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ABSTRACT

Blind image quality assessment (BIQA) is a task that predicts the
perceptual quality of an image without its reference. Research on
BIQA attracts growing attention due to the increasing amount
of user-generated images and emerging mobile applications where
reference images are unavailable. The problem is challenging due
to the wide range of content and mixed distortion types. Many
existing BIQA methods use deep neural networks (DNNs) to achieve
high performance. However, their large model sizes hinder their
applicability to edge or mobile devices. To meet the need, a novel
BIQA method with a small model, low computational complexity,
and high performance is proposed and named “GreenBIQA” in
this work. GreenBIQA includes five steps: 1) image cropping,
2) unsupervised representation generation, 3) supervised feature
selection, 4) distortion-specific prediction, and 5) regression and
decision ensemble. Experimental results show that the performance
of GreenBIQA is comparable with that of state-of-the-art deep
learning (DL) solutions while demanding a much smaller model
size and significantly lower computational complexity.
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1 Introduction

Objective image quality assessment (IQA) can be classified into three cate-
gories: full-reference IQA (FR-IQA), reduced-reference IQA (RR-IQA), and
no-reference IQA (NR-IQA). FR-IQA methods evaluate the quality of images
by comparing distorted images with their reference images. Quite a few image
quality metrics, such as PSNR, SSIM [39], FSIM [51], and MMF [23] have
been proposed in the last two decades. RR-IQA methods (e.g., RR-SSIM [31])
utilize part of the information from reference images to evaluate the quality
of underlying images. RR-IQA is more flexible than FR-IQA. NR-IQA, also
called blind image quality assessment (BIQA), is needed in two scenarios. First,
reference images may not be available to users (e.g., at the receiver). Second,
most user-generated images do not have references. The need for BIQA grows
rapidly due to the popularity of social media platforms and multi-party video
conferencing.

Research on BIQA has received a lot of attention in recent years. Existing
BIQA methods can be categorized into two types: conventional methods
and deep-learning-based (DL-based) methods. Most conventional methods
adopt a standard pipeline: a quality-aware feature extraction followed by a
regressor that maps from the feature space to the quality score space. To
give an example, methods based on natural scene statistics (NSS) analyze the
statistical properties of distorted images and compute the distortion degree as
quality-aware features. These quality-aware features can be represented by
discrete wavelet transform (DWT) coefficients [28], discrete cosine transform
(DCT) coefficients [33], luminance coefficients in the spatial domain [26], and
so on. Codebook-based methods [41, 44, 45, 49] generate features by extracting
representative codewords from distorted images. After that, a regressor is
trained to project from the feature domain to the quality score domain.

Inspired by the success of deep neural networks (DNNs) in computer vision,
researchers have developed DL-based methods to solve the BIQA problem. On
the one hand, the DL-based methods achieve high performance because of their
strong feature representation capability and efficient regression fitting. On the
other hand, existing annotated IQA datasets may not have sufficient content
to train large DNN models. Given that collecting large-scale annotated IQA
datasets is expensive and time-consuming and that DL-based BIQA methods
tend to overfit the training data from IQA datasets of limited sizes, it is
critical to address the overfitting problem caused by small-scale annotated
IQA datasets. Effective DL-based solutions adopt a large pre-trained model
that was trained on other datasets, e.g. ImageNet [7].

The transferred prior information from a pre-trained model improves the
test performance. Nevertheless, it is difficult to implement a large pre-trained
model of high complexity on mobile or edge devices. As social media contents
are widely accessed via mobile terminals, it is desired to conduct BIQA
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with limited model sizes and computational complexity. A lightweight, high-
performance BIQA solution is in great need. To address this void, we study
the BIQA problem in depth and propose a new solution called “GreenBIQA”.
This work has the following three main contributions.

• A novel GreenBIQA method is proposed for images with synthetic and
real-world (or authentic) distortions. It offers a transparent and modu-
larized design with a feedforward training pipeline. The pipeline includes
unsupervised representation generation, supervised feature selection,
distortion-specific prediction, regression, and ensembles of prediction
scores.

