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ABSTRACT

Gait recognition based on millimeter waves (mmWave) has a wide
range of applications, such as smart homes and health monitoring,
and attracted extensive attention due to its non-contact, privacy
protection, and light-independent characteristics. Existing gait
recognition based on mmWave performs well on the datasets col-
lected at a single time or environment. However, the recognition
accuracy declines significantly with the time and environment do-
mains shifting, which affects its practical applications. In this
paper, we propose a novel mmWave gait recognition CRNet that
is robust to both time and environment, which is realized through
two-stage training. Specifically, the first stage designs a contrastive
learning strategy to pre-train the encoder module, which aims at
learning the general gait features across different seen time and
environment domains. The second stage further trains the clas-
sification module based on specific recognition tasks. After the
two-stage training, CRNet experiments on test sets with unseen
time or environment domains. We collect a mmWave-based multi-
person gait recognition dataset with multiple time and environment
domains. Experiments show that CRNet still performs well in unfa-
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miliar domains which increases the accuracy from 75.7% to 91.2%
compared to the baseline.

Keywords: Gait Recognition, Millimeter Wave Sensing, and Contrastive
Learning.

1 Introduction

Gait recognition refers to the recognition of a person’s identity through their
walking style. Compared to recognition technologies such as facial, iris, and
fingerprint recognition, it has advantages such as long-distance, non-contact,
and difficulty in disguise [18]. It has enormous research value and broad
application prospects. Traditional visual-based gait recognition [16, 2] is line-
of-sight and sensitive to light conditions. What’s more, the video images
obtained by the camera take the risk of privacy leakage.

mmWave has the characteristics of non-line-of-sight, privacy protection,
and light-independent. Therefore, mmWave attracts more and more attention
in smart homes [14, 13], health monitoring [15, 12, 29], and other fields. Gait
recognition based on mmWave has been widely studied [17, 27, 10, 27, 28,
24], which greatly improves the accuracy of gait recognition and explores
different scenarios in daily life, such as recognition under the coexistence of
multiple people. However, existing mmWave-based recognition algorithms
mainly focus on datasets with a single time or environment domain, neglecting
the robustness of algorithms when the time and environment domain shift,
which is crucial in practical applications.

In practical applications, we discover that the accuracy of existing mmWave-
based gait recognition performance dropped from the original 96% to 39%
with time and environment domains shifting, which will be detailed analyzed
in Section 3. This is because the gait features learned have strong background
dependence. There are two factors that bring the background noise. The
first is that, over time, people’s clothing, mood, and physical condition affect
the gait itself. The second is that different environments can bring different
noise impacts due to multipath effects [6, 4]. Therefore, we need to design a
robust gait recognition algorithm that is insensitive to the time or environment
domain shifting.

In this paper, we first collect a mmWave gait dataset from multiple people
which is collected at multiple times and environments. Especially, the time
span is greater than one year. What’s more, we propose a novel mmWave gait
recognition method CRNet which is robust to time and environment. The
key idea of CRNet is to remove background noisy features of gait samples
and obtain robust gait feature expression. To achieve this purpose, CRNet
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is trained through two stages. Specifically, the first stage ignores specific
recognition tasks and mainly focuses on pre-training a robust feature encoder
module through contrastive learning strategies. Contrastive learning shortens
the distance between gait features with the same labels in different seen time
and environment domains, which reduces the background noise. After the
pre-trained process, the second stage trains the classification module based on
specific recognition tasks, which enables CRNet to perform the recognition
tasks. We test the robust gait recognition performance of CRNet on test sets
with unseen time or environment domains. Experimental results show that our
method is more robust when time or environment domains shift. Specifically,
CRNet improves the accuracy above 15% than the baselines.
The contributions of this paper are as follows:

e We propose a robust gait recognition method CRNet based on two-
stage training strategies, which aims at utilizing contrastive learning to
obtain robust gait feature expression with time and environment domains
shifting.

e We collect a mmWave-based multi-person gait recognition dataset with
multiple time and environment domains. Experimental results show that
our method CRNet still performs well in the test sets that are collected
in unseen environments and time. What’s more, CRNet increases the
accuracy from 75.7% to 91.2% compared to the baseline.

The rest of the paper is organized as follows: Related work is reviewed
in Section 2. Motivation is reviewed in Section 3. The CRNet method is
proposed in Section 4. Experimental results are shown in Section 5. Finally,
the conclusion and future work are given in Section 6.

