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ABSTRACT

Many mathematical models have been leveraged to design em-
beddings for representing Knowledge Graph (KG) entities and
relations for link prediction and many downstream tasks. These
mathematically-inspired models are not only highly scalable for
inference in large KGs, but also have many explainable advan-
tages in modeling different relation patterns that can be validated
through both formal proofs and empirical results. In this paper,
we make a comprehensive overview of the current state of research
in KG completion. In particular, we focus on two main branches
of KG embedding (KGE) design: 1) distance-based methods and
2) semantic matching-based methods. We discover the connections
between recently proposed models and present an underlying trend
that might help researchers invent novel and more effective mod-
els. Next, we delve into CompoundE and CompoundE3D, which
draw inspiration from 2D and 3D affine operations, respectively.
They encompass a broad spectrum of distance-based embedding
techniques. We will also discuss an emerging approach for KG
completion which leverages pre-trained language models (PLMs)
and textual descriptions of entities and relations and offer insights
into the integration of KGE embedding methods with PLMs for
KG completion.
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1 Introduction

Knowledge Graphs (KGs) serve as vital repositories of information for many
real-world applications and services, including search engines, virtual assis-
tants, knowledge discovery, and fraud detection. The construction of KGs
primarily involves domain expert curation or the automated extraction of data
from vast web corpora. Despite the precision achieved by machine learning
models in entity and relation extraction, they can introduce errors during KG
construction. Furthermore, due to the inherent incompleteness of entity infor-
mation, KG embedding (KGE) techniques come into play to identify missing
relationships between entities. Over the past decade, there has been a surge
in interest with the creation of various KGE models as evidenced in Figure
1. As such, it will be valuable to have an overview of extant KGE models to
compare their similarities and differences, as well as a summary of research
resources such as public KGs, benchmarking datasets, and leaderboards. In
this paper, we will give a comprehensive overview of previous developments
in KGE models. In particular, we will focus on distance-based and semantic
matching KGE models. In recent development of KGE models, we have ob-
served an interesting trend of combining different geometric transformations
to improve the performance of existing KGE models. Basic transformations,
including translation, rotation, scaling, reflection, and shear, are simple yet
very powerful tools for representing relations between entities in KG. In this
paper, we will also present how these tools can be combined to come up with
more powerful models.

1.1 Background

KG finds vast and diverse applications. It enables swift retrieval of structured
data about target entities during user searches. For instance, when you
search for a well-known person, place, or popular topic on Google, the Google
Knowledge Panel, shown in Figure 2, accompanies search results, providing
quick insights into the subject of interest. The data source for the Knowledge
Panel is the Google KG, launched in 2012, initially derived from Freebase, an
open-source KG acquired by Google in 2010, and later augmented with data
from sources like Wikidata.

KG information integration extends to various domains, with E-commerce
companies creating user and product KGs and merging them with other KGs
to gain business intelligence. Hospitals and clinics employ KGs to share patient
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(&) More images

Albert Einstein <

Theoretical physicist

Albert Einstein was a German-born theoretical
physicist, widely acknowledged to be one of the
greatest and most influential physicists of all time.
Einstein is best known for developing the theory of
relativity, but he also made important contributions to
the development of the theory of quantum mechanics.
Wikipedia

Born: March 14, 1879, Ulm, Germany

Died: April 18, 1955, Princeton, NJ

Education: University of Zurich (1905), ETH Zirich
(1897-1900), MORE

Children: Eduard Einstein, Hans Albert Einstein,
Lieserl Einstein

Spouse: Elsa Einstein (m. 1919-1936), Mileva Mari¢
(m. 1903-1919)

Awards: Barnard Medal for Meritorious Service to
Science (1920), MORE

Figure 2: Illustration of Knowledge Panel from Google Search.

medical conditions, especially for patients relocating to different areas. Finan-
cial institutions use KGs to track illegal activities such as money laundering.
Moreover, KGs serve as essential information sources for Al-powered virtual
assistants like Siri, Alexa, and Google Assistant. Natural Language Under-
standing (NLU) algorithms analyze dialogs, extracting keywords to locate
relevant KG subgraphs. By traversing these subgraphs, the assistants generate
sensible responses using Natural Language Generation models. KGs also find
applications in music recommendation systems, event forecasting based on
temporal KGs, and more.

KG representation learning has been a subject of intensive research in
recent years and remains a foundational challenge in Artificial Intelligence (AI)
and Data Engineering. KGs are composed of triples, denoted as (h,r,t), where
h and ¢ denote head and tail entities, while r signifies the connecting relation.
For instance, the statement “Los Angeles is located in the USA” is encapsulated
as the triple (Los Angeles, isLocatedIn, USA). KGE plays a critical role in a
range of downstream applications, including multihop reasoning [27, 89], KG
alignment [18, 35, 36], entity classification [39, 113].

The evaluation of KGE models often revolves around the link prediction
task, assessing their ability to predict ¢ given h and r, or h given r and ¢. The
effectiveness of KGE models is determined by how closely their predictions
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align with the ground truth. Designing effective KGE models presents several
challenges. First, KGE needs to be scalable since real-world KGs often contain
millions of entities and relations. Designing embeddings that scale efficiently
to handle large graphs is a significant challenge. Second, KGs are typically
incomplete and subject to continuous updates. It is desirable for embedding
models for handling missing data and capturing temporal dynamics and the
history of relationships. Third, embeddings must also be expressive enough
to capture the complexity of real-world relationships, such as 1-to-N, N-to-1,
N-to-N, antisymmetric, transitive, and hierarchical relations and multi-modal
data. Fourth, some entities and relations are rare. Embeddings should handle
the long-tail distribution of data effectively.