• We conduct experiments on four IQA datasets to demonstrate the pre-
diction performance of GreenBIQA. It outperforms all conventional
BIQA methods and DL-based BIQA methods without pre-trained mod-
els in prediction accuracy. Compared to state-of-the-art BIQA methods
with pre-trained networks, the prediction performance of GreenBIAQ
is still quite competitive yet demands a much smaller model size and
significantly lower inference complexity.

• We carry out experiments under the weakly supervised learning setting
to demonstrate the robust performance of GreenBIQA as the number of
training samples decreases. Also, we show how to exploit active learning
in selecting images for labeling.

It is worthwhile to point out that the preliminary results of our research were
presented in [25]. This work is its extension. The additional content includes a
more thorough literature review in Section 2, an elaborative description of the
GreenBIQA method and more exemplary images to illustrate key discussed
ideas in Section 3, improved and extended experimental results in Section 4.
In particular, we have added new experimental results on memory/latency
tradeoff, cross-domain learning, ablation study, weak-supervision, and active
learning.

The rest of this paper is organized as follows. Related work is reviewed
in Section 2. GreenBIQA is described in Section 3. Experimental results are
shown in Section 4. Finally, concluding remarks are given in Section 5.

2 Related Work

2.1 Conventional BIQA Methods

Conventional BIQA methods adopt a two-step processing pipeline: 1) ex-
tracting quality-aware features from input images, and 2) using a regression
model to predict the quality score based on extracted features. The support
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vector regressor (SVR) [1] or the XGBoost regressor [4] is often employed in
the second step. According to the differences in the first step, we categorize
conventional BIQA methods into two main types.

2.1.1 Natural Scene Statistics (NSS)

The first type relies on natural scene statistics (NSS). These methods predict
image quality by evaluating the distortion of the NSS information. For example,
DIIVINE [29] proposed a two-stage framework, including a classifier to identify
different distortion types, followed by a distortion-specific quality assessment.
Instead of computing distortion-specific features, NIQE [27] evaluated the
quality of distorted images by computing the distance between the model
statistics and those of distorted images. BRISQUE [26] used NSS to quantify
the loss of naturalness caused by distortions, which is operated in the spatial
domain with low complexity. BLINDS-II [33] proposed an NSS model using the
discrete cosine transform (DCT) coefficients and then adopted the Bayesian
inference approach to predict image quality using features extracted from the
model. NBIQA [30] developed a refined NSS mode by collecting competitive
features from existing NSS models in both spatial and transform domains.
Histogram counting and the Weibull distribution were employed in [42] and [50],
respectively, to analyze the statistical information and build the distribution
models. Although the methods mentioned above utilized the NSS information
in a wide variety, they are still not powerful enough to handle a broad range
of distortion types, especially for datasets with authentic distortions.

2.1.2 Codebook-based Methods

The second type extracts representative codewords from distorted images.
The common framework of codebook-based methods includes local feature
extraction, codebook construction, feature encoding, spatial pooling, and
quality regression. CBIQ [44] constructed visual codebooks from training
images by quantizing features, computed the codeword histogram, and fed the
histogram data to the regressor. Following the same framework, CORNIA [45]
extracted image patches from unlabeled images as features, built a codebook
(or a dictionary) based on clustering, converted an image into a set of non-linear
features, and trained a linear support vector machine to map the encoded
quality-aware features to quality scores. Non-linear features in this pipeline
were obtained from the dictionary using soft-assignment coding with spatial
pooling. However, the codebook needs a large number of codewords to achieve
good performance. The high order statistics aggregation (HOSA) was exploited
in [41] to design a codebook of a smaller size. That is, besides the mean of each
cluster, the high-order statistical information (e.g., dimension-wise variance
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and skewness) inside each cluster can be aggregated to reduce the codebook
size. Generally speaking, codebook-based methods rely on high-dimensional
handcrafted feature vectors, and they are not effective in handling diversified
distortion types.

