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ABSTRACT

Vibration measurements play a critical role in troubleshooting
mechanical equipment and assessing the structural integrity of
buildings. However, conventional vibration measurement methods
rely on contact-based approaches, such as the attachment of ac-
celerometers to the target object, leading to complex equipment
deployment. Therefore, non-contact vibration measurement has
attracted great attention but has yet to be fully addressed. In this
paper, we propose DeepVib, a non-contact vibration measurement
system that enables accurate micron-level vibration monitoring.
First, we introduce a series of signal processing algorithms to ex-
tract the vibration object motion from mmWave reflection signals.
Then, we design a deep neural network to effectively suppress noise
interference and achieve outputting higher signal-to-noise ratio
data. Finally, we eliminate static reflections with geometric-based
method to recover the vibrations of the target. The experimental
results show that our non-contact measurement method can accu-
rately measure the vibration at the micron level with the average
error of vibration frequency less than 0.1%. For the amplitude
below 100µm, the median error of estimation is 7.23%. In addition,
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DeepVib reduces the estimation error of 80th-percentile amplitude
by 56.60% compared with the conventional method.

Keywords: Wireless sensing, Vibration measurement, deep neural network

1 Introduction

Vibration is a ubiquitous physical phenomenon that conveys crucial infor-
mation. In industry, object vibrations reflect internal states, and by monitoring
their vibration characteristics, amplitude and/or frequency, it is possible to
detect damage or failure of equipment at an early stage [15, 1, 19]. In health
care, the periodic movement of the human chest and heart is also a vibration
that can reflect the health status of the human body, from which information
about the body’s breathing and heart rate can be mined, and furthermore,
it can determine whether certain diseases are present and assist in medical
diagnosis [16, 29]. Therefore, it is of great importance to accurately measure
the vibration properties of an object.

Significant progress has been made in vibration sensing over the past
few decades. Conventional vibration measurement systems utilize specialized
sensors, including accelerometers and gyroscopes [22, 12, 21, 18]. These
methods necessitate the attachment of sensors to the surface of the vibrating
object, which can present practical challenges, such as motors operating in
high-temperature environments. As an effort to overcome this limitation,
non-contact approaches employing high-speed cameras [24] and lasers [17]
have been investigated. Although they offer the advantage of capturing
precise measurements of tiny vibrations, their implementation is constrained
by costly deployments. Additionally, these methods are contingent upon
specific conditions, such as optimal lighting conditions and Line-of-Sight (LoS).
Ranging LIDAR [31, 23] presents a more cost-effective solution. However, its
reduced resolution and sampling rate impede its applicability for capturing
high-frequency micron vibrations. These factors further restrict the practical
applicability of these techniques.

Recently, with the rapid advancement of wireless sensing technology, there
has been a growing interest in utilizing radio signals for vibration measure-
ment, primarily driven by the distinctive attributes of radio signals, such as
their non-contact nature, privacy-friendly properties, and ability to penetrate
obstacles. Notably, WiFi and RFID signals have been harnessed for tracking
breathing and heartbeat [13, 30, 7, 25], leveraging their capacity to capture
vibrational displacements. Furthermore, [28, 3] introduces the utilization of
RFID technology for monitoring motor rotation frequency, particularly in
noisy environments. However, the accuracy of these techniques is often limited
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due to the long wavelength of the signals, making it challenging to accurately
measure tiny vibrations.

In contrast, the mmWave radar, with its wavelength in the millimeters (e.g.,
3.896 mm at 77 GHz), inherently delivers the necessary resolution to detect tiny
vibrations accurately. Consequently, by analyzing the radar signal reflected
from the target, both the vibration frequency and displacement can be precisely
captured. Several recent studies have explored the utilization of mmWave in
diverse sensing applications [26, 9, 6, 14]. However, the performance of these
existing systems is still limited. In this paper, we presents a mmWave system
designed to achieve precise measurement of micron-level vibrations. Building
such a mmWave system is non-trivial and there are mainly two challenges
needed to be resolved: 1) Extracting vibration signal; 2) Alleviating noise and
interference.

Vibration target signal extraction. In practical environments, there
exist numerous stationary and moving objects alongside the vibrating targets.
While millimeter waves exhibit good directionality, the received signal is usually
a complex mixture of reflections from the sensed object and environmental
reflectors, resulting in the interference of weaker energy target signals by
various interfering signals. To address this issue, we leverage the periodic
nature of vibrations, enabling the accurate localization of the target. The
system effectively separates vibration signals from clutter signals, facilitating
accurate and reliable measurement of vibrations amidst complex environments.

