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ABSTRACT

Behavior recognition using millimeter wave (mmWave) signals
has become a hot topic in recent years. However, existing works
are mainly based on the premise that training samples and test
samples have the same distribution, which leads to weak robustness
of the network model to the environment during actual deployment.
In this paper, we propose a domain adaptation framework for
action recognition based on mmWave radar signals. Specifically,
we use a convolutional neural network to construct our encoder to
extract behavioral features in RF signals, use a semi-supervised
learning method to pre-train the network, and finally we design
a pseudo-label-based fine-grained domain adversarial network to
further train the encoder. We conduct extensive experiments on our
own collected behavioral data and two publicly available datasets.
Experimental results demonstrate the superiority of our method.

Keywords: Human Activity Recognition, Cross Domain, Unsupervised Domain
Adaptation

∗Corresponding author: Binquan Wang, wbq0556@ustc.edu.cn. This work was supported
by National Key R&D Program under Grant 2022YFC0869800 and 2022YFC2503405,
National Natural Science Foundation of China under Grant 62201542, 62172381 and 62302471,

Received 31 August 2023; Revised 22 January 2024
ISSN 2048-7703; DOI 10.1561/116.00000262
© 2024 R. Wang and B. Wang

http://creativecommons.org/licenses/by-nc/4.0/


2 Wang and Wang

1 Introduction

In recent years, with the continuous development of medical healthcare, smart
homes, and monitoring technologies, Human Activity Recognition (HAR) has
gained increasing attention. Rafferty et al. [21] argue that the intensification
of population aging and the advancement of whole-house intelligence have
heightened the demand for a reliable and secure HAR system. Common HAR
technologies currently encompass systems based on wearable devices, such as
various methods outlined by S. Zhang et al. [32], as well as systems grounded in
visual approaches and those reliant on radar sensors, and the various methods
summarized by Wu et al. [27]. The wearable method necessitates users to
don sensor devices, potentially causing discomfort and proving challenging to
implement in security and surveillance contexts. Although computer vision
methods can achieve high precision in recognizing human activities, as high-
lighted by X. Wang et al. [26], they have also prompted concerns about privacy
and security. The radar system can still work normally under conditions such
as poor lighting conditions and occluded targets, which shows that it has
strong robustness to the environment. And it can well solve the disadvantages
of the two methods mentioned above, so using radar as a HAR system is a
very promising direction.

Given the remarkable achievements of deep learning technology across
various fields, it is evident that within the current context of using millimeter-
wave radar for HAR, an increasing number of methods are leveraging deep
learning to achieve behavior recognition after processing the raw radar signals.
Examples of research contributions in this area include the works of Park et al.
[20], Z. Chen et al. [8], Alkasimi et al. [2], and J. Zhu et al. [33]. These meth-
ods combine the advantages of signal processing and neural network feature
extraction to achieve HAR based on radar signals. However, these methods do
not consider the issue of domain shift. Since radar echoes contain information
about not only human movement but also environmental details, position,
angle, and other factors, these specifics comprise the domain information.
Thus, when using radar signals for HAR, it is critical to address the challenge
posed by domain shift.

Currently, most RF-based domain adaptation methods adopt domain
adversarial training methods, such as the methods of B.-B. Zhang et al. [29]
and Q. Chen et al. [7], which only use source domain data for supervised
training in the pre-training stage and ignore the target domain. The role of
data. In the subsequent adversarial training stage, binary adversarial is used.
The domain discriminator only distinguishes whether the input data comes
from the source domain or the target domain, ignoring the specific category
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of the data. There are also some RF-based domain adaptation methods that
use semi-supervised learning methods. For example, the method of B.-B.
Zhang et al. [30] only uses consistency regularization and minimum entropy
regularization to extract unlabeled data features of the target domain. We
think this cannot Fully extract domain-independent information. In response
to the above two problems, we use the pre-training method of semi-supervised
learning to add the target domain data to the pre-training process of the
network and mine the representation information of the data in the target
domain to better realize the migration and generalization of the model. We
use the idea of pseudo-labels to design label values in the domain adversarial
training stage, allowing the encoder and domain discriminator to conduct
more fine-grained adversarial training and optimizing the effect of adversarial
training.

Our main contributions are summarized as follows:

1. We propose a novel cross-domain human activity recognition framework
based on millimeter-wave radar signals. Leveraging the concepts of
pseudo-labeling and unsupervised domain adaptation, we engineer and
embed label values during the domain adversarial phase, followed by
employing a fine-grained domain adversarial approach for training.

2. We employ a semi-supervised approach to pre-train the network to
address the parameter initialization challenge of fine-grained domain
adversarial learning. For pre-training on unlabeled target domain data,
we introduce a consistent regularization method.