2.2 DL-based BIQA Methods

DL-based methods have been intensively studied to solve the BIQA problem.
A solution based on the convolutional neural network (CNN) was first proposed
in [14]. It includes one convolutional layer with max and min pooling and
two fully connected layers. To alleviate the accuracy discrepancy between
FR-IQA and NR-IQA, a local quality map was derived using CNN to imitate
the behaviors of FR-IQA in BIECON [15]. Then, a statistical pooling strategy
is adopted to capture the holistic properties and generate fixed-size feature
vectors. A DNN model was proposed in WaDIQaM [2] by including ten
convolutional layers as well as five pooling layers for feature extraction, and two
fully connected layers for regression. MEON [24] proposed two sub-networks
to achieve better performance on synthetic datasets. The first sub-network
classifies the distortion types, while the second sub-network predicts the final
quality. By sharing their earlier layers, the two sub-networks can solve their
sub-tasks jointly for better performance.

Quality assessment of images with authentic (i.e., real-world) distortions is
challenging due to mixed distortion types and high content variety. Recent
DL-based methods all adopt advanced DNNs. Feature extraction using a pre-
trained ResNet [11] was adopted in [46]. A probabilistic quality representation
was proposed in PQR [47], which employed a more robust and optimal loss
function to describe the score distribution generated by different subjects. It
improved the accuracy of quality prediction and sped up the training process.
A self-adaptive hyper network architecture was utilized by HyperIQA [36]
to adjust the quality prediction parameters. It can handle a broad range of
distortions with a local distortion-aware module and deal with wide content
variety with perceptual quality patterns based on recognized content adaptively.
DBCNN [54] adopted DNN models pre-trained by large datasets to facilitate
quality prediction on both synthetic and authentic datasets. A network pre-
trained by synthetic-distortion datasets was used to classify distortion types
and levels. Another pre-trained network based on the ImageNet [7] was
used as the classifier. The two feature sets from two models were integrated
into one representation for final quality prediction through bilinearly pooling.
The absence of the ground truth reference was compensated in Hallucinated-
IQA [22], which generated a hallucinated reference using generative adversarial
networks (GANs) [10].

Instead of predicting the mean opinion score (MOS) generated by subjects,
NIMA [38] predicted the MOS distribution using a CNN. To balance the trade-
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off between performance accuracy and number of model parameters, NIMA
had three models with different architectures, namely, VGG16 [35], Inception-
v2 [37], and MobileNet [13]. NIMA (VGG16) gave the best performance but
with the longest inference time and the largest model size. NIMA (MobileNet)
was the smallest one with the fewest model parameters but the worst accuracy.
Although NIMA (MobileNet) has a small model size, it is still difficult to
deploy it on mobile/edge devices.

2.3 Green Machine Learning

Green learning [17] has been proposed recently as an alternative machine
learning paradigm that targets efficient models of low carbon footprint. They
are characterized by small model sizes and low training and inference computa-
tional complexities. An additional advantage is its mathematical transparency
through a modularized design principle. Green learning was originated by
efforts in understanding the functions of various components of CNNs such
as nonlinear activation [16], convolutional layers and fully-connected layers
[18]. Its development path has started to deviate from neural networks by
giving up the basic neuron unit and the network architecture since 2020. Ex-
amples of green learning models include PixelHop [5] and PixelHop++ [6] for
object classification and PointHop [53] and PointHop++ [52] for 3D point
cloud classification. Green learning techniques have been developed for many
applications, such as deepfake detection [3], anomaly detection [48], image
generation [20], etc. We propose a lightweight BIQA method in this work by
following this path.

3 Proposed GreenBIQA Method

An overview of the proposed GreenBIQA method is depicted in Figure 1. As
shown in the figure, GreenBIQA has a modularized solution that consists of
five modules: (1) image cropping, (2) unsupervised representation generation,
(3) supervised feature selection, (4) distortion-specific prediction, and (5)
regression and decision ensemble. They are elaborated below.