We have collected a list of survey papers as shown in Table 1. Among
these surveys, [6, 9, 11, 19, 50, 74, 83, 109] focus on discussing different
embedding models, whereas [45, 50, 98] discuss the use of KG for reasoning
and different applications. [42] elucidates the evolution of KGs and the reasons
for their invention in a historical context. [45] summarizes methods for the
creation, enrichment, quality assessment, refinement, and publication of KGs,
and provides an overview of prominent open KGs and enterprise KGs. [98]
also discusses the advantages and disadvantages of using KGs as background
knowledge in the context of Explainable Machine Learning. However, none
of these papers discuss the intrinsic connections between different distance-
based embedding models that use geometric transformations. We believe that
this paper will be helpful to the research community by providing a unique
perspective on this topic.

1.2 Our Contributions
Our main contributions in this paper can be summarized as follows.

o We review different KGE models, focusing on distance-based and semantic
matching models.

o We collect relevant resources for KG research, including previously pub-
lished survey papers, major open sourced KGs, and KG benchmarking
datasets for link prediction, as well as link prediction performance on
some of the most popular datasets.

e We discover the connections between recently published KGE models and
propose CompoundE and CompoundE3D, which follow this direction of
thought.

e We discuss recent work that leverages neural network models such
as graph neural networks and pretrained language models, and how
embedding-based models can be combined with neural network-based
models.
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The rest of this paper is organized as follows. In Section 2, we first introduce
existing KGE models in both distance-based and semantic matching-based
categories. We also discuss a number of commonly used loss functions and their
suitability for different types of KGE scoring functions. In Section 3, we present
CompoundE, followed by CompoundE3D, which unifies all distance-based KGE
models that use affine operations. In Section 4, we summarize a list of open
sourced KGs, popular benchmarking datasets for performance evaluation, and
the evaluation metrics used in these datasets. We also provide the recent
leaderboard for some popular datasets. In Section 5, we discuss existing
neural network-based models for KG completion and emerging directions that
use pretrained language models. Finally, in Section 6, we make concluding
remarks.

2 Existing Models

KGE models are often categorized based on scoring functions and tools applied
to model entity-relation interactions and representations. In this paper, we
mainly discuss two major classes, namely 1) distance-based models, and 2)
semantic matching models.

2.1 Distance-based Models

Distance-based scoring function is one of the most popular strategies for
learning KGE. The intuition behind this strategy is that relations are modeled
as transformations to place head entity vectors in the proximity of their
corresponding tail entity vectors or vice versa. For a given triple (h,r,t), the
goal is to minimize the distance between h and ¢ vectors after the transformation
introduced by 7.

TransE [7] is one of the first KGE models that interpret relations between
entities as translation operations in vector space. Let h,r,t € R? denote the
embedding for head, relation, and tail of a triple, respectively. TransE scoring
function is defined as:

fr(h,r) = ||h+r—t||p7 (1)

where p = 1 or 2 denote 1-Norm or 2-Norm, respectively. However, this
efficient model has difficulty modeling complex relations such as 1-N, N-1, N-N,
symmetric and transitive relations. Many later works attempt to overcome
this shortcoming. For example, TransH [115] projects entity embedding onto
relation-specific hyperplanes so that complex relations can be modeled by
the translation embedding model. Formally, let w,. be the normal vector to
a relation-specific hyperplane, then the head and tail representation in the
hyperplane can be written as,
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h) =h—w hw, t,=t—w tw,. (2)

The projected representations are then linked together using the same transla-
tion relationship,
fr(hyr) = by +r—tL]f3. (3)

However, this orthogonal projection prevents the model from encoding inverse
and composition relations. A similar idea called TransR [63] transforms entities
into a relation-specific space instead. The TransR scoring function can be
written as,

fr(hyr) = [M;h+r — M, 3. (4)

However, the relation-specific transformation introduced in TransR requires
O(kd) additional parameters. To save the additional parameters introduced,
TransD [48] uses entity projection vectors to populate the mapping matrices,
instead of using a dense matrix. TransD reduces the additional parameters
from O(kd) to O(k). The scoring function can be written as,

folhyr) = ||(mph) + T ht v — (vt + 1) t]5. (5)

With the same goal of saving additional parameters, TranSparse enforces the
transformation matrix to be a sparse matrix. The scoring function can be
written as,

Frlhot) = IM, (6, B+ 1 =M, (6,) 8] 5. (6)

where 0, € [0,1] is the sparse degree for the mapping matrix M,.. Variants of
TranSparse [49] include separate mapping matrices for head and tail. TransM
[30] assigns different weights to complex relations for better encoding power.
TransMS [131] attempts to consider multidirectional semantics using nonlinear
functions and linear bias vectors. TransF [31] mitigates the burden of relation
projection by explicitly modeling the basis of projection matrices. ITransF
[119] makes use of concept projection matrices and sparse attention vectors to
discover hidden concepts within relations.

In recent years, researchers expand their focus to spaces other than Eu-
clidean geometry. TorusE [28] projects embedding in an n-dimensional torus
space, where [h], [r], [t] € T™ denotes the projected representation of head, re-
lation, tail. TorusE models relational translation in Torus space by optimizing
the objective as follows.

min X —¥l|;- 7
(x,y)€([h]+[r]) x[t] | vl @)

Multi-Relational Poincaré model (MuRP) [3] embeds KG entities in a
Poincaré ball of hyperbolic space. It transforms entity embeddings using
relation-specific Mobius matrix-vector multiplication and Mo6bius addition.
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The negative curvature introduced by hyperbolic space is empirically better in
capturing the hierarchical structure in KGs. However, MuRP has difficulty
encoding relation patterns and only uses a constant curvature. ROTH [13]
improve over MuRP by introducing a relation-specific curvature.

