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ABSTRACT

The pansharpening task is to fuse low-resolution multispectral
(LRMS) images and high-resolution panchromatic (PAN) images to
generate high-resolution multispectral images. Most of the existing
methods do not preserve spatial and spectral details well, which
is due to ignoring the difference in resolution between the two
images. To address this issue, we propose a novel fusion network
(ESAFormer) that effectively enhances the spatial and spectral
information representation. In the proposed model, a hybrid multi-
resolution structure of CNN and Transformer is deployed to allow
the features of LRMS images and PAN images to fuse progressively.
Subsequently, the enhanced spatial attention module is adopted
to preserve spatial details and long-range information. Extensive
experimental results indicate that the proposed method is superior
to existing SOTA methods on World-View2 and IKONOS datasets.
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1 Introduction

With the development of satellite image sensors, the availability of remote-
sensing images has increased in recent years. However, due to the technological
limitations of existing sensors, images acquired by current remote sensing
sensors have to make a trade-off between spectral and spatial resolution [20].
To meet the necessary signal-to-noise ratio (SNR), multispectral (MS) images
with four or eight bands typically have a low spatial resolution, while PAN
images tend to have a high spatial resolution but only consist of one band, as
shown in Figure 1. However, a large number of high-resolution multispectral
(HRMS) images are required for the interpretation of observed scenes. To create
HRMS images, it is suggested to fuse low-resolution multispectral (LRMS)
and PAN images using pansharpening [22].

Figure 1: From left to right: MS (Multispectral) image, PAN (Panchromatic) image, and
fused image. Due to sensor limitations, MS image contains richer spectral information
but lower spatial resolution, while PAN image offers higher spatial resolution with a single
spectral band. The fused image retains both spatial and spectral characteristics.

Numerous pansharpening techniques have been proposed in the past few
decades, with promising outcomes. Existing pansharpening can be divided
into traditional methods and deep learning-based methods. The traditional
methods include component substitution, multi-resolution, and model-based
methods [20]. Component substitution and multi-resolution methods obtain
fusion image from the perspective of detail injection [26]. The former method
is to completely replace one component of the MS with a PAN image, such as
the BDSD-PC [11]. The fusion results of the component substitution method
have a good effect on the preservation of spatial details. However, due to
the difficulty in separating the spectral and spatial information in the multi-
spectral image, the spectral distortion of those results is often large. The latter
method adopts the spatial details extracted from PAN images to integrate
into MS images to obtain high-resolution multi-spectral images, such as the
generalized Laplacian Pyramid (GLP) [1]. Multiresolution-based methods
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often achieve good results in spectral information retention. However, they
model the spatial details of the source image and inject them into multispectral
images, which tends to result in additional spatial artifacts in the fusion results.

Model-based methods focus on building feature representation models
with appropriate regularizers to solve the fusion problem of multi-spectral
and panchromatic images, then designing a module for the given model to
reconstruct the high-resolution results [26]. The whole process can be regarded
as the reconstruction of incomplete complementary observations of multi-
channel data from a mathematical point of view. In general, it mainly includes
Bayesian, sparse reconstruction (SR), and model-based optimization (MBO)
techniques. For example, the P+XS method obtains the spectral information
of a fused image by assuming that the PAN image can be approximated as a
linear combination of high-resolution multispectral bands [5]. However, model-
based methods often require hyperparameter adjustment, and the calculation
burden is heavy.

Since these traditional methods rely on manually created features [6][15],
their capacity to fuse images to preserve features is severely constrained. Due
to CNN-based methods having strong feature representation ability, many
CNN-based pansharpening techniques are superior to traditional methods [7]
[14]. In the early stage, a three-layer convolutional neural network (CNN)
was designed to process the pansharpening task of multi-spectral images, and
better fusion results were obtained compared with the traditional existing
methods [19]. After that, a deep CNN structure was developed to fuse the
PAN and LRMS images by high-pass filtering technology [30]. Deng et al.
[7] designed Fusion-Net with the idea of component substitution and multi-
resolution. Recently, TF-Net [16] employed the deep convolution layer of
residual connection to process the feature cascade, and performed image fusion
in the feature domain. Zhang et al. designed TD-Net utilizing bi-directional
information flow and multi-layer convolution processing to gradually generate
fused images [32]. Nevertheless, CNN-based techniques still have certain
drawbacks, such as the absence of long-range information modeling.