Alleviating the noise interference. The classical displacement-phase
model suggests that shorter RF signal wavelengths provide finer perception
granularity. While millimeter waves are more sensitive to small displacements
compared to other wireless technologies, their effectiveness in detecting micron-
level vibrations is limited. For example, with a millimeter wave wavelength
of approximately 4 mm, an object with a 50 µm amplitude will cause a
mere 0.33 rad phase change in the reflected signal. This small phase change,
corresponding to less than 5% of a full circle’s arc length, is highly susceptible to
noise interference, resulting in inaccurate displacement estimates. To address
this, we analyze the impact of target amplitude and noise through extensive
simulation data and propose a targeted processing method to enhance the
Signal-to-Noise Ratio (SNR). This involves generating simulation data based
on the vibration reflection signal model, constructing a deep noise reduction
network to learn the noise distribution from data features, and applying the
trained network to reduce noise influence in real data estimation.

The main contributions of this paper can be summarized as follows.

• Firstly, to the best of our knowledge, DeepVib is the first work to leverage
deep learning techniques for enhancing vibration sensing performance. No-
tably, DeepVib is trained exclusively using simulated data, eliminating the
need for extensive dataset construction efforts.
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• Secondly, DeepVib exhibits exceptional computational efficiency, resulting
in minimal processing time during the testing phase. Particularly, DeepVib
reduces processing time by approximately 80% compared to the frequency
group algorithm.

• Thirdly, we conduct comprehensive validation of DeepVib using both simu-
lated and real-world data. The results demonstrate significant improvement,
with DeepVib achieving over 40% enhancement in measuring µm-level am-
plitudes based on the simulated data. Furthermore, despite being solely
trained on simulated data, DeepVib achieves a mean amplitude error of 2.1
µm for 100µm-amplitude vibrations when tested on real-world data.

The remaining sections of this paper are organized as follows. Section II
provides an overview of the related work in the field of vibration sensing. In
Section III, we introduce a vibration propagation model. The design of DeepVib
is presented in Section IV. Section V describes the implementation details
of our system, followed by a thorough experimental evaluation. Finally, we
conclude the paper in Section VI, summarizing the key findings and discussing
potential future directions for research.

2 Related Work

In this section, we introduce in detail the related work on vibration sensing.
RFID based vibration measurement. Several methods have been

proposed to utilize RFID technology for vibration measurement. The initial
attempt was made by TagBeat [28], which successfully measured the vibration
frequency of sub-cm-level vibrations. Building upon this work, TagTwins
[3] introduced a two-tag system to mitigate ambient noise. TagSound [11]
leveraged the characteristics of harmonic backscatter to detect high-frequency
vibration signals. Additionally, TagSMM [27] improved sensitivity by exploiting
the coupling effect among tags, enabling sub-millimeter resolution. However,
despite these advancements, the current RFID-based vibration sensing methods
still fall short of meeting the requirements for achieving µm-level accuracy.

mmWave based vibration measurement. The mmWave technology,
with its millimeter-level wavelength, offers enhanced sensitivity to weak vibra-
tions, making it suitable for detecting small displacements. In [2], theoretical
lower bounds for object amplitude and frequency estimation are analyzed,
along with a simplistic estimation method. However, this method fails to
address the practical issue of handling the DC component. To address this
limitation, [16] introduces a geometric representation of the signal model in
the In-phase and Quadrature (IQ) domain. They propose removing static



Contactless Micron-Level Vibration Measurement with Millimeter Wave Radar 5

reflections using mean-based and fitting-based techniques to recover the ob-
ject’s amplitude. Nevertheless, when the vibration displacement is extremely
small, susceptibility to noise becomes a concern. Gao et al. in [5] propose a
radius correction technique to enhance small displacement accuracy, but it
necessitates a lengthy calibration arc. In [8, 10], several methods are proposed
to improve fitting accuracy and attenuate noise interference by combining
multiple data with different carrier frequencies. However, these methods often
require specialized hardware, such as digital phase shifters, and suffer from
increased computational effort and longer recovery times due to the larger
amount of data. These drawbacks pose challenges for real-time monitoring
applications.