3. We collect human activity radar data in various environments and en-
capsulate them into datasets based on the collection scene and location.
Extensive experiments are conducted on these datasets and two publicly
available radar datasets. Our framework achieves better performance
than mainstream domain adaptation methods, demonstrating its superi-
ority.

The rest of this paper is organized as follows. Section 2 introduces the
related work. Section 3 formulates the problem, and introduces our domain
adaptation training method and related network framework. Section 4 presents
the experimental results and analysis, as well as introduces information about
the relevant datasets. Section 5 concludes this paper.

2 Related Work

2.1 Cross-Domain Human Activity Recognition Based on Radar Signals

In the process of radar signal propagation, considering factors such as multi-
path effects and various interferences, the impact of domain shift often becomes
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more prominent. Currently, a substantial amount of research work has been
dedicated to addressing this issue. Lang et al. [16] combine manually extracted
two types of domain-invariant features with convolutional neural networks to
achieve domain adaptation. Q. Chen et al. [7] employ adversarial domain train-
ing to tackle the domain drift issue caused by different radar placement angles.
Khodabakhshandeh et al. [15] evaluate the domain adaptation effectiveness of
two advanced methods on FMCW radar signals and make some improvements.
B.-B. Zhang et al. [30] fuse the ideas of consistency regularization loss and
pseudo-labels to create a cross-domain model for gesture recognition. Jiang
et al. [13] construct a domain adaptation framework by combining domain
adversarial networks with various constraints and test it on WiFi signals,
ultrasound signals, and radar signal data. In this paper, we propose a novel
domain training framework. This method first pretrains the network through
semi-supervised learning and then, based on the results of domain adversarial
training, conducts fine-grained domain adversarial training using the concept
of pseudo-labels.

2.2 Semi-Supervised Learning

Semi-supervised learning differs from supervised learning. Based on the
perspectives of Van Engelen and Hoos [25], semi-supervised learning involves
incorporating unlabeled test set data into the model for training, thereby
effectively alleviating the costly process of data annotation. Mainstream semi-
supervised learning methods introduce loss terms for unlabeled data, enabling
the network to perform well on target domain data. These loss terms can be
categorized into three types: entropy minimization, consistency regularization,
and generic regularization. Currently, there are several commonly used semi-
supervised learning methods, such as MixMatch proposed by Berthelot et al.
[6] and FixMatch designed by Sohn et al. [22]. MixMatch employs the ideas
of entropy minimization and consistency regularization, conducting mixed
training on labeled and unlabeled data. FixMatch uses pseudo-labeling, where
weakly augmented sample outputs are used as pseudo-labels and strongly
augmented samples are employed for loss computation. ReMixMatch, studied
by Berthelot et al. [5], adjusts the label guesses for unsupervised data using the
label distribution of supervised data. Simultaneously, it utilizes the predictions
from weakly augmented samples as targets for training strongly augmented
samples. We plan to use semi-supervised learning methods for network pre-
training with the aim of obtaining reliable pseudo-labels for the target domain.
This will facilitate subsequent fine-grained domain adversarial training.
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2.3 Unsupervised Domain Adaptation

In the domain of unsupervised domain adaptation based on deep learning,
Ben-David et al. [4] propose that the source domain consists of labeled samples,
while the target domain data comprises unlabeled samples, both contributing
to the network training process. Currently, there exist various methods
for domain adaptation. Some methods aim to reduce the generalization
error in the target domain by minimizing the disparity between the two
domains. Examples of such methods include those based on the Maximum
Mean Discrepancy (MMD) statistical criterion, such as the Deep Adaptation
Network (DAN) introduced by Long et al. [18], and the Deep Domain Confusion
(DDC) method proposed by Tzeng et al. [24], where the latter utilizes multi-
kernel MMD. Additionally, certain approaches incorporate the principles of
Generative Adversarial Network (GAN), as originally proposed by Goodfellow
et al. [11], into the framework of unsupervised domain adaptation. Similar
to GAN, these methods generally consist of a domain discriminator and a
feature extractor. For instance, Adversarial Discriminative Domain Adaptation
(ADDA) proposed by Tzeng et al. [23] employs separate encoders for the
source and target domains. The optimization of the target domain encoder’s
network parameters is achieved through domain adversarial loss. Domain-
Adversarial Training of Neural Network (DANN) introduced by Ganin et
al. [10] leverages a Gradient Reversal Layer (GRL) to attain the inverse
optimization objective for the domain discriminator and the feature extractor.
Moreover, certain strategies attempt to make full use of data from both source
domain and target domain to directly synthesize target domain samples. These
synthesized samples are then used to train the network, thereby achieving
domain adaptation. Examples of such methods include CycleGAN proposed by
J.-Y. Zhu et al. [34], and StyleGAN proposed by Karras et al. [14]. In contrast
to previous approaches such as ADDA and DANN, our method employs a
domain adversarial training strategy. When calculating the domain adversarial
loss, we draw inspiration from the approach proposed by Cicek and Soatto [9],
which not only considers the domain information of the input data but also
incorporates specific class information using a pseudo-labeling technique. We
term this approach “fine-grained domain adversarial training.”