To address the lack of long-range dependency in CNN methods,
Transformer-based pansharpening methods were developed and have achieved
superior results in context presentation modeling [13, 26]. Dosovitskiy et al.
firstly proposed a ViT-based approach for pansharpening with excellent results
[9]. Subsequently, Meng et al. cut the source image into patches and used
Transformer to learn the long-range dependency between these patches [21].
After that, Zhou et al. utilized reversible neural modules to represent and
fuse features [35]. Zhang et al. [8] used the spatial and spectral attention
mechanism to extract feature maps and used the graph attention mechanism
to learn the similarity between feature maps. Although the global attention
mechanism of Transformer allows the model to focus on feature dependencies
over long distances, its ability is insufficient to represent local features that
are very important in remote sensing image tasks.
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In a word, the lack of synergy between long-range and short-range features
at different scales in the above methods led to inadequate feature extraction and
unsatisfactory pansharpening results. Meanwhile, the upsampled LRMS and
PAN images are crudely layered in several deep-learning-based pansharpening
approaches, while ignoring the resolution difference of the source images. As a
result, the spatial features of the fused image are not significant enough.

To address the above issues, and inspired by recent work on image super-
resolution [10, 23], we propose a novel multi-resolution fusion network for
pansharpening, named ESAFormer. The overall architecture of the network
uses a bi-directional information flow of LRMS and PAN images, where the
spatial and spectral features of MS and PAN images are integrated progressively.
To preserve as much spatial detail as possible, we introduce the enhanced
spatial attention mechanism that uses as few parameters as possible to achieve
better spatial detail retention. In the MS branch, we merge CNN with Swin-
Transformer’s attention mechanism to enable the model to combine their
strengths in modeling both local and global information. The contribution of
our work can be summarised as follows:

1) We propose a novel multi-resolution fusion network, which adopts a
bi-directional structure to fully utilize the multi-resolution information of PAN
image and spectral information of MS image.

2) We apply the enhanced spatial attention mechanism and Swin-Trans-
former to train the model, which enables ESAFormer to obtain richer short
and long-range features at different scales.

3) Experiments on multiple datasets show that ESAFormer outperforms
SOTA methods in both visual and quantitative comparisons. Ablation studies
further demonstrate the effectiveness of the proposed method.

2 Multi-resolution Fusion Network for Pansharpening

In this section, we present the proposed method. Firstly, we give the problem
formulation of the pansharpening task. Subsequently, the overall structure of
the proposed approach is introduced. After that, we describe the implementa-
tion details of ESAFormer.

2.1 Problem Formulation

For convenience, the notation used throughout this paper is presented first.
Let P ∈ RH×W×1 denotes a high-resolution PAN image with the spatial size
of H ×W and ms ∈ RH

4 ×W
4 ×B denotes a low-resolution multi-spectral image

with B spectral bands and spatial size H
4 . To preserve the spectral information

of MS images, the upsampled MS images MS ∈ RH×W×B are added to the
final output. The whole process can be formulated as:
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Fused = MS +Hnet(P,ms, θ), (1)

where Fused ∈ RH×W×B is the fused result, Hnet denotes the whole network,
and θ denotes the parameters.

2.2 Bi-directional Flow Network Structure

The overall network architecture is a bi-directional information flow structure
including MS and PAN branches as shown in Figure 2. The overall process is
to extract the spatial information of PAN images and inject it into MS images
progressively. The fused image is generated by integrating multi-spectral and
spatial information from MS and PAN images gradually.
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Figure 2: ESAFormer: Multi-resolution Fusion Network for Pansharpening.

The PAN branch adopts two Conv Blocks consisting of four convolu-
tional layers and a residual concatenation to generate different resolution
spatial features. The MS branch consists of two steps of upsampling and
ESAFormer, corresponding to different resolution features of PAN. In each
step, the ESAFormer module fuses spectral and spatial features to generate
the fusion results with the corresponding resolution. Finally, the HRMS image
is obtained by adding the multi-resolution fusion result with the MS image
after 4-fold upsampling.

2.3 ESAFormer

This section introduces the workflow of ESAFormer, whose structure is shown
in Figure 3. The ESAFormer module is the core module of the proposed
network architecture. This module is adopted for integrating the spatial
information of PAN and the spectral information of MS and generating the
fused features.