2 Related Work

2.1 Gait Recognition

Gait recognition has a wide range of applications in security checks, health
monitoring, and new types of human-computer interaction. People try to solve
this problem with many different methods, such as vision-based methods or
wireless-based methods. The traditional vision-based gait recognition methods
[2, 11, 16] perform very well, but there are several limitations. First, cameras
capture real-life images, which can lead to personal information being leaked
once the camera is hacked or hijacked. Second, the camera is easily affected
by lighting conditions. For example, they cannot obtain effective images in
dark environments.

To address the above issues, researchers attempt to use wireless signals to
capture human gait data. Among these wireless sensing works, WiFi-based



4 Meng et al.

work [8] holds a place. Some WiFi-based methods use WiFi channel state
information (CSI) for personnel perception [26, 31, 25, 34, 31]. However,
WiFi signals are difficult to segment to isolate the impact between people, so
they struggle to identify multiple people at the same time. Another part of
WiFi-based work uses frequency-modulated continuous wave (FMCW) in the
WiFi frequency for sensing [9, 5, 32]. Due to the bandwidth limitations of the
WiFi frequency, the spatial resolution of the perceived signal is limited.

mmWave has a high band, which provides high spatial resolution. There are
two main mmWave data formats to extract gait features. One is the point cloud
[17, 10, 33]. For example, literature [17] proposes a mmWave gait point cloud
dataset and uses ResNet18 [7] to extract temporal and spatial characteristics
of gait for multi-people. Another is the gait spectrogram [19, 27]. For example,
literature [27] captures different gait patterns of the lower limbs in terms of
step length, duration, instantaneous lower limb velocity, and distance between
lower limbs through mmWave in the Range-Doppler domain, and then uses a
convolutional neural network (CNN) to perform the classification. The existing
mmWave-based gait recognition methods explore the gait characteristics in
different situations such as single person and multiple persons on the collected
single time or environment dataset. However, researchers ignore the issue of
robustness of gait recognition over time and environment migration, which is
crucial in real life.

2.2 Contrastive Learning

To improve the robustness of gait recognition, one promising direction is to learn
the general gait features over time and environment migration, which means
eliminating the background noise when extracting the gait features. Contrastive
learning [3] focuses on learning the general features between samples of the
same category under a self-supervised fashion, and removing the task-unrelated
noise features. Specifically, it learns a feature encoder that makes the data
features similar to the same category, and the data features different with the
different category. Thus contrastive learning becomes a desired solution for
extracting the general gait features. The literature [30] adopts contrastive
learning for learning robust unsupervised representations of graph data. The
literature [1] enforces consistency between cluster assignments produced for
different augmentations (or views) of the same image, which aims to enhance
the image feature representations. The literature [20] encourages two elements
(corresponding patches) to map to a similar point in a learned feature space.
The literature [22] integrates mature RF signal processing techniques with
unsupervised representation learning frameworks by contrastive learning in
which different signal representations construct positive and negative pairs.
Although contrastive learning is very effective in extracting general features, in
the millimeter wave scenario, there are still challenges in applying contrastive
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learning to extracting general mmWave-based gait features over time and
environment migration.

3 Motivation

The gait recognition based on mmWave has received widespread attention and
achieved good results on the datasets collected at a single time or environment.
In the practical application, we discover a very serious problem: the neural
network mmGaitNet [17] trained on a single dataset performs well in a short
period, but its recognition performance severely decreases over time and
environment. The performance of mmGaitNet on different test sets is shown
in Figure 1. The accuracy of the test sets of “Similar-Time”, “Unseen-Time”
and “Unseen-Environment” are 96%, 39%, 50.5%. The environment of the test
sets “Similar-Time” and “Unseen-Time” is consistent with the train set, while
“Unseen-Environment” is different. The collection time of “Similar-Time” is
similar to the train set. The collection time of “Unseen-Time” is one month
away from the train set. The collection time of “Unseen-Environment” is one
year away from the train set. The neural network mmGaitNet [17] fails in the
test sets “Unseen-Time” and “Unseen-Environment” even though it performs
well on the test set “Similar-Time” which is similar to the train set on the time
and environment.
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Figure 1: The performance of mmGaitNet which is trained by a single dataset. The
environment of the test sets “Similar-Time” and “Unseen-Time” is consistent with the train
set, while “Unseen-Environment” is different. The collection time of “Similar-Time”, “Unseen-
Time”, and “Unseen-Environment” is about two days, a month, and a year away from the
train set.
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This is because the existing expression features learned under a single
dataset not only include human gait features but also background noise. Two
factors form the background noise. The first is that, over time, people’s
clothing, mood, and physical condition affect the gait itself. The second is
that, in different environments, there are different environmental noise caused
by multipath effects. In this paper, we design a gait recognition algorithm
based on contrastive learning to remove background noise to obtain robust
feature representation.