RotatE [94] models entities in the complex vector space and interprets
relations as rotations instead of translations. Formally, let h,r,t € C? denote
the representation of head, relation, and tail of a triple in the complex vector
space. The RotatE scoring function can be defined as,

fr(h,t) = hor —tf. (8)

The self-adversarial negative sampling strategy also contributes to RotatE’s
significant performance improvement compared to its predecessors. Quite
a few models attempt to extend RotatE. MRotatE adds an entity rotation
constraint to the optimization objective to handle multifold relations. HAKE
rewrites the rotation formula in polar coordinates and separates the scoring
function into two components, that is, the phase component and the modulus
component. The scoring function of HAKE can be written as,

fr(hyt) = dp o (h, t) + Xdy p(h, t), (9)
where
drp(h,t) = [[sin((hy + 1, — t,)/2)[]1, (10)
and
drom (B, t) = |[him 0 (£ +17,) /(1 = 17,)) = b [2- (11)

This modification leads to better modeling capability of hierarchy structures
in KG. Rotate3D performs quaternion rotation in 3D space and enables the
model to encode non-commutative relations. Rot-Pro extends the RotatE by
transforming entity embeddings using an orthogonal projection that is also
idempotent. This change enables RotPro to model transitive relations. PairRE
also tries to improve over RotatE. Instead of rotating the head to match the
tail, PairRE [14] performs transformations on both head and tail. The scoring
function can be defined as,

fr(h,t) = [hor™ —torT|, (12)

where h,t € R? are head and tail entity embedding, and r¥,rT € R? are
relation-specific weight vectors for head and tail vectors respectively, and o is
an elementwise product. In fact, this elementwise multiplication is simply the
scaling operation. One advantage of PairRE compared to previous models is
that it is capable of modeling subrelation structures in KG. LinearRE [78] is a
similar model but adds a translation component between the scaled head and
tail embedding. The transformation strategy can still be effective by adding
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it to entity embedding involved in relation rotation. SFBR [61] introduces a
semantic filter which includes a scaling and shift component. HousE [59] and
ReflectE [140] models relation as Householder reflection. UltraE [121] unifies
Euclidean and hyperbolic geometry by modeling each relation as a pseudo-
orthogonal transformation that preserves the Riemannian bilinear form. On
the other hand, RotL [107] investigates the necessity of introducing hyperbolic
geometry in learning KGE and proposes two more efficient Euclidean space
KGE while retaining the advantage of flexible normalization.

2.2 Semantic Matching Models

Another related idea of developing KGE models is to measure the semantic
matching score. RESCAL [76] adopts a bilinear scoring function as the
objective in solving a three-way rank-r matrix factorization problem. Formally,
let h,t € R? denote the head and tail embedding and M, € R%*? is the
representation for relation. Then, the RESCAL scoring function can be
defined as,

fr(h,t) = h"M,t. (13)

However, one obvious limitation of this approach is that it uses a dense
matrix to represent each relation, which requires an order of magnitude more
parameters compared to those using vectors. DistMult [127] reduces free
parameters by enforcing the relation embedding matrix to be diagonal. Let
r € R? be the relation vector. Then, diag(r) € R%*? is the diagonal matrix
constructed from r. Then, the DistMult scoring function can be written as,

fr(h,t) = h'diag(r)t. (14)

However, because the diagonal matrix is symmetric, it has difficulty modeling
antisymmetric relations. ANALOGY [64] has the same scoring function as
RESCAL but instead it attempts to incorporate antisymmetric configurations
by imposing two regularization constraints: 1) M, M, = MM, which
requires the relation matrix to be orthonormal; 2) M, M,. = M,»M,. which
requires the relation matrix to be commutative. HolE [75] introduces circular
correlation between head and tail vectors, which can be interpreted as a
compressed tensor product to capture richer interactions. The HolE scoring
function can be written as,

fr(h,t) =r" (hxt). (15)

ComplEx [101] extends the bilinear product score to the complex vector
space so as to model antisymmetric relations more effectively. Formally, let
h,r,t € C? be the head, relation, tail complex vectors, and t denote the
complex conjugate of the t. The ComplEx scoring function can be defined as,

fr(h,t) = Re({r,h,t)). (16)
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where (-, -, ) denotes trilinear product, and Re(-) means taking the real part of
a complex value. However, relation compositions remain difficult for ComplEx
to encode. SimplE [53] models inverse of relations with an enhanced version of
Canonical Polyadic decomposition. The scoring function of SimplE is defined
as,

fr(h,t) = % ((h,r,t) + (t,r' h)). (17)

TuckER [4] extends the semantic matching model to 3D tensor factorization of
the binary tensor representation of KG triples. The scoring function is defined
as,

fr(h,t):lehXeri),t. (18)

with x,, indicating the tensor product along the n-th mode. QuatE [142]
and DualE [12] extend from the complex representation to the hypercomplex
representation with 4 degrees of freedom to gain more expressive rotational
capability. Let Qp, W,., Q; € H* be the representation of head, relation, and
tail in quaternion space of the form Q = a + bi 4+ ¢j + dd. Then the QuatE
scoring function is defined as,

fr(h,t) = Qr @ W - Q. (19)

Specifically, the normalization of relation vector in quaternion space is defined

as,
W,  ar+bi+ecj+dk

wWip,q,u,v . 20
: )IWI Va2 + 02+ 2 + a2 (20
And the Hamiltonian product in quaternion space is computed as,
QW= (apop—broq—cpou—dyov)
oq+brop+cpov—dpou)i
ap ©q hOD h dp (21)

+ (a )i
+ (apou—bypov+cpop+dyoq)j
+ (apov+bpou—cpoq+dyopk.