Firstly, the upsampled MS image and the feature maps of PAN are directly
stacked together to obtain the fused shallow features. Then, ESA is deployed to
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Figure 3: ESAFormer module.

increase the receptive field of the model. After that, the intermediate features
are fed into the Swin-Transformer Block to further integrate the spectral
and spatial information of the whole fused features. Finally, the two-layer
convolution generates the initial fusion results while avoiding excessive spatial
artifacts. The process of the ESAFormer can be described as:

Fout = fESAFormer(Fin)

= Convgroup1(HSTB(HESA(Fin))),
(2)

where HSTB(·) denotes a Swin-Transformer Block, Convgroup1(·) is the oper-
ation of the convolution layer group, and HESA(·) denotes the ESA module.
Fin denotes the shallow feature of the fused image, which could be formulated
as :

Fin = Conv(Concat3×3(PANf ,msup)), (3)

where PANf denotes the feature maps of PAN image, mup denote the upsam-
pled MS image.

The enhanced spatial attention (ESA) module is shown in Figure 4. Given
an input Fin , ESA firstly obtains features F1 as follows:

F1 = Conv1(Fin), (4)

where F1 is to reduce embedding dimension, and Conv1 is a 1 × 1 convolu-
tion.Then ESA further calculates features F2 as follows:

F2 = Up(Convgroup2(Pooling(Conv2(F1))), (5)
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Figure 4: Enhanced Spatial Attention.

where Up(·) is the up-sampling function realized by bilinear interpolation,
Pooling is a max-pooling operation, Convgroup2(·) is a group composed of two
3×3 convolution layers with Relu, and Conv2 is a 3×3 convolution with stride
of 2. Both the pooling layer and the stridden convolutional layer diminish the
spatial dimensions, which are subsequently recovered by the upsampling layer.
Finally, the output of ESA module can be computed as:

F esa
out = Sigmoid(Conv3(F1 + F2))× Fin, (6)

where Conv3 is 1 × 1 convolutional layer used to recover the embedding
dimension, Sigmoid is the sigmoid function, and symbol × denotes element-
wise multiplication operation. The features are more narrowly concentrated
on the areas of interest at the start of the ESAFormer thanks to the operation
of the ESA mechanism. After this operation, we aggregate the key areas of the
image and greatly retain and enhance the spatial details, which is conducive
to the subsequent work of pansharpening.

The architecture of Swin-Transformer Block (STB) is shown in Figure 5. It
consists of layer-normalization (LN), window-based multi-head self-attention
(W-MSA), shifted W-MSA (SW-MSA), and position-wise multilayer perception
(MLP). STB can be explained by the following formulas:

F3 = W -MSA(LN(F stb
in )) + F stb

in , (7)
F4 = MLP (LN(F3)) + F3, (8)
F5 = SW -MSA(LN(F4)) + F4, (9)

F stb
out = MLP (LN(F3)) + F5. (10)

In above formulas, F3, F4, F5, F stb
out indicate the feature maps in different

layers. It is worth noting that F stb
in equals to F esa

out .
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Figure 5: Swin Transformer Block.

In the flow of Swin-Transformer [17], the input image is first passed through
an embedding layer to convert the pixel values into an embedded representation
that can be processed by the Transformer model. Second, the image is divided
into a series of windows, and there is some overlap between these windows.
The self-attention mechanism within each window is adopted to capture local
features, while the cross-attention mechanism between the windows is employed
to capture long-range context information. In cross-attention, the shifted-
window strategy is adopted to further improve the information transmission.
Layer Normalization and MLP components are applied to normalize and map
features for better feature presentation. Finally, residual connections are
utilized to retain and convey information.

At the end stage of ESAFormer, the spectral and spatial information in
the fused feature is integrated through two-layer convolution processing.

3 Experimental Results and Analysis

In this section, we conducted extensive comparison and ablation experiments
to validate the performance of the ESAFormer. Firstly, we introduce the
two datasets employed in our experiments. Subsequently, implementation
details and evaluation metrics are given separately. After that, we indicate
and analyze the visual and quantitative comparison results with other SOTA
methods. Finally, the results of the ablation study are presented.
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3.1 Datasets

WorldView-2 (WV2) and IKONOS (IK) datasets were adopted to verify the
effectiveness of our method.