4 Method

4.1 Task Definition

We represent each gait sample as 0;. 0; is a t X n X 5 matrix, where ¢ denotes
time frames, and n denotes the number of points in a point cloud. 5 means
each point cloud contains five attributes {X,Y, Z,V, S}, where X,Y, Z denote
the spatial location, V' denotes the redial speed and S denotes the signal
strength of the points. The goal of this task is to construct a gait recognition
model to predict the correct person with the sample o;, i.e., P(y;|o;), where y;
is the golden person label.

The main reason for the non-robustness of gait recognition is caused
by background noise over time and environment migration. Therefore, we
perform contrastive learning to reduce the noise impact and thus can improve
the robustness of gait recognition. The framework of the proposed CRNet is
shown in Figure 2. Specifically, CRNet is trained through two stages:

e The first stage mainly focuses on pre-training a robust feature encoder
module through contrastive learning strategies. We create augmented
gait samples according to different seen time and environment domains.
Then input the gait sample and the augmented gait sample into the
feature encoder module and the linear layer to extract the gait features
respectively. Later we use contrastive learning to narrow the distance
between the gait sample and the augmented gait sample under the same
person label.

e The second stage mainly focuses on the specific recognition tasks. Based
on the robust feature encoder module trained in stage one, we froze
the parameters of the feature encoder module and used the labeled
dataset to train the parameters of the classification module, which is
composed of a fully connected layer. So the classification module learns
recognition knowledge based on the supervised signals and retains it in
the parameters.
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Figure 2: The framework of the proposed CRNet.

4.2 Robust Gait Recognition Framework

After the training, the test of the gait recognition model only needs to input
the gait sample into the feature encoder and classification modules to obtain
the person identification results.

4.3 Pre-trained Robust Feature Encoder
4.8.1 The Contrastive Augmented Gait Sample for Robust Training

We collect the augmented gait sample according to the gait sample’s three
factors: time, location, and walking direction. The augmented gait sample
generated with the time factor can remove the time noise. Similarly, the
location and direction factors can remove the environmental noise.

For each input sample o;, we obtain the x-axis spatial location [;, time
t;, and human walking direction d;, respectively. Specifically, For the sample
0; € Rt x RP x R%, we extract the matrix m, € R! x RP corresponding to
attribute X and then average matrix m, to calculate the location I;. When
collecting the gait sample, we record the data collection batch and date and
treat it as the corresponding time ¢;. For the direction information, because
each input has point clouds with sequence ¢ time, we calculate the x-axis
spatial location for the 1-th time and ¢-th time, corresponding to the 1-th
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matrix ¢; € R? and t-th matrix ¢; € RP of the matrix m,, respectively. Then
we subtract the two x-axis spatial location values to determine the direction
d; € {O, 1}

For each input sample o0;, we construct three positive samples from the
above three factors, respectively. For the location factor, we randomly select
a sample that meets the following description and treat it as the positive
sample o;, where l; # [;,t; = t;, and d; = d;. Similarly, for the time factor,
we randomly select a positive sample o,, where [; = [,,t; # t,, and d; = d,.
For the direction factor, we randomly select a positive sample o, where
li = lk,ti = tk, and dz 7& dk

4.8.2 Robust Feature Encoder Network Structure

We follow [17] and utilize the residual block to perform the gait recognition
task. The structure is shown in Figure 3. Specifically, we divide the input
sample or the augmented gait sample o; € R* x RP x R® into five attributes
matrices m; € R* x RP, where Vj € {X,Y,Z,V,S}. X,Y,Z denote the spatial
location, V' denotes the redial speed and S denotes the signal strength of the
points. Due to the significant difference in the values of the five attributes,
we first utilize the batch normalization algorithm to normalize the values of
the five attributes separately. For the feature encoder module, firstly, the
combination of the convolution layer and residual layer is used to encode
the five attribute matrices, respectively. Secondly, the feature fusion layer is
utilized to fusion the five attribute features to obtain the overall feature of the
input gait sample.The above process can be summarized as follows:

0; = {mX;mY7mZ7mV7mS}a
a; = residual(convolution(m;)),Vi € {X,Y, Z,V, S} (1)

fi = tusion(ax,ay,az,ay,as)