3 Theory and Estimation Challenges

3.1 Signal Model for Vibrating Targets

In this paper, we focus on the Frequency Modulated Continuous Wave
(FMCW) mmWave radar, as illustrated in Figure 1. This radar operates
by transmitting a chirp signal with a linearly varying spectrum across the
bandwidth range. The mathematical representation of a single transmitted
chirp signal is given as follows:

s(t) = At exp

[
j2π(fc +

1

2
Kt2)

]
, 0 < t < Tr, (1)

where At represents the magnitude associated with the transmit power, fc
denotes the carrier frequency, and K = B/Tr is defined as the slope between
the signal bandwidth B and the duration of a single chirp period Tr.
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Figure 1: An illustration of FMCW waveform, where the solid line stands for TX signal and
dashed line stands for RX signal.

Consider the scenario where a single small object is vibrating at position x0

relative to the radar, resulting in a time-varying distance between the object
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and the radar. The equations describing the vibration of the object and the
distance from the object to the radar are given as follows:{

x(t) = Av sin(2πfvt+ φv),

X(t) = x0 + x(t),
(2)

where x(t) characterizes the vibration, Av, fv, φv denote the amplitude,
frequency, and initial phase of the vibration target, respectively.

The received signal at the radar receiver is a delayed version of the trans-
mitted signal, represented by r(t), with a delay denoted as t∆ = 2X(t)

c , which
is the round-trip propagation time of the chirp. The c denotes the speed of
light. Consequently, the intermediate frequency (IF) signal can be derived as
follows:

y(t) = s(t)r∗(t)

≈ AtAr exp
[
j4π(fc +Kt)X(t)

c

]
,

(3)

A chirp contains reflected signals at multiple distances. Thus, we need to
extract the signal from the right distance to enhance the estimation performance
of the vibration. Since the duration of a chirp is typically short, we can assume
that the vibrating object remains stationary during this time interval. To
extract the target information, we apply Range-FFT on each chirp and combine
the range bin results from different chirps to form a slow time sequence. The
signal obtained from the range bin associated with the target distance can be
mathematically expressed as follows:

y′(t) = a exp

[
j4πfc

X(t)

c

]
. (4)

From the Equation 4, we can see that the phase of y′(t) encapsulates vital
information regarding the target’s vibration. The relationship between the
phase and the amplitude can be derived as follows:

θ(t) = 4π
x0 + x(t)

λ
, (5)

where the signal phase change is directly proportional to the object’s dis-
placement variation, forming the core formula for vibration measurement with
FMCW radar. By quantifying the phase shift magnitude, we can calculate the
object’s amplitude.

3.2 Fitting-based Vibration Measurement

In practice, the received signal extracted from the range bin containing the
vibrating target encompasses not only information about the target’s motion
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but also static reflections from surrounding objects and noise interference.
Thus, the received signal can be expressed as follows:

S(t) = a0 exp
[
j4πfc

X(t)
c

]
+
∑n

i=0 ai exp
[
j4π xi

c

]
+ w(t)

= a0 exp
[
j4πfc

X(t)
c

]
+ a′ exp

[
j4π x′

c

]
+ w(t),

(6)

where xi is the distance from i-th stationary object to radar and w(t) is the
complex Additive White Gaussian Noise (AWGN). The second equality comes
from the fact that the static reflections do not vary with time and thus can be
combined together as an aggregated static reflection x′.

As shown in Figure 2, due to the vibration of the object, ideally the
received signal S(t) is located on an arc in the complex plane, where the
vector

−→
OA represents the aggregated static reflection. Through identifying

the radius and the center of the arc, we can obtain the vibration information.
However, in practical scenarios, noise affects the received signal, causing it to
be distributed around the arc. Consequently, a direct approach of fitting a
circle to the noisy samples is prone to significant noise interference, particularly
for small vibrations. For instance, a 50 µm vibration corresponds to a mere
0.33 rad phase change, representing approximately 5% of the complete circle
and making it highly sensitive to signal noise.
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Figure 2: Complex plot representation of S(t), S(t) due to the displacement X(t) is located
in the thick arc. The vector

−→
OA represents the static background reflections.