WorldView-2 (WV2): WorldView-2 dataset was captured from
WorldView-2 satellite, which is the first commercial satellite to feature a
Very-High-Resolution (VHR) sensor with more than four spectral bands. WV2
dataset has 500 pairs of images, each pair consisting of a PAN image with
a resolution of 0.5 meters and a MS image with a resolution of 2 meters.
The spatial sizes and radiometric resolutions of PAN/MS images are 1024
× 1024 / 256 × 256 and 11 bits respectively. The reduced-resolution (RR)
data is obtained by degrading the MS and PAN images according to Wald’s
methodology [29]. As there is no GT, the original MS images are then used
as GT. In the reduced resolution test, we used the 8:2 distribution to set the
training set and the test set. In the full-resolution test, we randomly selected
50 pairs of images to test.

IKONOS (IK): The IK consists of 200 pairs of images with 1 meter PAN
images and 4 meters MS spatial resolutions. As same as WV2 dataset setting,
we applied 8:2 distribution for training and testing. 40 pairs of images were
selected for testing in our experiments.

3.2 Implementation Details

Training Platform and Parameter Configuration: The proposed network
was coded using Pytorch 1.7.0 and Python 3.8.0, and trained with an NVIDIA
GPU GeForce RTX 3090. To minimize the loss function, we used the Adam
optimizer with the betas of (0.9, 0.999) and weight decay of 0. We set the initial
learning rate of 0.0004 and batch size of 4. To achieve better performance,
every model underwent 1000 training epochs, with half-rate drop-in learning
rate taking place every 200 epochs.

3.3 Evaluation Metrics

The similarity between the fused image and the ideal reference image (the
original MS image) is measured by the reduced-resolution (RR) and full-
resolution (FR) assessments. Multiple assessment metrics can be calculated
to find the similarity. In the RR experiments, the Q2n (Q8 for 8-band
datasets and Q4 for 4-band datasets) [4], the spectral angle mapper (SAM)
[31], the dimensionless global error in synthesis (ERGAS) [29], and the spatial
correlation coefficient (SCC) [34] are used. For SAM and ERGAS, the optimum
values are 0, while for Q2n and SCC, they are 1. FR experiments are also
required to validate the fusion performance. In contrast to the test scenarios
with RR, there is no reference (GT) image. Therefore, three metrics without
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GT involved are applied, including the quality with no reference (QNR), the
spectral distortion Dλ, and the spatial distortion Ds [25]. We use the residual
standard error (RSE) as a measure of the difference in the spectra between
the fused image and the GT.

3.4 Visual and Quantitative Assessments

To verify the effectiveness of the proposed method, extensive comparative
experiments were conducted between ESAFormer and twelve state-of-the-art
pansharpening methods over two datasets. To be specific, our method was
compared with seven traditional methods, including EXP [2], BT-H [18],
BDSD-PC [11], C-GSA [3], SR-D [24], MTF-GLP-HPM-R [27], and MTF-
GLP-FS [28]. Five representative deep learning-based methods were selected,
namely, PNN [19], DiCNN [12], Fusion-Net [7], TD-Net [32], and TF-Net [16].

WV2 RR: Figure 6 shows a scenario of urban buildings from WV2. For
better visibility, we presented the RSE between GT and the fused images across
the eight spectra as shown in Figure 7. In Figure 7, the lower RSE result proves
the better performance. As can be seen from these two figures, traditional
pansharpening methods have poor result, such as SR-D and C-GSA suffer from
certain spectral distortion and spatial detail blurring. However, deep-learning-
based methods retain the details well, such as Fusion-Net, TF-Net have less
difference between GT and fused results than traditional methods. Compared
to the above methods, the visualization results of our method have the best
performance. Furthermore, we did quantitative comparison experiments to
further illustrate the superiority of our method, as shown in Table 1 (Q8, SAM,
ERGAS, and SCC). Our method achieved the best values in all 4 metrics in RR
experiments. Especially in Q8, our method outperforms traditional methods
over 5% and outperforms current deep learning methods such as TF-Net over
1%. The quantitative and visual results demonstrate the effectiveness of our
method.