3 The Proposed Method

This section introduces the proposed domain adaptation framework. The
overall network is divided into three parts: feature encoder E, activity rec-
ognizer F , and domain discriminator D. The training process comprises two
stages. First, E and F are pre-trained using source domain and target domain
data through semi-supervised learning. Then unsupervised domain adversarial
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training is performed based on pseudo-labels to achieve cross-domain behavior
recognition based on RF signals.

3.1 Problem Formulation

According to the definition provided by Pan and Q. Yang [19], the input of our
model is divided into the source domain Ds and the target domain Dt. In the
source domain, the data consists of labeled samples, while in the target domain,
the data consists of unlabeled samples. The differences between these domains
manifest in the environmental conditions, angles, and locations during data
collection. We define the source domain as (Xs, Y s) = {(xs

i , y
s
i )}

Ns

i=1, where ysi
represents the label corresponding to the ith sample xs

i , and Ns is the number
of samples in the source domain. The set of all unlabeled samples forms the
dataset for the target domain, denoted as Xt = {xt

i}
Nt

i=1, where Nt is the
number of samples in the target domain. Notably, both the source and target
domain data share identical label categories. Our objective is to enhance the
network’s performance on the target domain by utilizing data from both the
source and target domains and employing domain adaptation methods.

3.2 Pre-Training Phase

In the pre-training phase, we optimize the parameters of encoder E and
classifier F using source domain and target domain data, as shown in Figure 1.
The feature encoder E maps the input data to a feature vector Z, while the
classifier F assigns class labels to the features. The goal of the pre-training is
to provide relatively accurate pseudo-labels for subsequent domain adversarial
training.

Figure 1: Pre-training model framework.
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3.2.1 Feature Encoder

Convolutional neural networks (CNNs) are effective feature extraction models.
In this work, we utilize a CNN as the feature encoder E, as depicted in Figure
2. The encoder comprises three stacked CNN layers. Each layer consists of:
a convolution layer with 2D kernels that extracts input features, followed by
batch normalization to standardize the data mean and variance, and then max
pooling to reduce feature size. At the end, a linear layer maps the output to
a high-dimensional vector. We define Θ as the parameter set of the feature
extractor. For a given input X, we can obtain its feature representation as:

Z = E(X; Θ). (1)

Figure 2: The framework of feature encoder.

3.2.2 Activity Recognizer

To effectively predict labels for human activities, we use a fully connected layer
with a nonlinear activation function to map features Zi to a new latent space
Hi ∈ RC , where C is the number of categories of labels. And a softmax layer
is used to obtain the probability vector of activities as follows:

Hi = WF · Zi + bF , (2)
ŷi = Softmax(Hi), (3)

where WF and bF are the parameters of the network, and ŷi is the predicted
result of the network based on the input Hi. Activity Recognizer is essentially
a classifier made up of full connections, which we denote as F .

3.2.3 Semi-Supervised Method for Pre-Training

During pre-training phase, we incorporate both source and target domain
data. This serves two purposes: first, it allows fully utilizing all available data.
Second, since we intend to use a fine-grained domain adversarial approach, we
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need the encoder E to be able to extract target domain-specific features before
conducting this operation. Specifically, we obtain samples from the source
domain, denoted as Xs, as well as samples from the target domain, denoted as
Xt. After applying data augmentation to the source domain data, we compute
the loss function on the source domain data by utilizing the cross-entropy
function, which involves the network’s output values and their corresponding
labels. The loss function on the source domain data is expressed as:

Ls = − 1

|Xs|

|Xs|∑
i=1

C∑
c=1

ysiclog (ŷ
s
ic) , (4)

where |Xs| represents the number of labeled samples, ysi and ŷsi denote the
true label and the network’s predicted category for the input xs

i .
For unlabeled samples Xt, according to the consistency regularization

method proposed by Abuduweili et al. [1], we believe that the network should
produce the same output distribution for samples before data augmentation
and samples after data augmentation. By computing the L2 distance between
the network’s output values before and after data augmentation, we derive the
loss function on the target domain data:

Lt =
1

|Xt|

|Xt|∑
i=1

C∑
c=1

(
ytic − ŷtic

)2
, (5)

where |Xt| represents the number of unlabeled samples, and ytic and ŷtic denote
the predictions of the network before and after data augmentation for the input
xt
ic, respectively. Ultimately, the optimization objective during the pre-training

stage is to combine Ls and Lt to yield:

Lα = Ls + αLt, (6)

where α is the weight parameter of Lt, and Lα represents the optimization
objective for networks E and F .