3.3 Estimation Challenges

To investigate the impact of noise and short arc length (corresponding to
small amplitude) on geometric fitting, we conduct two simulation experiments
using Python. The simulation parameters for the radar device are set as
follows: carrier frequency fc = 77.64 GHz, sampling rate fadc = 12 MHz,
modulation bandwidth B = 4 GHz, and slope K = 20 MHz/µs.
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The first experiment involved comparing an ideal noise-free reference signal
with a comparison signal with a SNR of 0 dB. In the simulation, the target
amplitude is set to 150 µm, and the corresponding IQ sample points form a
circular arc, occupying 15% of the entire circle. By adding AWGN to the ideal
signal, resulting in an SNR of 0 dB, we obtain the results shown in Figure 3.
It is evident that there is a significant discrepancy in the circle center between
the two signals, indicating that noise in the reference signal leads to inaccurate
estimation of the circle center. When the circle’s center is translated to the
origin, this deviation is propagated to the arc. From Figure 3, we observe
that the arc with noise corresponds to a considerably larger circle center angle,
introducing errors in the extraction of the phase angle.

Figure 3: Center estimation results comparison between reference signal (orange) and
comparison signal (blue).

The second experiment involved comparing different amplitudes at the
same SNR level. Keeping other parameters constant, the SNR is set to 0 dB,
and the amplitude is set to 400 µm, corresponding to a theoretical signal arc
occupying 41% of the entire circle. The experimental results are presented in
Figure 4. It can be observed that the estimated positions of both circle centers
are nearly identical. When the center of the circle is translated to the origin,
the relative positions of the circular arcs remain unchanged. Comparing with
the results of the first experiment, it is evident that the estimation accuracy
of the longer circular arc is closer to the ground truth, exhibiting significant
improvement over the shorter arc.

To comprehensively investigate the impact of noise level and amplitude on
the accuracy of circular center estimation, we conduct a series of simulations
using mmWave radar for vibration measurements. In these experiments, we
assume a simulated target vibration frequency of 50 Hz, with the amplitude
sweeping from 20 µm to 1000 µm and the SNR sweeping from 10 dB to 75 dB.
Subsequently, the estimation error is calculated using the following formula:

e =
|Ev −A|

A
× 100%, (7)
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Figure 4: Center estimation results comparison between reference signal (orange) and
comparison signal (blue).

where Ev represents the measured amplitude, and A represents the ground
truth. Multiple experiments are performed for each set of parameters, and the
average value is computed to determine the final estimation error.

The amplitude estimation error is studied by varying both the amplitude
and SNR in multiple simulations. The results, shown in Figure 5, indicate that
minimizing the error at low SNR requires a larger amplitude, corresponding
to a larger arc length. For example, with an amplitude of 150 µm and an SNR
of 16 dB, the error is 24.63%. However, increasing the amplitude to 500 µm
under the same SNR reduces the error to 5.06%, an improvement of 79.4%.
Conversely, at small amplitudes, higher SNR levels significantly reduce the
error. Hence, improving the estimation performance involves enhancing the
SNR and expanding the amplitude to increase the coverage of circular arcs.

Figure 5: Estimation errors for different combinations of SNR and amplitude.

Based on the findings of the simulation experiments, in order to reduce the
error, we adopt the idea of improving the SNR for system design. However,
traditional methods face challenges in enhancing the SNR due to fixed radar
parameters and target RCS. To overcome this, we propose a deep learning
approach to enhance the SNR of vibration reflection signals. By leveraging
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a large amount of simulation data, we train a deep learning model to learn
the intrinsic features of the data and mitigate the impact of noise on the
geometric fit, as illustrated in Figure 6. This approach eliminates the need for
actual experimental data acquisition and the setup of a physical environment,
resulting in significant reductions in labor costs.

Figure 6: Improving SNR.

4 Proposed Method

This section presents the design of DeepVib. Figure 7 illustrates the
workflow of DeepVib, which comprises three key modules.

Vibrating
Object
Detection

Vibration
Signal

Denoising

Vibration
Signal

Recovery

Vibrating 
Motor

mmWave
Radar Vibrating

Signal

Figure 7: DeepVib Architecture.

• Vibrating Object Detection (VOD): The VOD module leverages the
inherent physical characteristics of the vibrating object and utilizes Range-
Doppler FFT to extract the slow time sequence of the vibrating object from
the chirp signals.