And the inner product in quaternion space is computed as,

Ql . QQ = <a1,a2> + <b17b2> + <Cl,62> + <d1,d2>. (22)

However, one disadvantage of these models is that they require very high
dimensional spaces to work well and therefore it is difficult to scale to large KGs.
CrossE introduces crossover interactions to better represent the birdirectional
interactions between entity and relations. The scoring function of CrossE is
defined as,

fr(h,t) =0 (tanh (c, oh+c,ohor+b)t'), (23)

where the relation specific interaction vector c, is obtained by looking up
interaction matrix C € R" %4, Diehdral [123] construct elements in a dihedral
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group using rotation and reflection operations over a 2D symmetric polygon.
The advantage of the model is with encoding relation composition. SEEK
[126] and AutoSF [144] identify the underlying similarities among popular
KGEs and propose an automatic framework of designing new bilinear scoring
functions while also unifying many previous models. However, the search
space of AutoSF is computationally intractable and it is difficult to know if
one configuration will be better than another unless the model is trained and
tested with the dataset. Therefore, the AutoSF search can be time-consuming.
MEI [100] proposes a multi-partition embedding interaction model with block
term format, to systematically control the trade-off between expressiveness
and computational cost. The K local interactions in MEI essentially function
as an ensemble boosting. MEIM [99] further enhances MEI by introducing core
tensor to improve ensemble effects and max-rank mapping by soft orthogonality
to improve model expressiveness.

2.3 Loss Functions

Loss function is an important part of KGE learning. Loss functions are
designed to effectively distinguish valid triples from negative samples. The
ultimate goal of optimizing the loss function is to get valid triples ranked as
high as possible. In early days of KGE learning, margin-based ranking loss is
widely adopted. The pairwise max-margin loss can be formally defined as,

Lp= Y max(0,y+ fr(h,t) = (K1), (24)

(h,r,t)€G

(h',rt")eg’
where (h,r,t) denotes ground truth triple from the set of all valid triples G,
(W', r,t") denotes negative sample from the set of corrupted triples G’. v is the
margin parameter which specifies how different f.(h,t) and f,.(h',¢") should be
at optimum. In fact, a similar loss function is applied to optimize multiclass
Support Vector Machine (SVM) [116]. Both distance-based embedding models,
such as TransE, TransH, TransR, and TransD, and semantic matching-based
models, such as LEM, NTN, and SME have successfully leveraged this scoring
function. [151] proposes a Limit-based scoring loss to limit the score of positive
triples so that the translation relation in positive triples can be guaranteed.

The Limit-based score can be defined as,

Las= > A+ frlht) = fo (W O]+ Afr(hot) = pl e} (25)
(h,r,t)eG
(h',rt")eg’
More recently, a Double Limit Scoring Loss is proposed by [150] to inde-
pendently control the golden triplets’ scores and negative samples’ scores. It
can be defined as,



16 Ge et al.

Lss = Z {[fr(hst) — :up]+ + Alptn — fr(hl7t/)]+}7 (26)
(h,r,t)EG
(W ,r,t")eg’
where 1, > pp > 0. This loss function intends to encourage low distance score
for positive triplets and high distance scores for negative triplets. We can also
trace the usage of a similar contrastive loss from Deep Triplet Network [44]
for different image classification tasks.
Self adversarial negative sampling was proposed in RotatE [94] and can be
defined as,

Lsans = —loga(y — fr(h,t)) Zp b, t) logo(fr (b, t5) — 7). (27)

Cross entropy or negative log-likelihood of logistic models are often used
in semantic matching models where a product needs to be computed. The
negative log-likelihood loss function can be defined as,

Lee= Y, {l+epl—yunry - fr(h 1)} (28)
(hyr,t)EGUG’

Binary cross entropy or Bernoulli negative log-likelihood of logistic is also
a popular loss function which can be defined as,

N,
| N

Lpcp = > wilogpi + (1 — yi) log(1 — py). (29)
€ i=1

The binary cross entropy scoring function is more suitable for neural
network-based models such as ConvE. Although TuckER is a semantic
matching-based model, it also uses binary cross entropy as its loss function
because its implementation is similar to a neural network.

2.4 Connections between KGE Models

Another interesting finding is that we discover the connections between different
recent embedding models. In recent years, there is a trend to design more
effective KGE using affine transformations. In fact, models are related to each
other, and many of the new embedding models emerge from models that only
use the most fundamental operations, such as translation (TransE), rotation
(RotatE), and scaling (PairRE). We illustrate connections between recent KGE
models in Figure 3. For example, MuRE is a Euclidean version of MuRP, a
popular hyperbolic space KGE model proposed in [3]. In MuRE, a diagonal
matrix R € R%*? is applied to the head entity, and a translation vector r € R¢
to the tail entity. The scoring function can be written as,

o(es,r,e,) = —d(Reg, €0 + r)2 + bs + by, (30)
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Figure 3: Connections between different knowledge graph embedding models

where b, and b, are the entity-specific bias terms for head and tail entities,
respectively. This is essentially combining translation and scaling operations
and MuRP implements a similar idea in the hyperbolic space. Similarly in
[13], RotE and RotH are baseline models proposed in Euclidean space and
hyperbolic space, respectively, that essentially apply 2D rotation operators
to head entity embedding in the translational distance scoring function. The
RotE scoring function can be defined as,

s(h,r,t) = d(Rot(®)ep + 1, €;) + by, + by (31)

RefE and RefH can be derived similarly by applying 2D reflection operators.
More recently, [130] combines translation and scaling operations with both
distance-based models (TransE, RotatE) and semantic matching models (Dist-
Mult, ComplEx). Performance improvement in link prediction can be observed
following this approach. SFBR [61] applies semantic filters to distance-based
and semantic matching-based models. One of the more effective MLP-based
filters has diagonal weight matrices, which essentially apply scaling and trans-



18 Ge et al.

lation operations to the entity embeddings. STaR [58] focuses on designing
bilinear product matrices of semantic matching-based models by inserting
scaling and translation components in order to enable the KGE to handle
complex relation types such as 1-N, N-1, and N-N relations.