During the training process, we employ the sharpening method proposed
by Berthelot et al. [6] to encourage the model to generate high-confidence
predictions on unlabeled data, thereby achieving entropy minimization. Addi-
tionally, we utilize the MixUp technique introduced by H. Zhang et al. [31]
to perform joint training by combining data from the source domain and the
target domain.

3.3 Domain Adversarial Training Phase

In this stage, we primarily refine the network parameters of our encoder E
by employing adversarial training between the domain discriminator D and
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the encoder E. This process aims to endow E with domain adaptability. The
framework of our approach is depicted in Figure 3. Conventional domain
adversarial methods commonly use binary adversarial loss to determine if
features are from the source or target domain. In contrast, our method
introduces an adversarial loss involving 2C categories within the network. To
achieve this idea, we design the label for the domain adversarial stage, where
the initial C categories pertain to the source domain, and the subsequent C
categories belong to the target domain, as illustrated in Figure 4. This enables
the adversarial training to not only help the encoder learn domain differences,
but also differentiate between similar actions across domains, achieving a
fine-grained adversarial effect.

Figure 3: Fine-grained domain adversarial training framework.

Figure 4: Concatenation of labels from source and target domain aata.
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3.3.1 Domain Discriminator

The output value dimension of activity recognizer F is equal to the total
number of categories C:

ŷi = F (E (xi)) ∈ RC . (7)

The output value of the domain discriminator D is twice the number of
categories 2C:

ŷdi = D (E (xi)) ∈ R2C . (8)

Similar to the concept of classifier F , D gives the judgment of the behavior
category of the feature vector. The first half is the possibility of the category
on the source domain, and the second half is the possibility of the category of
the target domain, as shown in the Figure 4.

3.3.2 Fine-grained Domain Adversarial Training

Throughout the entire process of domain adversarial training, we implement
an unsupervised training approach, utilizing both source domain data and
target domain data to update networks E and D. Through the preceding pre-
training, our encoder E has already developed a preliminary ability to extract
valuable features on the target domain. Additionally, classifier F can provide
reasonably accurate predictions for samples in the target domain. We utilize
these predictions as pseudo-labels during the fine-grained domain adversarial
training phase. By concatenating these pseudo-labels with zeros, we construct
2C-dimensional labels for domain adversarial training. Our optimization
objective is derived by computing the loss against the output values of the
domain adversarial network D. In the conventional domain adversarial method,
the domain discriminator will distinguish the input features into the source
domain and the target domain, which is a two-classification problem. The
domain discriminator and the feature encoder are trained against each other
so that the feature encoder can extract domain-independent features. The
fine-grained domain adversarial network transforms the original two-class
classification into a 2C category classification problem, where C represents
the specific number of categories, the first C bits represent the category of the
source domain, and the last C bits represent the category of the target domain.
We first use the pseudo-label method to encode the labels for adversarial
training based on the pre-training results, as shown in Figure 4. For the input
data, the domain discriminator will give its predicted value, including which
domain it comes from and the specific behavioral category, so a fine-grained
effect can be achieved when adversarial training with the feature encoder.
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To mitigate potential instability from adversarial training, we adopt several
strategies proposed by Arjovsky et al. [3]. Specifically, we use Mean Squared
Error (MSE) for the loss function. We also replace the Adam optimizer
with stochastic gradient descent (SGD). Furthermore, we remove the sigmoid
activation from the last layer of discriminator D.

For updating network D in our methodology, the domain discriminator
should accurately determine if inputs are from the source or target domain,
and also distinguish between specific behavior categories. First, we concatenate
the pseudo-label values used to train D on the source data. The loss on the
source domain data using MSE is:

Lds (D) =
1

|Xs|

|Xs|∑
i=1

(
D (E (xs

i ))−
[
ŷsi , 0⃗

])2

, (9)

where the 0⃗ represents a C-dimensional vector, and ŷsi is the network’s predicted
value for the input xs

i . We concatenate these to form pseudo-labels for the
domain discriminator, resulting in

[
ŷsi , 0⃗

]
. For the target domain data, given

the input xt
i, we can concatenate to form its pseudo-label from the pre-training

stage, which becomes
[⃗
0, ŷti

]
. We calculate the loss function on the target

domain as follows:

Ldt (D) =
1

|Xt|

|Xt|∑
i=1

(
D

(
E
(
xt
i

))
−

[⃗
0, ŷti

])2

. (10)

In domain adversarial training, the primary role of the feature encoder is to
extract domain-invariant features, thereby preventing the domain discriminator
from distinguishing the categories of these features. For the source domain
data, the pseudo label is