• Vibration Signal Denoising (VSD): The VSD module consists of two
steps. Firstly, a denoising neural network is trained using the generated data.
Then the trained network model takes the noisy sample points as input and
outputs the denoised data with higher SNR.
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• Vibration Signal Recovery (VSR): The VSR module performs circular
fitting to eliminate background reflections and subsequently unwraps the
phase of the signal to recover the target vibration.

4.1 Vibrating Object Detection

In the VOD module, the radar data is initially processed using Range-FFT,
which transforms signals at various distances into distinct range bins. To
distinguish the vibrating target from static and other moving objects, we
leverage the periodic motion of the vibrating target. When it passes through
the center symmetry position of the vibration, the velocity exhibits the same
magnitude but opposite direction. For the small amplitude of the vibration, the
vibrating target consistently occupies the same range bin. Therefore, with the
assistance of Doppler-FFT, we can identify the range bin where the vibration
signal is present: the motion characteristics of the vibrating object result in
symmetrical positive and negative velocities in the Doppler-FFT spectrum, as
depicted in Figure 8. This characteristic enables the exclusion of other moving
objects. And the detailed VOD algorithm is described in Algorithm 1, where
X denotes a frame of data, ϵ represents the threshold for identifying vibration
targets, and R indicates the range bin associated with the vibration signal.

2 1 0 1 2
Velocity (m/s)

102

103

104

105

106

107
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w

er

Vibrating objectVibrating object

Non-vibrating object

Figure 8: Range-Doppler.

4.2 Vibration Signal Denoising

Following the VOD module, we successfully extract the signals reflected
from the vibrating object, which is however noisy due to the noise and imperfect
spatial separation of the Range-FFT. Consequently, the presence of noise can
obscure micro-meter level vibrations, thereby compromising the accuracy of
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Algorithm 1: Detect vibrating target.
Input: one frame data X, ϵ, K
Output: range bin index R

1 X∗ ← Range-Doppler and FFTshift on X

2 Xp ← abs(X∗)

3 Xp ← eliminate the component with velocity zero
4 I ← find index of top K max values of Xp

5 for (i, j) in I do
6 (i′, j) ← find symmetric index of (i, j)

7 v ← abs(Xp[i′][j]−Xp[i][j])

max(Xp[i′][j], Xp[i][j])

8 if v < ϵ then
9 R ← j

10 return

vibration estimation. To address this issue, we introduce the VSD module in
this subsection. The primary objective of the VSD module is to denoise the
extracted signals and effectively suppress the noise components.

Ideally, the IQ samples of the reflected signals exhibit a circular distribution
in the complex plane. These samples demonstrate temporal correlation owing
to the continuous nature of the vibrating motion, with stronger correlation
observed between samples that are closer in time. This correlation pattern
bears resemblance to the spatial correlation observed in visual images, where
neighboring pixels exhibit high correlation, and proximity in space results in
stronger correlation. Leveraging the remarkable capabilities of Convolutional
Neural Networks (CNNs) in visual image processing, we adopt CNNs in this
study to process the IQ samples of the reflected signals.

Since the underlying structure of the reflected signal is simple, we utilize a
shallow U-Net [20] architecture for the network design, as shown in Figure 9.
The network architecture consists of multiple 1D-CNN layers, each utilizing
a 3x1 kernel. Rather than employing pooling operations for downsampling,
we employ convolutional layers with a step size of 2 to achieve feature com-
pression and dimensionality reduction. For upsampling, we employ bilinear
interpolation. By employing convolutional layers with different step sizes
for expanding or reducing the receptive field, we capture feature information
at various scales, enhancing the network’s expressiveness and generalization
capability. To facilitate optimal network training, we normalize the samples
before feeding them into the network as follows:
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conv 3x1

copy and crop

downsampling
upsampling

Figure 9: Noise reduction network structure.

Q′ =
Q

max(|mean(Q)|)
, (8)

where Q is the samples extracted from the VOD module.
We use the l1-norm sum as the loss function to train the network

L =
∑
∥f(Q′)− Y ∥1, (9)

where Y is the ground truth and f(Q′) is the estimated value through the
network.

4.3 Vibration Signal Recovery

After the VSD module, the reflected signals are effectively denoised, allowing
us to employ a circle fitting method to eliminate background reflections. Let
V = viN , vi ∈ R2 denote the IQ samples extracted from each chirp and
processed by the VSD module. The circle fitting process is formulated as an
optimization problem to minimize the sum of geometric distances from each
sample to the circle:

u∗, r∗ = argmin
u,r

N∑
i=1

(∥vi − u∥2 − r)2, (10)

where vi is the i-th denoised sample, N is the number of samples, u and r
stand for the circle center and radius, respectively.