Similar trend has also been observed in quaternion space KGE that was
first proposed by [142]. DualE [12] introduces translation operations and
combines with quaternion rotations to encode additional relation patterns,
including multiplicity. BIQUE [41] further includes hyperbolic rotations and
scaling operations to better model hierarchical semantics. 3H-TH adds quater-
nion rotation to hyperbolic embedding model MuRP to further improve link
prediction performance.

Quite a few models also leverage scaling operation that is first demonstrated
by PairRE [14] to have good performance in link prediction. Both LinearRE
[78] and TranSHER [60] introduce translation vectors in the scaling-based
scoring functions, but give different interpretations. LinearRE treats triple
encoding as a linear regression problem, whereas TranSHER frames it as
a translating distance model on a hyper-ellipsoid surface. Inspired by the
idea of compounding affine operations for image manipulation, CompoundE
[37] further includes rotation operators to encode non-commutative relation
compositions. Both ReflectE [140] and HousE [59] encodes relations with
householder reflections that have intrinsic symmetry property. ReflectE fur-
ther explores the effect of combining translation vectors for also modeling
antisymmetric relations in KG. On the other hand, HousE evaluates the ef-
fect of having a sequence of householder reflections on the link prediction
performance. However, ATTH [13] was in fact the first work that introduced
reflection operations in KGE. Additional operators have also been applied
to existing KGEs to encode temporal information. For instance, TeRo [124]
applies 2D rotation to head and tail entity embedding in TransE to encode
time-specific information in temporal KG quadruples. Similarly, RotateQVS
[17] adds a time-specific translation vector to entity embedding in Rotate3D
[33], which leverages quaternion rotation. CompoundE3D [38] gets inspired
by the evolution from RotatE to Rotate3D and proposes a KGE that unifies
all geometric operators including translation, scaling, rotation, reflection, and
shear in 3D space. Apart from proposing a unified framework, CompoundE3D
also suggests a beam search-based procedure for finding the optimal KGE
design for each KG dataset.

3 Unified Framework for Distance-based KGE with Affine Transformations:
CompoundE and CompoundE3D

In this section, we will introduce the detailed formulation of CompoundE,
followed by CompoundE3D. For both CompoundE and CompoundE3D, we
have three forms of scoring functions, namely
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e CompoundE-Head

e CompoundE-Tail R
fr(hat): Hh_Mr't”7 (33)

e CompoundE-Complete

f?"(hat):”Mr'h_Mr'tHa (34)

where M, and M, are geometric operators to be designed. We first discuss
the CompoundE operators, which include translation, scaling, and 2D rotation
operations.

8.1 CompoundE Operators

First, we think it is helpful to formally introduce some definitions in group
theory.

Definition 3.1. The special orthogonal group is defined as
SO(n) = {A'A € GL,(R),ATA =1,det(A) = 1}. (35)

Definition 3.2. The special Euclidean group is defined as

SE(n) = {A‘A — {1;” ﬂ R €S0(n),v e R"} . (36)

Definition 3.3. The affine group is defined as

A

Aff(n) = {M‘M = [0

ﬂ ,AeGLn(R),veR"}. (37)
By comparing Equations (36) and (37), we see that SE(n) is a subset of
Aff(n).

Without loss of generality, consider n = 2. If M € Aff(2), we have

A v

M:{O 1],A6R2X2,VER2. (38)

The 2D translational matrix can be written as

1 0 wy
T = |0 1 Vy |, (39)
0 0 1
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while the 2D rotational matrix can be expressed as

cos(f) —sin(6) 0O
R = [sin(d) cos(9) 0f. (4())
0 0 1

It is easy to verify that they are both special Euclidean groups (i.e. T € SE(2)
and R € SE(2)). On the other hand, the 2D scaling matrix is in form of

Sz 0 0
S=|0 s, 0. (41)
0 0o 1

It is not a special Euclidean group but an affine group of n = 2 (ie., S €
AfF(2)).

Compounding translation and rotation operations, we can get a transfor-
mation in the special Euclidean group,

1 0 wz]| [cos(d) —sin(f) O
T -R= |:O 1 vy:| |:sin(9) cos(0) 0:|
0 0 1 0 0 1
. (42)
cos(f) —sin(f) g
= [sin(0) cos(d) wy| € SE(2).
0 0 1

Yet, if we add the scaling operation, the compound will belong to the Affine
group. One of such compound operator can be written as

sz cos(0) —sysin(d) vy
T -R-S= |:sx sin(@) sy cos(6) vy:| c Aff(2) (43)
0 0 1

When s, # 0 and s, # 0, the compound operator is invertible. It can be
written in form of

(44)

A"l Ay
-1 _
Moo A A

In actual implementation, a high-dimensional relation operator can be
represented as a block diagonal matrix in the form of

M, = diag(Oy.1,0r.2,...,O0rn), (45)

where O, ; is the compound operator at the i-th stage. We can multiply M, - v
in the following manner,



Knowledge Graph Embedding: An Overview 21
[ O,1 0 0 17 21 7
hn
0 O,«,g 0 )
Y2
(46)
0 0 oo | Opp Ty
L 1 L Yn |
where v = [21,y1, 22,2, .., Tn,Yn|’ are 2n dimensional entity vectors that

are split into multiple 2d subspaces.