[⃗
0, ŷsi

]
, and for the target domain data, the pseudo

label is
[
ŷti , 0⃗

]
. Consequently, when updating the feature encoder E, we can

formulate the loss functions for the source domain, Les, and for the target
domain, Let, as follows:

Les (E) =
1

|Xs|

|Xs|∑
i=1

(
D (E (xs

i ))−
[⃗
0, ŷsi

])2

, (11)

Let (E) =
1

|Xt|

|Xt|∑
i=1

(
D

(
E
(
xt
i

))
−

[
ŷti , 0⃗

])2

. (12)
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Finally, we can get the overall loss function, where Formula 13 represents the
loss function of the domain discriminator, and Formula 14 represents the loss
function of the feature encoder. During the domain adversarial phase, the
parameters of Networks D and E are updated in an alternating manner.

Ld(D) = Lds + Ldt, (13)
Le(E) = Les + Let. (14)

4 Experiment

In this section, we first collect human activity data in various environments
using FMCW radar. Experiments are then conducted on this dataset and two
publicly available mmWave radar datasets to evaluate the performance of the
proposed network. Finally, ablation experiments are performed to study the
effects of pre-training and fine-grained domain adversarial techniques.

4.1 Baseline Methods

We compare our method to three different deep domain adaptation models:
DANN, ADDA and MixMatch. DANN and ADDA employ domain adversarial
strategies, while MixMatch uses a semi-supervised approach. These three
methods are highly regarded as classic domain adaptation frameworks and
widely applied in radar-based behavior recognition, with ideas referenced
by Jiang et al. [13], Khodabakhshandeh et al. [15], and B.-B. Zhang et al.
[30]. For comprehensive comparison, we use identical feature encoders and
classifiers, and tailor distinct domain discriminators to handle the varying
domain information in each method.

4.2 Data Asugmentation

In order to make better use of existing data and improve the generalization
ability of the training model, data enhancement is very necessary. We adopt a
consistent conventional semi-supervised learning method in the pre-training
stage, and in order to reduce the difference between the original features and
the enhanced features, we perform data augmentation by randomly adding
noise points. After preprocessing the original radar signal, for the features on
each timestamp, we randomly select some feature points and set them to zero:

Ft
(i,j) = 0, t = 1, 2, . . . T, (i, j) ∈ Rand(m) (15)

where Ft
(i,j) is the feature of t-th time dimension, Rand(m) denotes local

feature coordinates to be erased and m is the number of erasing feature.
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4.3 Experiment with our Dsataset

4.3.1 Dataset

We invite 7 volunteers to collect radar data of their various actions at dif-
ferent locations. The data collection process involves capturing six common
actions: standing, walking, squatting, bending, waving, and drinking water.
Figure 5 illustrates distinct indoor environments comprising laboratory setups,
office spaces, and corridor scenarios. Each environment varies in dimensions
and furnishing arrangements, presenting distinct domain-specific information.
Data collection also encompasses diverse angles within the same environ-
ment. For the laboratory setting, radar placements are altered concerning
subjects’ positions and angles, we select three locations centered on the subject:
(1.8m, 0◦), (1.8m, 30◦), and (1.8m, 60◦). In indoor settings, two distinct angles
and positions are chosen: (1.8m, 0◦) and (1.8m, 30◦). In corridor scenarios,
the radar is positioned directly in front of the subjects. Consequently, six
distinct environment configurations are established for the datasets. Each
volunteer is instructed to perform each specific action roughly 30 times at
each location. The entire data collection spans 20 days, yielding a cumulative
total of 11,805 data samples. To facilitate subsequent descriptions, we define
symbolic representations for datasets with distinct domain information, as
outlined in Table 1.

Figure 5: The environment of data collection, from left to right is the laboratory, office and
corridor.

4.3.2 Device Configuration and Signal Processing

We utilize the TI AWR1843 mmWave radar along with the DCA1000 real-
time data acquisition board to gather radar data of various human behaviors.
Our radar signal collection equipment is shown in Figure 6. The left side of
Figure 6 is the front side of the circuit board, we can see the radar array with
3 transmitters and 4 receivers, to the right is the back of the board.

Considering the characteristics of the TI AWR1843 mmWave radar, we
process the raw radar signals into Dynamic Range Angle Images (DRAI). We
employ a 3D-FFT algorithm on the raw signals to extract range, speed, and
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Table 1: Experimental configurations on our dataset.

Symbolic Name Domain Information

Dataset A Laboratory Location (1.8m, 0◦)

Dataset B Laboratory Location (1.8m, 30◦)

Dataset C Laboratory Location (1.8m, 60◦)

Dataset D Office Location (1.8m, 0◦)

Dataset E Office Location (1.8m, 30◦)

Dataset F Corridor Location (1.8m, 0◦)

Figure 6: Radar signal acquisition board.