The above problem is a nonlinear least squares optimization problem that
lacks an analytical solution. Therefore, it can only be solved using iterative
or approximate methods. The Levenberg-Marquardt (LM) algorithm [4]
demonstrates the lowest error and the fastest convergence. Hence, we employ
the LM algorithm as the solver for circle fitting. Once the radius and center of
the circle are estimated, we subtract the circle’s center from the sample points
to eliminate background reflections:
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v′i = vi − u∗. (11)

Then, according to Equation 5, the displacement of the vibration signal
Di can be obtained from the phase of sample v′i, φi, as follows:

Di =
c

4πfc
unwrap(φi), i ∈ [1, N ]. (12)

5 Experimental Results

5.1 Implementation Details

5.1.1 Generating simulation data

To train the denoising neural network, we first generate a large amount of
simulation data based on the signal model in Equation 3. The output IF signal
is influenced by various parameters, such as the object’s amplitude, vibration
frequency, initial phase, mmWave radar’s carrier frequency, and noise intensity,
so we can generate enough training data by setting different values for these
parameters. The specific parameter settings are as follows:

• Av ={10, 20, 30, 40, 70, 120, 200, 500} µm

• fv = {30, 50, 80, 120, 160, 250} Hz

• fc uniformly distributed from 77GHz to 78GHz

• φv uniformly distributed form 0 to 2π

5.1.2 mmWave radar configuration

In addition to the simulation experiments, we also evaluate the performance
of DeepVib in real-world scenarios, where the configuration of the mmWave
radar during data acquisition is shown in the Table 1.

5.1.3 Evaluation metrics

We use the Root Mean Square Error (RMSE) and the amplitude estimation
error e as evaluation metrics.

RMSE =

√√√√ 1

N

N∑
i=1

(ŷi − yi)
2
, (13)

where {yi}N is the motion of the vibration target, and {ŷi}N is the result
estimated by our model.
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Table 1: mmWave radar parameters configuration.

Type Value

fc 77GHz
K 50MHz/us
T 75us
B 3.66GHz
N 256

Antenna mode 3Tx4Rx
ADC sample rate 3500ksps
Chirp idle time 20us

e =
|ŷ − y|

y
× 100%, (14)

where y is the ground truth of vibration target amplitude, and ŷ is the estimated
value of the DeepVib.

5.1.4 Comparison method

We conduct a comparative analysis of our proposed DeepVib with two
existing mmWave-based vibration measurement approaches: the circle fitting-
based method [16] (referred to as CircleFit) and the multi-signal consolidation
model [8] (referred to as mmVib). The biggest difference between our proposed
DeepVib and the CircleFit is the addition of the VSD module, which is pre-
trained using simulation data, so that the comparison of experimental results
with the CircleFit can fully illustrate the superiority of the VSD module. To
ensure the fairness of the comparison, all methods use the same data and pre-
processing methods, and the experimental results are averaged over multiple
experiments. All simulations and experiments are run on a PC host with an
Intel i7 10700K CPU @3.7GHz and 32G RAM.

5.2 Simulation Results

Denoising performence. In this subsection, we first evaluate the de-
noising performance of our VSD module. The IQ samples before and after
VSD module are shown in Figure 10. We can see that with the proposed VSD
module, the noise is well suppressed and thus the samples fit better with the
ground-truth arc, and the sample points are more aggregated with each other.
We also illustrate the displacement profile in Figure 11(a), where we can see
that the vibration signals reconstructed by the proposed DeepVib matches well



16 Wen et al.

Figure 10: Comparison of samples before and after denoising.

Figure 11: Comparison of extracted vibration signal and ground-truth.

with the ground truth, and the estimated amplitude RMSE is 1.56µm, which
validates the effectiveness of the proposed DeepVib. The frequency-domain
signals of vibration target are shown in Figure 11(b). The location of the
peak with maximum amplitude, which corresponds to vibration frequency, is
approximately the same for the estimated and ground truth spectrum, which
demonstrates that the DeepVib could achieve accurate frequency estimation.

