80
stand 80

5 Click One Time sit 80
stand 80

Total Data size 800

3.2 Experimental Results

3.2.1 Body-motion Suppression and Foreground Segmentation Results

To validate the effectiveness of the micro-motion suppression algorithm and fore-
ground extraction algorithm, this section analyzes the impact of micro-motion
suppression on the R-T spectrum and the subsequent effect of foreground
extraction on HOG feature extraction.

When comparing Figure 7, it is evident that the Doppler weighting factors
calculated using Equation (13) exhibit substantial magnitudes at positions
corresponding to gesture actions and considerably reduced values at locations
corresponding to bodily micro-movements. Consequently, the micro-motion
interference is effectively suppressed through weighted computation.

Figure 8 displays the extracted HOG features from range-Doppler spectrum
of different gestures. Throughout these feature extraction processes, consistent
HOG feature extraction algorithm parameters are employed, with a cell size
of 64× 256, a block size of 2× 1, and an image size of 256× 256.

Figure 9 reveals that even for the same gesture, HOG features vary across
different distances. Conversely, the HOG features of the foreground images
obtained through the Doppler factor foreground extraction algorithm maintain
a high level of consistency. Consistency of features for the same gesture across
different distances is pivotal for enhancing gesture recognition accuracy.
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Figure 7: Comparison of bodily micro-motion suppression algorithms.

Figure 8: Comparison of foreground extraction effect and HOG feature extraction.
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Figure 9: Comparison of foreground extraction effects at different distances.

3.2.2 Comparative Analysis of Foreground Segmentation Algorithm

Existing foreground extraction algorithms for long-range gestures often employ
the biaxial projection method, which segments the accumulated range-time
spectrum by projecting it onto different dimensions, thereby achieving a
relatively stable detection outcome [18]. In this section, a comparative analysis
is conducted between the proposed method and biaxial projection method in
terms of their efficacy for foreground extraction from range images, as depicted
in Figure 10.

While the biaxial projection method exhibits stable gesture motion de-
tection, it necessitates a longer temporal window to encompass the entire
gesture motion signal. This compromises real-time performance and renders
it more sensitive to noise. The foreground extraction algorithm proposed in
this study, based on the Doppler factor, enables real-time assessment of each
frame’s signal. Moreover, leveraging the constructed Doppler factor for signal
processing renders the entire algorithm less susceptible to noise, resulting in
more accurate foreground extraction from captured imagery. The accuracy of
gesture classification processed by these two methods are shown in Table 4.

Compared with the biaxial projection method, the proposed method has
an overall improvement of about 5% in recognition accuracy, but still has lower
recognition accuracy for Click Three Times and Click Two Times gestures.
Considering the similarity between these two gestures, directly using the
features extracted from the foreground for classification can lead to significant
confusion. Therefore, in subsequent signal processing, Gaussian filtering is
used to further improve the discrimination of different features.
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Figure 10: Comparison of proposed method and the biaxial projection method.

Table 4: Comparison of recognition accuracy between two methods.

Gesture type Biaxial Projection Proposed Method

Cross Hands 85.6% 96.1%
Wave Hands 93.1% 96.2%
Click Three Times 81.2% 86.2%
Click Two Times 91.2% 86.9%
Click One Time 86.2% 95.6%

Average Accuracy 87.5% 92.2%

3.2.3 Effectiveness Analysis of Gauss Filtering

Gaussian filtering induces image blurring, thereby facilitating the attenuation
of subtle details. This smoothing effect directs edge detection to focus on
prominent variations within the image while being less affected by minor
fluctuations. To assess the role of Gaussian filtering in feature extraction, this
section undertakes a comparative analysis between before and after Gaussian-
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filtered feature maps along with their corresponding classification outcomes.
Given that edges and noise both manifest as high-frequency components

within an image, Gaussian blurring suppresses noise by attenuating high-
frequency information. While this procedure also affects edges, the continuity
inherent to edges is enhanced to some extent due to Gaussian filtering as shown
in Figure 11. Conversely, isolated noise components are further suppressed.
Consequently, calculating gradients using the smoothed image yields more
stable and continuous gradient information, thereby leading to more precise
edge detection outcomes.The accuracy of gesture classification processed by
these two methods is shown in Table 5.

Figure 11: Comparison of Gauss filtering effect and HOG feature extraction.

3.2.4 Algorithm Effectiveness Evaluation through Ablation

In this section, a series of ablation experiments are conducted on the algorithms
employed within the entirety of the signal processing pipeline, aiming to validate
the efficacy of each algorithm and assess the consistency of their contributions
to the improvement of recognition outcomes.
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Table 5: Comparison of Gaussian filter for improving recognition accuracy.