Figure 7: The calculation process of DRAI sequences.

angle information of human activities, as illustrated in Figure 7. Subsequently,
in the Doppler dimension, we suppress static clutter by zeroing out information
below a velocity threshold. Due to real-time constraints and the complexity
of subsequent network inputs, we perform a weighted sum of this 3D tensor
along the Doppler dimension to reduce data size. Despite the loss of speed
information, we stack 40 frames of Range Angle Images (RAI) together to
form a DRAI. This DRAI serves as the input to the encoder E.
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4.3.3 Results and Discussion

We evaluate the cross-domain capability of the proposed framework, including
factors such as different environments, perspectives, etc. For each set of
experiments, all unlabeled target domain data are used for training, and all
target domain data are used for testing. We will use all the baseline methods
to compare with our method, the relevant experimental configuration and
experimental results are shown in Table 1. The meaning of AB → C is: dataset
A and dataset B are used as source domain data, and dataset C is used as
target domain data.

The configuration and results of each group of experiments are shown in the
Table 2, and the results of baseline method and the proposed framework are
compared. We will analyze the model’s cross-perspective and cross-environment
capabilities based on experimental results. The first three sets of experiments
in Table 2 mainly evaluate the cross-angle capability between different models.
We take the radar data collected from two angles as the source domain, and the
other is the target domain data. All three experiments show that our method
is more accurate. Among them, data set A and data set C are collected from
the front and side of the collected subjects respectively, and they have better
domain adaptability for data set B collected in the oblique direction, and our
method achieves an accuracy rate of 92.82% on this. It is worth noting that we
processed the raw radar data into DRAI, which is highly correlated with the
relative distance and angle between the human body and the radar. And angle
B is between angle A and angle C. We have reason to believe that the data
of angle A and angle C contain information about angle B, and the positive
human behavior data contains high-quality behavioral feature information,
ultimately resulting in higher experimental results for AC toB than the other
two.

The later sets of experiments in the table show the cross-environment
capabilities of different models. We take the data of the laboratory environment
as the source domain, combine the data of the office environment and the
channel environment in different combinations, and construct the source
domain data and the target domain data. The results also show that the
framework domain proposed by us has stronger adaptability. In summary, we
have done extensive experiments on this dataset to verify the ability of our
model across angles, locations, and environments, and our method has the
highest classification accuracy compared to other methods with an average
accuracy of 66.89%, demonstrating the superiority of our framework.
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Table 2: Domain adaptation experiments and results (%).

Methods DANN ADDA MixMatch Ours

AB→C 56.11 54.35 55.22 58.77

AC→B 76.92 74.43 91.53 92.82

BC→A 57.87 46.54 61.95 63.15

AD→F 45.78 46.23 48.96 50.14

ABC→F 52.27 52.38 46.36 53.95

ABC→DE 70.86 69.21 70.96 73.54

ABCDE→F 54.03 52.59 65.75 67.34

ABCF→DE 71.01 70.43 72.64 75.42

Avg 60.61 59.52 64.17 66.89

4.4 Experiment with the Gesture Recognition Dataset

4.4.1 Dataset

Gesture actions, distinct from activities like walking and bending, involve
smaller-scale movements performed by the human body. To evaluate our
framework, we employ the gesture recognition dataset based on millimeter-
wave radar, which was publicly released by Li et al. [17]. This dataset is
collected from 25 volunteers positioned across six distinct environments and
five different locations. Figure 8 showcases various indoor environments and
depicts the radar placement within each environment. The dataset features
the selection of six common gestures and also includes the collection of other
human behaviors as negative samples. Each volunteer is instructed to perform
any type of gesture 5 or 10 times at each location, resulting in a total of 10,650
gesture samples and 13,400 negative samples. In this experiment, we employ
distinct rooms as criteria for categorizing data in different fields, with the
corresponding symbols defined in Table 3.

The radar equipment uses for this data collection is the same as ours, which
is the AWR1843 radar. So for data preprocessing, we use the same process
of generating DRAI. Considering the characteristics of gestures relative to
normal human activities, in subsequent data processing we trim the feature
map size and slightly reduce the time window.

4.4.2 Results and Discussion

In this round of experiments, we evaluate our framework on publicly available
gesture recognition dataset. Since the dataset are mainly collected in different
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Figure 8: The environment in which the data is collected.

Table 3: Experimental configurations on the gesture recognition dataset.