3.2 CompoundE3D
8.2.1 Translation

Component T € SE(3), illustrated by Figure 4a, is defined as

1 0 0 v,
|01 0 vy
T= 0 0 1 w,|’
0 0 0 1

8.2.2  Scaling
Component S € Aff(3), illustrated by Figure 4b, is defined as

Sy 0 0
10 sy 0
S= 0 0 s, 0|’

0 0 0 1

3.2.8 Rotation
Component R € SO(3), illustrated by Figure 4c, is defined as

R= RZ(a)Ry(ﬂ)Rz(V) =

S Qe
o0 o
O S 0
— o oo

(48)

(49)
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(a) Translation (b) Scaling

2

IR-h—t|

(c) Rotation (d) Reflection

2

2

|H-h—t| ~ _|F-T-R-h—1|

(e) Shear (f) Compound

Figure 4: Composing different geometric operations in the 3D subspace.
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where

a = cos(a) cos(f),

b = cos(a) sin(B) sin(y) — sin(«) cos(y),
¢ = cos(a) sin(B) cos(y) + sin(a) sin(y),
d = sin(«) cos(B),

e = sin(a) sin(B) sin(y) + cos(«) cos(y),
f = sin(a) sin(B) cos(y) — cos(a) sin(7y),
g = —sin(p),

i = cos(fB) cos(y).

23

This general 3D rotation operator is the result of compounding yaw, pitch,
and roll rotations. They are, respectively, defined as

e Yaw rotation component:

e Pitch rotation component:

e Roll rotation component:

3.2.4  Reflection

cos(a) —sin(a) 0 0O

R.(a) = sméa) coso(a) (1) 8 ,
0 0 0 1
cos(B) 0 —sin(B) O
0 1 0 0

Ry(8) = sin(8) 0 cos(B) 0]’
0 0 0 1
1 0 0 0
|0 cos(y) —sin(y) O
R.(7) = 0 sin(y) cos(y) O
0 0 0 1

Component F € SO(3), illustrated by Figure 4d, is defined as

1-— anzc —2ngny  —2nzn, 0

F— —2nzn, 11— 2n§ —2nyn, 0
—2ngn, —2nyn; 1-— 2n§ 0

0 0 0 1

(51)

(52)
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The above expression is derived from the Householder reflection, F = I — 2nn™T.
In the 3D space, n is a 3-D unit vector that is perpendicular to the reflecting
hyper-plane, n = [ng, n,, n.|.

8.2.5 Shear
Component H € Aff(3), illustrated by Figure 4e, is defined as

1 ShY Shi 0

Sh 1 ShZ 0
H=H,.HeHoy = g% g 17 0 (55)
0o 0 o0 1

The shear operator is the result of compounding 3 operators: H,,., H,, and
H,, They are mathematically defined as

[1 00 0
Sh 1 0 0
— Y
o =lanf 0 1 0| (56)
0 0 0 1]
[1 ShY 0 0]
0 1 00
Hoe =10 swy 1 0| (57)
0 0 0 1]
[1 0 ShZ O]
0 1 Shi 0
— Y
Hew =10 0 1" 0 (58)
00 0 1]

Matrix H,, has a physical meaning - the shear transformation that shifts
the y- and z- components by a factor of the  component. Similar physical
interpretations are applied to H,, and H,.

The above transformations can be cascaded to yield a compound operator;
e.g.,

O=H-S‘R-F:T, (59)

In the actual implementation, we use the operator’s representation in regular
Cartesian coordinates instead of the homogeneous coordinate. Furthermore,
a high-dimensional relation operator can be represented as a block diagonal
matrix in the form of

Mr = diag(O,’l, Or’2, ey Or,n)y (60)

where O, ; is the compound operator at the i-th stage. We can multiply M, - v
in the following manner,
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Mo

Z1
T2

z2

(61)

Tn
0 0 . O, Un,
Zn

where v = [21, Y1, 21, T2, Y2, 22, - - - , Ty Yn, Zn] - are 3n dimensional entity vec-
tors that are split into multiple 3d subspaces.

3.8 Connections to other KGEs

Since CompoundE is a general model that includes different transformation
components, it can be reduced to several famous KGE models.

Derivation of TransE. We begin with CompoundE-Head and set its rotation
component to identity matrix I and scaling parameters to 1. Then, we get the
scoring function of TransE as,

fr(h,t) = || T - T-T-h —t]| = [h+r —t]. (62)

Derivation of RotatE [94]. We can derive the scoring function of RotatE
from CompoundE-Head by setting the translation component to I (translation
vector t = 0) and scaling component to 1,

fr(h,t) =|I-Ry-I-h—t|| = ||hor—t|. (63)

Derivation of LinearRE [78]. We can add back the translation component
for the head transformation,

fr(hyt) = | T -1-Sp -h—I-1-S, -t = |[horT +r—torT|. (64

Derivation of PairRE [14]. CompoundE-Complete can be reduced to PairRE
by setting both translation and rotation component to I, for both head and
tail transformation,

Folht)=T-1-8, h—T-1.8, -] = [hor™ —tor™|.  (63)

Similarly, we can derive KGE models from CompoundE3D.
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Derivation of NagE [132]. Both NagE and CompoundE3D uses SO(3)
rotations. CompoundE3D-left can be reduced to NagE by keeping the rotation
component, while setting other components to I. Let R, € SO(3),

fr(h,t) =|[T-T-Re -I-T-h —t[| = [Ry - h — ¢[]. (66)

Derivation of ReflectE [140]. CompoundE3D-Complete can be reduced to
the full form of ReflectE by keeping the reflection and translation component
of the head, and the scaling component of the tail,

fr(h,t)=|1-T-T-F, - T, - h—1-S, - I-I-1-¢|

(67)
= M7 (h+ 1) — te Orel.

4 Dataset and Evaluation

4.1 Open Knowledge Graphs and Benchmarking Datasets

Table 4 collects a set of KG that are available for public access. We list these
KGs according to the time of their first release. We provide information for the
number of entities, the number of facts to indicate the scale and size of each
KG. Among these public KGs, WordNet [69] is the oldest and it is first created
as a lexical database of English words. Words are connected with semantic
relations including Synonymy, Antonymy, Hyponymy, Meronymy, Troponomy,
and Entailment. There are similarities and differences between the KGs. For
example, both DBpedia [2] and YAGO [93] are derived from information
in Wikipedia infoboxes. However, YAGO also includes information from
GeoNames that contains spatial information. In addition, DBpedia, YAGO,
and Wikidata [104] contain multilingual information. Both ConceptNet [92]
and OpenCyc contain a wide range of commonsense concepts and relations.