IK RR: Figure 8 is a scenario including different geographical instances
such as land, terraces, and rivers. Similar to WV2 RR experiments, we
presented the results of RSE for this scene, as shown in Figure 9. As can be
seen in Figure 9, the RSE of traditional methods such as I-MTF-GLP-FS,
I-MTF-GLP-HPM-R is higher, while the deep learning-based methods such as
TD-Net, PNN is similarly higher. This means that their fusion is less effective.
As shown in Table 2 (Q8, SAM, ERGAS, and SCC), our method achieved
best values on all 4 metrics. Especially in ERGAS, our method significantly
outperforms other methods. These quantitative and visual results prove the
superiority of our method.

WV2 FR: Figure 10 shows the full resolution experiment performed on
WV2 dataset. As shown in Figure 10, some methods have severe spectral
distortion of the vegetation in BT-H, C-GSA, and PNN. Some spatial structure
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Figure 6: Visualization results of RR fusion experiments on WorldView-2 dataset.
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Figure 7: Spectral difference visualization of RR experiments on WorldView-2 dataset.

of fused images of BDSD-PC, MTF-GLP-HPM-R, and MTF-GLP-FS are lost.
With full-resolution experiments at WV2, our method is the best in both
spectral fidelity and spatial detail. As can be seen from Table 1 (Dλ, Ds, and
QNR), our method achieved the best values for the QNR metric and ranks
among the top of all methods for both the Dλ and Ds metrics. The above data
fully demonstrate the superiority of our method in full-resolution experiments.
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Table 1: Mean quantitative evaluation of results in WorldView-2 dataset.

Method Q8 SAM ERGAS SCC Dλ Ds QNR

EXP 0.4940 5.4002 7.2886 0.7595 0.0539 0.1393 0.8144
BT-H 0.7285 4.3107 3.6495 0.9590 0.1101 0.0765 0.8227

BDSD-PC 0.7267 4.8560 3.7921 0.9444 0.1753 0.0236 0.8054
C-GSA 0.7212 4.9467 4.0890 0.9334 0.1035 0.0713 0.8334
SR-D 0.7040 4.7177 4.1292 0.9391 0.0182 0.0706 0.9125

MTF-GLP-HPM-R 0.7170 4.9743 4.5882 0.9200 0.0373 0.0430 0.9214
MTF-GLP-FS 0.7205 4.8631 3.9598 0.9323 0.0348 0.0494 0.9176

PNN 0.7287 4.3602 3.5196 0.9642 0.0882 0.0404 0.8755
DiCNN 0.7533 3.5695 2.9225 0.9758 0.0729 0.0264 0.9029

Fusion-Net 0.7479 3.3356 2.7297 0.9816 0.1423 0.0346 0.8278
TD-Net 0.7501 3.4814 2.8192 0.9796 0.1233 0.0338 0.8477
TF-Net 0.7542 3.5023 2.9471 0.9778 0.0722 0.0569 0.8749

ESAFormer 0.7666 3.2497 2.6134 0.9829 0.0498 0.0292 0.9224

Idea Value 1 0 0 1 0 0 1

MS EXP BT-H BDSD-PC C-GSA

SR-D MTF-GLP-HPM-R MTF-GLP-FS PNN DiCNN

Fusion-Net TD-Net TF-Net ESAFormer GT

Figure 8: Visualization results of RR fusion experiments on IKONOS dataset.

IK FR: Figure 11 presents the full-resolution experiments performed on
the IK dataset. From the visualization results, we can see that the spatial
details are slightly worse in the traditional methods such as BDSD-PC, SR-D,
and MTF-GLP-FS. The spectral distortion is worse in PNN and Fusion-Net,
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Figure 9: Spectral difference visualization of RR experiments on IKONOS dataset.
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DiCNN Fusion-Net TD-Net TF-Net ESAFormer

MS PAN

Figure 10: Visualization results of FR fusion experiments on WorldView-2 dataset.

but the overall results are still good in our method and TF-Net. As can be
seen from Table 2 (Dλ, Ds, and QNR), our method achieved top-rank in
all metrics, which demonstrates the excellent performance of our method in
full-resolution experiments.



14 Liu et al.

EXP BT-H BDSD-PC

C-GSA SR-D MTF-GLP-HPM-R MTF-GLP-FS PNN

DiCNN Fusion-Net TD-Net TF-Net ESAFormer

MS PAN

Figure 11: Visualization results of FR fusion experiments on IKONOS dataset.

Table 2: Mean quantitative evaluation of results in IKONOS dataset.