Impact of vibration amplitude. We then evaluate the performance
of the different methods based on the accuracy of the amplitude estimation.
We set the vibration frequency to 50 Hz and reduced the amplitude from
200 µm to 20 µm. The amplitude estimation errors at different distances are
shown in Figure 12. We can see that for all three methods, the performance
gradually improves as the amplitude increases and the error rate decreases.
Notably, DeepVib consistently achieves the highest accuracy across all cases,
while CircleFit exhibits the poorest performance, confirming the effectiveness
of the VSD module. Moreover, DeepVib demonstrates an approximately 40%
improvement compared to mmVib.
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Figure 12: Impact of amplitude.

Impact of SNR. We also evaluate the performance of our system at
different SNR, where we keep the frequency at 50 Hz and the amplitude at
100 µm, and then span the SNR from 15 dB to 30 dB. The experimental
results are shown in Figure 13. Three methods could achieve high accuracy to
estimate the amplitude at high SNR. However, the accuracy of CircleFit for
18dB drops dramatically while DeepVib is still accurate. The performance of
all three methods improves as the SNR increases, and the error achieved by
the DeepVib is much smaller than that of the comparison method at all SNR
levels. When the SNR is 24dB or greater, our system achieves the amplitude
estimation error below 3%; the experimental results at 15 dB show that the
present system can significantly improve the estimation performance at low
SNR.

Figure 13: Impact of SNR.

5.3 Vibration Calibrator Experiment

In this subsection, to further illustrate the superiority of the proposed
method, we conduct experiments on the vibration calibrator dataset. This
dataset, as described in [8], utilizes a Texas Instruments AWR1642 77GHz
millimeter wave radar as the acquisition hardware, along with a micron-scale
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vibration calibration device serving as both the vibration generation source
and the ground truth for vibration parameters. The dataset encompasses
multiple sets of data, each characterized by different measurement distances
and varying vibration amplitudes. It is important to note that these data are
exclusively used for evaluating the model during the testing phase and are not
included in the training phase.

Denoising performance. We first evaluate the denoising performance of
our VSD module for the real-world data. Figure 14 illustrates the IQ samples
of the calibrator with an amplitude of 100 µm at a distance of 640 cm. It
is evident that the VSD module effectively suppresses the noise, resulting in
more consolidated and refined samples. Moreover, we present the recovered
vibration signal with an amplitude of 30 µm at 80 cm in Figure 15. The
discrepancy between the peak value and 30 µm is minimal. Additionally, the
frequency estimation of this vibration yields a result of 50.05 Hz, with an error
rate of less than 0.1% when compared to the actual frequency of 50 Hz. These
findings further substantiate the efficacy of our proposed model in accurately
capturing real-world vibrations.

Figure 14: Comparison of samples before and after denoising.

Figure 15: Reconstructed target vibration signal.
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Impact of measurement distances. We then verify the capability of
our system for vibration measurement, we set the vibration frequency to 50 Hz
and perform multiple sets of experiments at amplitudes of 30µm and 100µm
at distances ranging from 80 cm to 640 cm. The results are shown in Figure
16. We can see that the estimation errors of all three methods increase as the
distance increases, with our proposed DeepVib having the best performance
and CircleFit having the worst performance. At a measurement distance of
80cm, for the amplitude of 100µm, DeepVib achieves an average amplitude
error of 2.1µm with a relative error of 2.1%. When the distance is 640cm,
DeepVib improves the error in amplitude estimation by about 33% compared
to mmVib. Experiments on real data show that our proposed DeepVib can
effectively and accurately recover the vibration of the target.

Figure 16: Impact of measurement distances.

Execution time. Finally, we evaluate the performance of the different
methods in terms of execution time, and the results are shown in Table 2.
In Table 2, we performe 90 experiments, each containing 10 frames of data,
and take the average result of the 90 experiments as a display. It is worth
noting that DeepVib and CircleFit have similar execution times, and both are
about 5 times faster than mmVib. This experiment illustrates the vibration
recovery efficiency of our proposed method, which is able to reconstruct the
target motion process in real time.

Table 2: Comparison of the computation speeds of various methods.