4.3.3 Robust Contrastive Learning

After introducing the feature encoder structure, we utilize the contrastive
learning strategy to perform task-unrelated pre-training on the feature en-
coder, enabling it to extract general gait features and remove the background
noise. For the input sample o; and the corresponding feature f;, we can ob-
tain the augmented gait samples {0, 0., 0} and their corresponding features
{fj, f=, fx}. We transform these samples’ features through a linear layer, and
then utilize contrastive learning to shorten the feature distances of the input
sample and each augmented gait sample, respectively. The above process can
be summarized as follows:
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Figure 3: Feature encoder network structure of CRNet.
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where N is the batch size. 4N means the combination of IV input gait samples
and 3N augmented gait samples. 6; means the trainable parameters of the
feature encoder module and the linear layer.

4.4 The Classification Module

In the training classification module, we freeze the parameters of the feature
encoder module and use the labeled dataset to train the parameters of the
classification module, which is composed of a fully connected layer. So the
classification module learns recognition knowledge based on the supervised
signals and retains it in the parameters. Specifically, given the input sample o;,
we first obtain its gait features through the pre-trained robust feature encoder,
which can be represented as f;. Then the classification module outputs the
gait recognition probability distribution. Later we utilize the label information
to train the classification parameters. The loss function of the above process
can be summarized as follows:

‘ciClaSS(62) = —logP(yi|0s),

exp(scorey,) (3)
)

— 1
og( > j—1 €xp(score;

where > means the trainable parameters of the classification module. y; is
considered as the golden label here. score,, means the probability score of
that sample o; belongs to ;.

4.5 Loss Function

After the two-stage training strategies, we obtain a robust gait recognition
model CRNet, which is insensitive to the time or environment domains shifting.
Specifically, the feature encoder module focuses on learning the general gait
features across different time and environment domains, and the classification
module focuses on learning the task-related features based on the supervised
signals. The total loss for the proposed CRNet is shown as follows:

£00) =~ SCE(01) + LS (6) + MOl (1

where 6 means the trainable parameters of CRNet, which is the combination
of 6; and 0. o and \ are hyperparameters.
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5 Experiment

5.1 Dataset

We first collect a mmWave gait dataset from multiple people which contains
two environments and the period for data collection is greater than one year.
The data structure of the dataset is shown in Table 1. The two environments
for data collection are shown in Figure 4. We use a commercial mmWave
device TT IWR1443 to sense pedestrian gait data.

Table 1: The structure of the dataset.

name environment time span
Training set scene 1 /

Test-1 scene 2 16 months
Test-2 scene 2 18 months
Test-3 scene 1 15 days

(a) Scene 1. (b) Scene 2.

Figure 4: Environment for data collection

Training set: The training set is collected in scene 1 of the teaching building.
The period for training set collection is approximately 12 days, with multiple
collections. When collecting the gait sample using a mmWave device, we record
the data collection batch and date. Gait samples collected in the same batch
and on the same date are considered to be at the same time.

Test set: The collect environment of “Test-1”7 and "Test-2” is scene 2 of
the teaching building. The collect environment of “Test-3” is consistent with
the training set. The collection time of “Test-3” is similar to the training set.
The collection time of “Test-1” is 16 months away from the training set. The
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collection time of “Test-2” is 18 months away from the training set. When
collecting data sets, to better reproduce the gait in real scenes, volunteers
are asked to imagine that they are in a situation where they want to pick up
something on the opposite side. Instead of mechanically passing through the
board for data collection.

Volunteer: Since the period of the dataset is relatively long, we have
initially explored the situation of 3 volunteers, there are two male and one
female volunteer. However, the three volunteers were very similar in body
shape, which brings challenges to gait recognition. The age of the volunteers
is between 25 and 28. The height of the volunteers is between 158cm and 170
cm. The weight of the volunteers is nearly 120kg.

5.2 Implementation Details

Hardware: TI IWR1443 has 3 transmit antennas and 4 receive antennas, the
antennas are all used when collecting data. The elevation angle of the antenna
is 30 degrees. The horizontal angle is 120 degrees. The device transmits a
signal with Frequency modulated continuous wave (FMCW). The specific
parameters of the signal are shown in Table 2. Finally, the device directly
transmits the perceived mmWave point cloud data of a person to a computer
through a data cable.

Table 2: Millimeter wave radar parameters.