Table 5 contains commonly used benchmarking datasets. These datasets
have different sizes. Each of them covers a different domain. For example,
UMLS contains biomedical concepts from the Unified Medical Language System.
Similarly, OGB-biokg is also a biomedical KG but with a larger size. Kinship
contains relationship between members of a tribe and Countries contains
relationships between countries and regions. As indicated by the dataset
names, many of them are subsets of the public KGs that are described above.
CoDEx is extracted from Wikidata, but presents 3 different versions and each
has different degrees and densities. Among these datasets, FB15K-237 and
WNI18RR are the most adopted datasets for performance benchmarking since
inverse relations are removed to avoid the test leakage problem.
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4.2 Ewvaluation Metrics and Leaderboard

The link prediction performance of KGE models is typically evaluated using
the Mean Reciprocal Rank (MRR) and Hits@k metrics. The MRR is the
average of the reciprocal ranks of the ground truth entities. The Hits@#k is the
fraction of test triples for which the ground truth entity is ranked among the
top k candidates. The MRR and Hits@Qk metrics are defined as follows:

e The MRR is calculated as:
1 1
MRR = — —_— 68
| D] ieZD Rank;’ (68)

where |D| is the number of test triples, and Rank; is the rank of the
ground truth entity in the list of top candidates for the ith test triple.

e The Hits@k is calculated as:

1

Hits@Qk = —
|D|

> 1{Rank; < k}, (69)

ieD
where 1{-} is the indicator function.

Higher MRR and HitsQk values indicate better model performance. This is
because they mean that the model is more likely to rank the ground truth entity
higher in the list of top candidates, and to rank it among the top k£ candidates,
respectively. In order to prevent the model from simply memorizing the triples
in the KG and ranking them higher, the filtered rank is typically used to
evaluate the link prediction performance of KGE models. The filtered rank
is the rank of the ground truth entity in the list of top candidates, but only
considering candidates that would result in unseen triples. In addition to the
MRR and Hits@Qk metrics, other evaluation metrics for KG completion include
Mean Average Precision (MAP), Precision@k, etc. The choice of evaluation
metric depends on the specific application. For example, if the goal is to rank
the top entities for a given triple, then the MRR or Hits@k metrics may be
more appropriate. If the goal is to find all entities that are related to a given
entity, then the MAP or Precision@k metrics may be more appropriate.

We also show a comparison of the Hits@10 performance of recently published
works for link prediction in Figure 5. The figure includes the results on the
FB15k, FB15k-237, WN18, WN18RR, and YAGO3-10 datasets. While KGE
models such as MEIM [99] remain competitive, many of the pretrained language
model (PLM) approaches such as SimKGC [108] and LMKE [112] top the
leaderboards. In the next section, we will discuss this emerging trend of using
PLM for KG completion.
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Figure 5: HITS@10 score of previous KGE models for datasets.
Source: https://paperswithcode.com/sota
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5 Emerging Direction

5.1 Neural Network Models for Knowledge Graph Completion

Before discussing the PLM approach, it is worthwhile to introduce neural
network models for KG completion since PLMs also belong to this line of
approach and the logic for training and inference between these models are
similar. a Multilayer Perceptron (MLP) [26] is used to measure the likelihood
of unseen triples for link prediction. NTN [90] adopts a bilinear tensor neural
layer to model interactions between entities and relations of triples. ConvE
[24] reshapes and stacks the head entity and the relation vector to form a
2D shape data, applies Convolutional Neural Networks (CNNs) to extract
features, and uses extracted features to interact with tail embedding. R-
GCN [86] applies a Graph Convolutional Network (GCN) and considers the
neighborhood of each entity equally. CompGCN [103] performs a composition
operation over each edge in the neighborhood of a central node. The composed
embeddings are then convolved with specific filters representing the original
and the inverse relations, respectively. KBGAN [10] optimizes a generative
adversarial network to generate the negative samples. KBGAT [70] applies
graph attention networks to capture both entity and relation features in any
given entity’s neighborhood. ConvKB [23] applies 1D convolution on stacked
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entity and relation embeddings of a triple to extract feature maps and applies
a nonlinear classifier to predict the likelihood of the triple. Structure-Aware
Convolutional Network (SACN) [88] uses a weighted-GCN encoder and a Conv-
TransE decoder to extract the embedding. This synergy successfully leverages
graph connectivity structure information. InteractE [102] uses network design
ideas including feature permutation, a novel feature reshaping, and circular
convolution compared to ConvE and outperforms baseline models significantly.
ParamE [16] uses neural networks instead of relation embedding to model
the relational interaction between head and tail entities. MLP, CNN, and
gated structure layers are experimented and the gated layer turns out to be
far more effective than embedding approaches. RelnceptionE [120] applies
Inception network to increase the interactions between head and relation
embeddings. Relation-aware attention mechanism in the model aggregates
the local neighborhood features and the global entity information. M-DCN
[148] adopts a multi-scale dynamic convolutional network to model complex
relations such as 1-N, N-1, and N-N relations. A related model called KGBoost
is a tree classifier-based method that proposes a novel negative sampling
method and uses the XGBoost classifier for link prediction. GreenKGC [114]
is a modularized KGC method inspired by Discriminant Feature Learning
(DFT) [56, 133], which extracts the most discriminative feature from trained
embeddings for binary classifier learning.