Method Q8 SAM ERGAS SCC Dλ Ds QNR

EXP 0.6386 2.4664 2.5898 0.8076 0.0806 0.1511 0.7818
BT-H 0.8191 2.0141 1.4239 0.9570 0.1678 0.1649 0.7117

BDSD-PC 0.8396 1.8871 1.3717 0.9622 0.1332 0.1046 0.7809
C-GSA 0.8356 1.8619 1.3643 0.9620 0.1377 0.1491 0.7443
SR-D 0.8419 1.8017 1.3735 0.9618 0.0418 0.0872 0.8752

MTF-GLP-HPM-R 0.8413 1.8185 1.3385 0.9639 0.0820 0.1323 0.8000
MTF-GLP-FS 0.8382 1.8774 1.3828 0.9599 0.0856 0.1354 0.7939

PNN 0.7908 2.2485 1.7463 0.9429 0.2453 0.0900 0.6928
DiCNN 0.8582 1.5829 1.1853 0.9749 0.1275 0.1234 0.7746

Fusion-Net 0.7807 1.5514 1.4539 0.9783 0.3626 0.0721 0.5987
TD-Net 0.7353 2.1117 2.1117 0.8881 0.0853 0.1907 0.7401
TF-Net 0.8730 1.4878 1.1422 0.9792 0.0810 0.0885 0.8411

ESAFormer 0.8839 1.3665 1.0300 0.9823 0.0729 0.0829 0.8553

Idea Value 1 0 0 1 0 0 1

3.5 Ablation Study

To verify the effectiveness of the components of our network, we did ablation
study. Multiple experiments with different Network configurations were per-
formed. Configurations include baseline [33], w/o ESA, ESA × 2, w/o branch,
and ESAFormer.
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baseline: We use a bi-directional flow network without ESAFormer module
as our baseline. As shown in Table 3, our method is higher than the baseline
in all the metrics. This greatly demonstrates that ESAFormer module has
greatly improved our spectral preservation and spatial enhancement ability.

Table 3: Results of ablation study.

Method Q8 SAM ERGAS SCC Dλ Ds QNR

baseline 0.7609 3.4626 2.8195 0.9785 0.0698 0.0276 0.9047
w/o ESA 0.7663 3.2480 2.6251 0.9825 0.0574 0.0448 0.9003
ESA ×2 0.7659 3.2210 2.5559 0.9836 0.0519 0.0667 0.8849

w/o branch 0.7632 3.3765 2.7289 0.9143 0.0565 0.0461 0.9000
ESAFormer 0.7666 3.1497 2.5134 0.9829 0.0498 0.0232 0.9224

Idea Value 1 0 0 1 0 0 1

w/o ESA: In this experiment, we removed the ESA of the ESAFormer
module and retain the original STB and convolutional layer structure. The
experimental results reported that all the metrics of our method is higher than
the model without ESA. Obviously utilizing the ESA to increase the receptive
field is necessary for the pansharpening task. This further demonstrates that
the proposed method is rational and effective.

ESA × 2: In this experiment, we explored whether multiple ESA compo-
nents are necessary to achieve better results for the pansharpening task. We
added an extra ESA after the STB in the ESAFormer module. The experi-
mental results show that the model with additional ESA leads to performance
decline instead. Therefore, although the strategy of using ESA to increase the
receptive field is effective, too many ESAs stacked can lead to dilution of local
features by overly dispersed contextual weights. Thus it is important to set an
appropriate number of ESAs for the pansharpening task.

w/o branch: To verify the effectiveness of the bi-directional structure, we
removed the PAN branch. We fed the stacked 4-fold upsampled MS and PAN
images directly to the network instead of upsampling them step by step. From
the results, we can see that the results of the single-branch structure on all
the metrics are lower than our method. This suggests that the bi-directional
structure plays an important role in the pansharpening task, in other words,
the cascading injection of different resolution features is necessary.

4 Conclusions

In this paper, we propose a multi-resolution network that combines CNN and
Transformer to perform a multi-scale fusion by a bi-directional structure. This
structure makes full use of the spatial details of PAN images and gradually
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injects them into MS images. We innovatively proposed the ESAFormer
module, which utilizes the enhanced spatial attention mechanism and the
Swin-Transformer Block. In the proposed method, the spectral features can be
better preserved and the spatial details can be enhanced. In comparison with
other SOTA methods, the superiority of our method is demonstrated. Through
ablation study, the effectiveness of the proposed components is verified.
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