Chirp Parameter (Units) Value
Start Frequency(GHz) 7
Frequency Slope (MHz/us) 70
Bandwidth (GHz) 4
Idle Time(us) 81
Ramp End Time(us) 57.14
Samples Per Chirp 224
ADC Sampling Frequency (Ksps) 4558
Chirps Per Frame 16*3
Frame Duration (ms) 100
Range Resolution (m) 0.044
Max Unambiguous Range (m) 8
Max Radial Velocity (m/s) 2.35
Radial Velocity Resolution (m/s) 0.3
Azimuth Resolution (deg) 15

Elevation Resolution (deg) 58
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Data Format: We use the sliding window method to intercept gait sample
data on the walking path. The step size of the sliding window is 1, the length
of the intercepted gait sequence is 30 frames, and the points of each frame are
copied to 64. There are 5 attributes of each point, which are 3D coordinates,
radial velocity, and confidence. The gait sample data is deleted once the
number of points in a certain frame of a gait sample is less than 15. This is
because the point cloud of millimeter wave sensing is mainly concentrated on
the torso, and a point cloud that is too sparse cannot describe gait information.
Training Setting: First of all, for the training data, we normalize each
attribute of the point cloud separately in the encoder. That is because the
five attributes of a point cloud contain three physical meanings which are
spatial coordinates, speed, and confidence. Second, for the network structure,
we use batch-normalize to the features after the convolution operation and
use ReLLU as the activation function. Finally, for the training process, we
implemented our network in PyTorch, and the optimizer is SGD [21]. We
pre-train the feature encoder module with an initial learning rate of 0.5. The
learning rate has decreased to one-tenth of the original values for the 40th,
60th, and 80th epochs respectively. We select the result of the 100th iteration
as the parameters of the pre-trained feature encoder. The batch size used in
both stages of network training is 128. The number of training samples for
each category is 1500.

5.3 Experiment Result
5.3.1 The Baseline Performances

We regard the model mmGaitNet [17] as the baseline. We train our model
and the baseline on the collected training set and test on the three test sets
which are collected at different times and environments.

Specifically, the effect of mmGaitNet trained on this training set is better
than the result mentioned in Section 3. The accuracy of mmGaitNet trained
on this training set is 64%. However, the accuracy of mmGaitNet mentioned
in Section 3 is 39%. That is because the training set is collected multiple times
over 12 days. However, mmGaitNet mentioned in Section 3 is trained by a
dataset that is collected one time as usual. This result shows that the neural
network trained by multiple collected data can essentially help the neural
network remove background noise and obtain more stable and robust feature
expressions.

5.8.2 Robust Contrastive Learning

CRNet pre-trains feature encoder by contrastive learning strategies in the first
stage, and the second stage trains the classification module based on specific
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recognition tasks. We demonstrate the effectiveness of CRNet by comparing
it with the baseline. The results in Table 3 illustrate two aspects. Firstly,
our method has a large degree of improvement compared to the baseline in
all indicators. Specifically, the average accuracy of our method CRNet in
“Test-17, “Test-2” and “Test-3” is 92.5%, 86%, 94% respectively. However,
the average accuracy of mmGaitNet is only 78.5%, 64%, 84%. Our method
CRNet has above a 15% improvement in accuracy on the three test sets, which
demonstrates the effectiveness of our proposed model CRNet.

Table 3: Experimental results on three datasets.

Test sets Methods precision recall fl-score accuracy
Test-1 mmGaitNet 81.5% 78% 71.5% 78.5%
CRNet 96% 93%  94% 93.5%
Test 2 mmGaitNet 68% 59% 57% 64%
CRNet 89% 83% 85% 86%
Test-3 mmGaitNet  85% 86.5% 84% 84.5%
CRNet 93.5% 94%  93.5% 94%
Mean mmGaitNet  78.2% 74.5% 70.8% 75.7%
CRNet 92.8% 90% 90.8% 91.2%

Secondly, our method still performs well even when time and environment
domains shift. Specifically, “Test-2” is quite different from the training set in
the environment and time domain. The baseline method has an accuracy of
only 64% on “Test-2” which is almost unusable. However, our method performs
well achieving an accuracy of 86%. CRNet pre-trains the feature encoder to
extract general gait features. Experimental results prove the robustness of our
proposed model in removing background noise through contrastive learning
strategies.