Symbolic Name Domain Information

Dataset A Room 1

Dataset B Room 2

Dataset C Room 3

Dataset D Room 4

Dataset E Room 5

Dataset F Room 6

environments, we design several experiments to test the cross-environment
capabilities of our framework, mainly by configuring the ratio of source domain
data to target domain data. The details and symbol definitions for this dataset
are shown in Table 3. During the experiment, the data from both source
domain and target domain participates in the training of the network. After
the training, the tagged target domain data is used to participate in the
evaluation of the network. The experimental results are shown in Table 4.
Compared with other methods, our framework achieves the highest average
accuracy of 97.25 %, indicating that this approach can significantly improve
model performance in the target domain.

4.5 Experiment with the Open Human Activity Radar Dataset

4.5.1 Dsataset

In this experimental section, we utilize a publicly available dataset provided
by Guendel et al. [12]. This dataset is based on radar data collected from five



18 Wang and Wang

Table 4: Domain adaptation experiments and results (%).

Methods DANN ADDA MixMatch Ours

ABCDE→F 92.53 89.87 92.12 94.45

ABCDF→E 95.75 96.57 96.82 97.99

ABCD→EF 94.08 90.52 96.29 97.63

ABEF→CD 95.17 94.76 97.03 97.82

ABC→DEF 94.17 93.39 96.25 97.37

DEF→ABC 94.77 93.21 97.09 98.21

Avg 94.41 93.05 95.93 97.25

Figure 9: Radar placement of open dataset.

distinct positions within an indoor environment. Figure 9 illustrates these five
radar placement positions along with their varying orientations and angles.
The dataset is gathered from 15 different volunteers and covers a range of
10 distinct activities, including walking, standing, and sitting. As the tenth
activity class in the dataset is categorized as chaotic, we collect a total of 54,720
samples from the well-defined first nine activity classes for our experiment.
Notably, these activities are performed as continuous sequences of actions.
In this experiment, we utilize the radar’s angular position as an indicator
to differentiate data from different domains. The symbolic definitions of the
dataset and their corresponding domain information are presented in Table 5.

In this dataset, a single transmitter and a single receiver are placed at each
position, and the collected radar data can obtain the target’s distance, time
and Doppler information in three fields. Range is the measured distance of the
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Table 5: Experimental configurations on the open dataset.

Symbolic Name Domain Information

Dataset A Radar 1

Dataset B Radar 2

Dataset C Radar 3

Dataset D Radar 4

Dataset E Radar 5

target from the radar, and Doppler represents the radial velocity of the target.
We can get the distance between the target and the radar by calculating the
delay from transmission to reception. In a pulsed UWB radar, each received
radar echo is digitized to generate fast-time samples representing the distance
of targets. By performing measurements over multiple pulse repetitions in the
slow-time domain, it becomes possible to generate a Range Time Map (RTM)
for each Pulse Repetition Interval (PRI). X. Yang et al. [28] utilize this dataset
and processed it into RTMs to accomplish the task of behavior classification.
In this experiment, we also use RTM to implement behavior recognition.

4.5.2 Results and Discussion

We use the data preprocessing method announced by the producer of the
dataset to process the raw data into an RTM heatmap, and then we convert
it to an RGB image and use the image as the input to the network. This
round of experiments mainly evaluates the cross-angle ability of our model.
We design multiple sets of experiments, similar to the previous configuration,
we designate one of the angles as the target domain, the rest of the angles as
the source domain data, and experiments with different ratios of source and
target data. The dataset configuration and results are shown in Table 6. The
average accuracy of domain adaptation of our framework at a single angle
is 82.65%, and the average accuracy on all domain adaptation experiments
is 83.79%, both of which are the highest values among all methods. The
experiments demonstrate the superior performance of our method. Different
from the dataset we collected, the direction of human movement in the public
dataset used in this section is random, causing the domain adaptability of the
model in Section 4.3 to be greatly affected by the radar placement angle. This
also leads to differences in the performance of the model on the two datasets.
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Table 6: Domain adaptation experiments and results (%).

Methods DANN ADDA MixMatch Ours

ABCD→E 76.22 79.53 80.06 82.31

ABCE→D 75.21 77.84 79.67 81.53

ABDE→C 80.43 82.48 83.78 84.11

ABC→DE 77.74 76.56 78.71 80.27

ABD→CE 82.83 82.93 86.08 87.37

ABE→CD 81.93 79.46 85.73 87.16

Avg 79.06 79.80 82.34 83.79

4.6 Ablation Experiment

4.6.1 The impact of the pre-training process and domain adversarial training process
on the model

We propose a framework that includes semi-supervised pre-training and un-
supervised domain adversarial training. To investigate the contributions of
these two training stages to overall performance, we plan to conduct ablation
experiments on our collected radar dataset and the gesture recognition dataset.
We refer to the network trained solely through direct fine-grained domain
adversarial training as Bare Model 1, and the network trained only through
semi-supervised pre-training as Bare Model 2. We compare the results of
domain adaptation from these two models with those of the fully trained Full
Model. The experimental setup and results are presented in Table 7 and
Table 8, where Table 7 presents ablation results on our dataset, while Table 8
presents results on the gesture recognition dataset.