Gesture type Raw Spectrum Gauss Filtered Spectrum

Cross Hands 89.0% 89.6%
Wave Hands 78.6% 84.9%
Click Three Times 65.0% 80.0%
Click Two Times 72.5% 82.5%
Click One Time 86.2% 91.9%

Average Accuracy 78.2% 85.8%

Experiment 1 shows the recognition accuracy of removing bodily micro-
motion suppression, Experiment 2 shows the recognition accuracy without
using foreground extraction algorithm, and Experiment 3 shows the recogni-
tion accuracy without Gaussian filtering operation. The accuracy of gesture
classification using SVM is shown in Table 6.

Table 6: Results of ablation experiment.

Gesture type Experiment 1 Experiment 2 Experiment 3

Cross Hands 99.4% 89.6% 97.4%
Wave Hands 95.6% 84.9% 88.1%
Click Three Times 88.8% 80.0% 75.0%
Click Two Times 93.8% 82.5% 91.2%
Click One Time 96.2% 91.9% 94.4%

Average Accuracy 94.7% 85.8% 89.2%

Meanwhile, the extracted features are input into a 6-layer LSTM network
for analysis, thereby validating that the obtained characteristics encompass
temporal information regarding the gesture movements. The recognition
accuracy is depicted in Table 7. The initial accuracy represents the classification
accuracy of the features obtained from the original spectra, and the last
accuracy represents the classification accuracy of the features obtained after
all signal processing.

From the results in Table 7, the HOG feature extracted from the raw
spectra fails to induce convergence in the LSTM network, which suggests a
lack of discernible temporal patterns within the extracted features. Conversely,
HOG feature processed through the proposed methodology achieves a testing
accuracy of 91.6%, indicating that the extracted features already contain
temporal information of the gestures.
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Table 7: Temporal feature validation using LSTM network.

Gesture type Initial Accuracy Experiment 3 Last Accuracy

Cross Hands 0.0% 97.8% 100.0%
Wave Hands 0.0% 80.4% 92.3%
Click Three Times 20.0% 77.1% 84.2%
Click Two Times 0.0% 75.6% 87.5%
Click One Time 0.0% 87.8% 94.9%

Average Accuracy Not Convergent 83.6% 91.6%

Then, the impact of different filters on the recognition results before HOG
feature extraction was compared, as shown in Table 8. It can be seen that due
to the ability of Gaussian filtering to retain edge information, the detection
accuracy of ’Click Three Times’ has been significantly improved.

Table 8: The recognition accuracy using different filters.

Gesture type Mean Filter Median Filter Gauss Filter

Cross Hands 99.3% 98.7% 98.7%
Wave Hands 94.3% 91.2% 96.9%
Click Three Times 87.5% 85.0% 92.5%
Click Two Times 93.8% 93.1% 93.8%
Click One Time 98.8% 97.5% 98.1%

Average Accuracy 94.7% 94.0% 96.0%

Table 9: The recognition accuracy of initial accuracy and after processed.

Gesture type Initial Accuracy Last Accuracy

Cross Hands 89.0% 98.7%
Wave Hands 78.6% 96.9%
Click Three Times 65.0% 92.5%
Click Two Times 72.5% 93.8%
Click One Time 86.2% 98.1%

Average Accuracy 78.2% 96.0%
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Through comparative experimentation, it is evident that micro-motion sup-
pression, foreground extraction, and Gaussian filtering each contribute to the
enhancement of the final recognition accuracy. Moreover, these enhancement
effects exhibit an accumulative nature, thereby attesting to the effectiveness of
the entire signal processing pipeline. Ultimately, the employment of the SVM
algorithm achieves a classification accuracy up to 96%, as shown in Table 9.

4 Conclusion

This paper introduces a novel remote dynamic gesture recognition system
utilizing a 60GHz FMCW radar. By constructing Doppler factors, we achieved
micro-motion suppression of the body and foreground extraction of gestures.
These processes eliminate interference from the background, enabling more
precise feature extraction that accurately targets the gesture segment. As a
result of the combined effects of these two algorithms, there is a noticeable
increase in gesture recognition accuracy. Furthermore, Gaussian filtering
applied prior to feature extraction significantly enhances the effectiveness
of the HOG feature extraction. Ultimately, employing the SVM algorithm
yielded a recognition accuracy of 96% for the five gestures in both standing
and seated positions within the 1-5m detection range. As a continuation of
this research, we will encompass the evaluation of the negative class impact
on gesture recognition, with a particular focus on distinguishing other hand-
gesture actions occurring within the detection range that are not included in
the predefined gesture categories.
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