Algorithm Time/ms

CircleFit 85.8647
DeepVib 86.6164
mmVib 480.4097
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Overall performance. To further illustrate the advantages of the pro-

Figure 17: CDF of amplitude estimation.

posed DeepVib system, We adopt the cumulative distribution function(CDF)
of amplitude estimation to evaluate performance of three approaches and the
comparison is shown in Figure 17. From the figure, we can see that our system
can achieve accurate measurement of micron-level vibration, and the relative
amplitude error of DeepVib about 80% is less than 14.17%, which reduces
the 80% quantile amplitude measurement error by 56.60% compared with the
traditional method CircleFit. In addition, the relative error of DeepVib 50% is
less than 7.23%. The comparison results show that the DeepVib outperforms
the other two approaches.

5.4 Motor Vibration Experiment

In this subsection, we investigate the vibrations occurring on the surface
of a motor, employing the experimental setup depicted in Figure 18. The
experimental object is the motor on the rail that controls the movement of the
platform, the distance between the mmWave radar and the motor is about 60
cm, while the mmWave radar configuration is consistent with the previously
described setup.

To verify the effectiveness of the system in measuring motor vibration,
we control the platform to perform several sets of experiments with different
velocity reciprocal cycle motions in the horizontal direction. Figure 19 shows
the time domain signal of motor vibration recovered by DeepVib, in which
the platform moves at 5cm/s and 15cm/s, respectively. The amplitude esti-
mation results of DeepVib system are 83.3µm and 85.1µm, and the frequency
estimation results are 10.01Hz and 29.91Hz. The estimated frequencies have
small errors compared with the ground truth frequencies of 10Hz and 30Hz,
which indicates that DeepVib accurately measures the vibration of the motor
at both speeds.
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Figure 18: Motor vibration monitoring.

Figure 19: Vibration pattern of motor surface.

Estimation results of the motor at different speeds are shown in the Table 3.
We can see that the seventh group of data estimated the frequency of 25.51Hz,
which deviates significantly from the ground truth of 30 Hz. This discrepancy
arises due to the limited length of the rail. When the platform reaches the
ends, it needs to decelerate and reduce speed to zero before changing direction.
Consequently, during this period, the motor frequency is lower than 30 Hz.
However, for the other groups of data, the experimental results closely align
with the ground truth values, demonstrating that DeepVib can accurately
recover motor vibrations at the micron level.

5.5 Structure Vibration Experiment

In this subsection, we assess the performance of the DeepVib system in
monitoring building structures, which is crucial for evaluating its efficacy in
practical applications. The monitoring and analysis of structural responses
under dynamic loads, such as earthquakes and wind, play a vital role in de-
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Table 3: Motor vibration measurement results.

Velocity(cm/s) Estimated
Amplitude(µm)

Estimated
Frequency(Hz)

Frequency ground
truth(Hz)

#1 0.5 81.0 1.00 1.00
#2 1 82.4 2.00 2.00
#3 2 83.0 4.00 4.00
#4 5 83.3 10.01 10.00
#5 10 82.2 20.02 20.00
#6 15 85.1 29.91 30.00
#7 15 75.6 25.51 30.00
#8 20 79.5 40.28 40.00

signing structures capable of withstanding severe catastrophic and weather
conditions. In civil engineering, researchers simulate dynamic loads on struc-
tures to measure their dynamic responses, including displacement, velocity,
and acceleration.

In this experiment, we employ mmWave radar to investigate the effec-
tiveness of DeepVib in measuring the dynamic response of structures. The
mmWave radar is securely mounted on a steel beam structure near the ceil-
ing, approximately 2.8 meters above the floor. To excite the floor structure,
the experimenters strike it with tools. The estimated displacements of the
structure, obtained from the radar signals, are illustrated in Figure 20. Under
stationary conditions, the floor response exhibits noise, irregular signal pat-
terns, and displacements of up to 60 µm caused by noise. However, when the
experimenters strike the floor with different speeds, the floor response becomes
regular. Notably, the displacements caused by both motions are approximately
60 µm. These experimental results demonstrate that DeepVib is capable of
accurately sensing the structural response of buildings at the micron level.

Figure 20: Floor vibration under different excitation.
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6 Conclusion

In this paper, we proposed a deep learning based framework, DeepVib, to
accurately sense the µm-level vibrating object. The key idea was to exploit the
temporal correlations among different IQ samples through a simple yet effective
neural network. Both simulation and experimental results demonstrated that
DeepVib can extract tiny vibrations robustly, accurately, and efficiently even
under low SNR conditions.
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