Table 7: Results of ablation experiments on our dataset (%).

Methods Bare Model 1 Bare Model 2 Full Model

ABC→F 20.76 47.34 53.95

ABC→DE 22.65 71.07 73.54

ABCDE→F 24.43 65.98 67.34

ABCF→DE 21.84 72.65 75.42

By comparing the results of Bare Model 1 and Full Model, it becomes evi-
dent that the network trained directly through fine-grained domain adversarial
training performs significantly poorer. This is attributed to the unsupervised
nature of our domain adversarial training, where the encoder and classifier



Cross-domain Behavior Recognition Based on Millimeter-wave Radar 21

Table 8: Results of ablation experiments on the gesture recognition dataset (%).

Methods Bare Model 1 Bare Model 2 Full Model

ABCDE→F 48.22 92.12 93.45

ABCDF→E 47.61 96.82 97.99

ABCD→EF 35.09 96.29 96.63

ABEF→CD 38.83 97.03 97.82

ABC→DEF 23.06 96.25 97.37

DEF→ABC 33.45 97.09 98.21

initially lack the capacity to effectively extract features and classify accurately.
The absence of precise pseudo-label support leads to unstable training and
hindered convergence. On the other hand, comparing Bare Model 2 with Full
Model, we observe a substantial improvement in performance for the Full
Model.

Subsequent fine-grained domain adversarial training will further refine the
outcomes of the pre-trained network, thereby achieving the highest overall cross-
domain performance. The semi-supervised pre-training approach effectively
initializes our network, providing a strong foundation for subsequent fine-
grained domain adversarial training.

4.6.2 Impact of target domain data size

Considering that the target domain data scale may have an impact on model
performance, we conducted another ablation experiment to test the impact
of different target domain data scales on performance. Similar to the above
experiment, we conduct ablation experiments on our own dataset and a public
gesture recognition dataset. We mainly conduct the ABC→DE experimental
group on our data set, and the ABC→DEF experimental group on the gesture
recognition data set, adjusting the scale of the target domain to 100%, 80%,
70%, 50% and 25%, the experimental results are shown in Table 9. From
the experimental results, we can see that as the amount of data in the target
domain is reduced, the performance of the model will not change significantly.
Too little target domain data will have an impact on the performance of the
model.

4.7 Qualitative Asnalysis Esxperiment

In this section, we first conduct comparative experiments using the experimen-
tal group ABC→DE in Table 2 to compare the cross-domain capabilities of
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Table 9: Results of ablation experiments (%).

Dataset size 100% 80% 70% 50% 25%

Our dataset 73.54 71.40 69.27 70.79 66.33

Gesture recognition dataset 97.37 97.19 96.51 95.24 93.08

the proposed model and the cross-domain capabilities after fine-tuning. The
result after fine-tuning the network parameters is 81.43%, the result after
domain adaptation is 73.54%, and the result of using only labeled training is
62.39%. Considering that we cannot use target domain data for fine-tuning in
practical scenarios, the model we proposed has excellent domain adaptability
and application prospects.

The we use the encoder E trained by the experiment ABCF→DE in Table 7
to extract features from the target domain data, and draw t-SNE graphs based
on these feature vectors, as shown in Figure 10. The left picture shows the
result without using the domain adaptation method, and the right picture
shows the result with the domain adaptation method. Similarly, we draw the
t-SNE graph on the gesture recognition dataset based on the training results
of DEF→ABC in Table 8 as shown in Figure 11. It is not difficult to see that
through our domain adaptation method, the feature encoder E can effectively
extract the behavioral information of the target domain. Compared with the
results in the left figure on the right figure, the feature vectors of each category
are clustered closer to each other, and the distance between the feature vectors
of different categories becomes larger, which effectively proves that our method
has excellent domain adaptability.

Figure 10: T-SNE graphs before and after domain adaptation (using our dataset).

5 Conculsion

In this paper, we propose a more general unsupervised domain adaptation
framework for human activity recognition using radar signals. Our framework
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Figure 11: T-SNE graphs before and after domain adaptation (using the gesture recognition
dataset).

consists of an encoder, a classifier and a domain discriminator. The network is
pre-trained through semi-supervised learning. The purpose is to obtain more
accurate pseudo-labels in the target domain, and then perform fine-grained
unsupervised domain confrontation to complete the overall frame training.
We collect radar behavior data in different environments to build a dataset,
and conduct experiments on this dataset and two publicly available radar
datasets to evaluate the performance of our framework. Experimental results
demonstrate the effectiveness and superiority of the proposed framework.
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