5.2 Pretrained Language Models for Knowledge Graph Completion

With the advent of large language models (LLM) in recent years, more and
more NLP tasks are improved significantly improved by pretrained transformer-
based models. In recent years, researchers have also started to think about
using transformer-based models as solutions for KG-related tasks. A general
illustration of the transformer-based approach for KG completion is shown in
Figure 6. However, initial results from early papers have not fully demonstrated
the effectiveness of language model-based solutions. It requires not only
significantly more computational resources for training than KGE models, but
also has slow inference speed. There are still many issues with PLM approach
that are yet to be solved.

The key difference between traditional KGE approach and PLM-based
approach is that the former focuses on local structural information in graphs,
whereas the latter relies on PLMs to decide the contextual relatedness between
entities’ names and descriptions. Textual descriptions of entities are usually
available in many KGs such as Freebase, WordNet, and Wikidata. Triples
are created from a large amount of corpus on entity description through
information extraction. These entity descriptions are often stored in the
knowledge base together with the entity entry. These textual descriptions are
very useful information and one can use PLMs to extract textual features from
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Figure 6: An Illustrative example of the transformer-based approach for KG completion.

these descriptions. PLMs are transformer-based models with many model
parameters that are trained over large-scale corpora. PLMs are known to
be able to generate good features for various NLP tasks. One of the famous
PLMs is BERT [25]. BERT is a pretrained bidirectional language model that
is built based on transformer architecture. Since one of the tasks of BERT
pretraining is next-sentence prediction, it naturally generates good features for
characterizing whether 2 sentences are closely related. KG-BERT [134] is one
of the first models we know of that uses PLMs to extract linguistic features
from entity descriptions. It leverages the advantage of BERT, which is trained
using next-sentence prediction to determine the association of head entity and
tail entity descriptions for link prediction, and also triple classification tasks
using the same logic.

ERNIE [149] proposes a transformer-based architecture that leverages
lexical, syntactic, and knowledge information simultaneously by encoding
textual description tokens through cascaded transformer blocks, as well as
concatenating textual features and entity embedding features to achieve infor-
mation fusion. K-BERT alleviates the knowledge noise issue by introducing
soft positions and a visible matrix. StAR [106] and SimKGC [108] both use
two separate transformer encoders to extract the textual representation of
(head entity, relation) and (tail entity). However, they adopt very different
methods to model the interaction between two encodings. StAR learns from
previous NLP literature [8, 81] to apply interactive concatenation of features
such as multiplication, subtraction, and the embedding vectors themselves to
represent the semantic relationship between two parts of triples. On the other
hand, SimKGC computes cosine similarity between two textual encodings.
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SimKGC also proposes new negative sampling methods including in-batch
negatives, pre-batch negatives, and self negatives to improve the performance.
Graph structural information is also considered in SimKGC to boost the
score of entities that appear in the K-hop neighborhood. KEPLER [111] uses
the textual descriptions of head and tail entities as initialization for entity
embeddings and uses TransE embedding as a decoder. The masked language
modeling (MLM) loss is added to the knowledge embedding (KE) loss for
overall optimization. InductivE [105] uses features from pretrained BERT as
graph embedding initialization for inductive learning on commonsense KGs
(CKG). Experimental results on CKG show that fastText features can ex-
hibit comparable performance as that from BERT. BERTRL [138] fine-tunes
PLM by using relation instances and possible reasoning paths in the local
neighborhood as training samples. Relation paths in the local neighborhood
are known to carry useful information for predicting direct relations between
two entities [57, 89, 122]. In BERTRL, each relation path is linearized to a
sequence of tokens. The target triple and linearized relation paths are each
fed to a pretrained BERT model to produce a likelihood score. The final link
prediction decisions are made by aggregating these scores. The basic logic in
this work is to perform link prediction through the relation path around the
target triple. KGT5 [85] propose to use a popular seq2seq transformer model
named T5 [80] to pretrain on the link prediction task and perform KGQA.
During link prediction training, a textual signal “predict tail” or “predict head”
is prepended to the concatenated entity and relation sequence that’s divided
by a separation token. This sequence is fed to the encoder and the decoder’s
objective is to autoregressively predict the corresponding tail or head based
on the textual signal. To perform question answering, textual signal “predict
answer” is prepended to the query and we expect the decoder to autoregres-
sively generate a corresponding answer to the query. This approach claims
to significantly reduce the model size and inference time compared to other
models. PKGC [68] proposes a new evaluation metric that is more accurate
under an open-world assumption (OWA) setting. More recently, TAGREAL
[52] uses text mining techniques to mine optimal prompts from PLM-associated
huge corpus, and probe more accurate knowledge from PLM.

6 Conclusion

In conclusion, this paper has provided a comprehensive overview of the current
state of research in KGE. We have explored the evolution of KGE models,
with a particular focus on two main branches: distance-based methods and
semantic matching-based methods. Through our analysis, we have uncov-
ered intriguing connections among recently proposed models and identified a
promising trend that combines geometric transformations to enhance the per-
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formance of existing KGE models. Moreover, this paper has curated valuable
resources for KG research, including survey papers, open KGs, benchmarking
datasets, and leaderboard results for link prediction. We have also delved
into emerging directions that leverage neural network models, including graph
neural networks and PLM, and highlighted how these approaches can be
integrated with embedding-based models to achieve improved performance
on diverse downstream tasks. In the rapidly evolving field of KG completion,
this paper serves as a valuable reference for researchers and practitioners,
offering insights into the past developments, current trends, and potential
future directions. By providing a unified framework in the form of CompoundE
and CompoundE3D, we aim to inspire further innovation in KGE methods
and facilitate the construction of more accurate and comprehensive KGs. As
the demand for knowledge-driven applications continues to grow, the pursuit
of effective KGE models remains a pivotal area of research, and this paper
lays the groundwork for future advancements in the field.
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