5.4 Ablation Experiment

To fine-grained analysis of the effectiveness of the proposed model CRNet,
we perform the ablation experiments, mainly analyzing the impact of batch-
normal, three factors for augmented gait samples, such as walking direction,
position, time, etc. The experimental results are shown in the Table 4. The
item “w/o BN” means not considering data batch-normal. The item “w/o time”
means the augmented gait samples do not consider the time factor. Similarly,
the item “w/o position” means not considering the position factor, and the
item “w/o direction” means not considering the direction factor.
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Table 4: The results of ablation experiments.

Method precision recall fl-score accuracy

CRNet 96% 93% 94% 93.5%

—w/o BN 93% 93.5% 92.5% 94%
Test-1 — w/o time 87% 88.5%  85% 88%

—w/o position  90.5% 90% 89% 90%
— w/o direction  92.5% 88% 85.5%  87.5%

CRNet 89% 83% 85% 86%
—w/o BN 80% 79% 78% 78%
Test-2 — w/o time 66% 61% 59% 67%
— w/o position  80% 68% 68% 1%
— w/o direction  77% 61% 58% 65%
CRNet 93.5% 94% 93.5% 94%
—w/o BN 93.5% 94% 93.5% 94%
Test-3 — w/o time 90% 91% 90% 90.5%
— w/o position  92.5% 93.5%  92.5%  92.5%
— w/o direction  92% 92.5%  92% 92%

From the results, we observe that the three augmented factors and data
batch-normal operation can significantly improve the performance of the three
test sets under different time and environment domains. Meanwhile, we find
that compared to “Test-3”, adding each ablation element on “Test-1” and “Test-
2” resulted in a significant improvement in CRNet performance. Specifically,
after adding position factors, the fl-score on “Test-1” increased by 9%. while
it only increased by 1% on “Test-3”. One possible reason is that “Test-3” and
the training set have similar time and the same environment domains, while
“Test-1" and “Test-2” have different time and environment domains with the
training set. The above analysis further proves the effectiveness of CRNet in
obtaining robust gait feature expression with time and environment domains
shifting.

5.5 Analysis of Fine-grained Recognition Accuracy

In this section, we present a fine-grained display of the accuracy changing on
different labels before and after utilizing the proposed CRNet, which is shown
in Figure 5. We utilize the confusion matrix to demonstrate the variation
of the accuracy performance across three test sets. From the results, we
can observe two interesting phenomena. Firstly, CRNet can improve the
recognition accuracy of each label on the three test sets. Specifically, on the
test set “Test-1", CRNet improves the accuracy by 28%, and 3% on categories
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Figure 5: The display of confusion matrices related to recognition accuracy on three datasets.

2 and 3 and respectively. The above analysis further proves the generality of
CRNet in removing background noise from gait features. Secondly, compared
with other categories, the second category is more affected by the environment.
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This is because compared to other categories, the second category is more
casual when walking, so the variance of the second category in intuitive walking
speed, stride length, and other factors is larger. Otherwise, the second category
is very similar in body shape to the third category.

5.6 Gait Features Aggregation Analysis

To better display the distribution of gait data under different labels in the
feature space, we use the T-SNE algorithm [23]| to convert non-evaluable
high-order gait features into observable low-order gait features, and display
them in the feature space. The results are shown in Figure 6. From the results,
we observe that before applying CRNet, gait features of different labels tend
to mix, especially on the “Test-2” and “Test-3” datasets. Besides this, after
applying CRNet, gait features belonging to the same labels can be better
aggregated among the three datasets, which verifies the ability of CRNet
to extract gait features under background noise interference. In addition,
after utilizing CRNet, we find that the feature distribution of “Test-1” and
“Test-2” tends to be consistent, but their feature distribution is significantly
different from “Test-3”. Compared to “Test-1" and “Test-2”, “Test-3” exhibits
significant changes in both environmental and time domains, resulting in a
more pronounced transfer of gait features. However, after using contrastive
learning in CRNet, gait features belonging to different labels can still be well
distinguished.

6 Conclusion and Future Work

In this paper, we focus on the robust mmWave gait recognition task, based on
the discovery that the recognition accuracy declines significantly with the time
and environment domains shifting, which affects the practical applications
of mmWave gait recognition. To address the aforementioned challenges, we
propose CRNet that is robust to both time and environment, which is realized
through two-stage training with contrastive learning strategies. In addition, in
order to verify the effectiveness of CRNet, we collect a mmWave gait dataset
from multiple people under multiple times and environments. Experiments
prove CRNet performs well in test sets with unseen time or environment
domains. In the future, we will increase the number of people in the dataset
to verify the effectiveness of our proposed model on a larger dataset with more
people’s gait samples.
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