3.1 Image Cropping

Image cropping is implemented to standardize the input size and enlarge the
number of training samples. It is achieved by cropping sub-images of fixed
size from raw images in datasets. All cropped sub-images are assigned the
same mean opinion score (MOS) as their source image. MOS is a commonly
used metric in the field of quality assessment. It is a numerical value that
represents the average opinion of a group of human observers, who have rated
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Figure 1: An overview of the proposed GreenBIQA method.

the quality of a particular image or video. In the BIQA problem, MOS serves
as the label of the learning objective. To ensure the high correlation between
sub-images and their assigned MOS, we adopt different cropping strategies for
synthetic-distortion and authentic-distortion datasets, as shown in Figure 2
and Figure 3, respectively.

Figure 2: An exemplary image from KonIQ-10K [12] and its five cropped sub-images for
authentic-distortion datasets.

Figure 3: An exemplary image from KADID-10K [21] and its nine cropped sub-images for
synthetic-distortion datasets.
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For images in an authentic-distortion dataset such as KonIQ-10K [12], they
contain distortions in unknown regions. Thus, we crop a smaller number of
sub-images of a larger size (e.g., 256 × 256 out of 384 × 512) to ensure the
assigned MOS for each sub-image is reasonable. The cropped sub-images can
overlap with one another. Figure 2 shows five randomly cropped sub-images
from one source image.

For images in a synthetic-distortion dataset such as KADID-10K [21], all
distortions are applied to the reference images uniformly with few exceptions
(e.g., color distortion in localized regions in KADID-10K). Only one distortion
type is added to one image at a time. Therefore, cropping sub-images of a
smaller size is sufficient to capture distortion characteristics. Furthermore,
we can crop more sub-images to enlarge the number of training samples and
conduct decision ensembles in the inference stage. An example of image
cropping from the KADID-10K dataset is shown in Figure 3, where nine
sub-images of size of 64× 64 are randomly selected.

3.2 Unsupervised Representation Generation

Given sub-images from the image cropping module, we extract a set of rep-
resentations from sub-images in an unsupervised manner. We consider two
types of representations.

1. Spatial representations. They are extracted from the Y, U, and V
channels of sub-images individually.

2. Joint spatio-color representations. They are extracted from a 3D cuboid
of size H × W × C, where H and W are the height and width of a
sub-image and C = 3 is the number of color channels, respectively.

3.2.1 Spatial Representations

Figure 4 shows the procedure of spatial representation generation. The repre-
sentations are derived from 8× 8 block DCT coefficients. The Discrete Cosine
Transform (DCT) is a mathematical transform widely used in signal processing
and image compression [40]. It converts a sequence of data points, often in one
or more dimensions, into a collection of coefficients, which encapsulate data
characteristics in terms of cosine functions across varying frequencies. The
rationale for our utilization of DCT coefficients is rooted in its capacity to
enhance overall efficiency, given that a substantial proportion of compressed
images uses the DCT transform. By integrating the compression scheme and
image quality assessment models, the direct extraction of DCT coefficients
from cropped images proves more resourceful than employing raw image pixels
as the input.
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Figure 4: Unsupervised spatial representations generation.

The input sub-images are first partitioned into non-overlapping blocks of
size, 8× 8, and DCT coefficients are generated by the block DCT transform.
DCT coefficients of each block are scanned in the zigzag order, leading to one
DC coefficient and 63 AC coefficients, denoted by AC1-AC63. We split them
into 64 channels. Generally, the amount of energy decreases from the DC
channel to the AC63 channel. There are correlations among DC coefficients
of spatially adjacent blocks. We apply the Saab transform [18] to them. The
Subspace approximation with adjusted bias (Saab) transform is a variant of the
principal component analysis (PCA) method, characterized by the inclusion
of an added bias vector. In the Saab transform, a constant-element kernel is
employed to compute the average value of image patches, commonly referred
to as the DC (Direct Current) component of the Saab transform. Subsequently,
PCA is applied to these patches after the removal of the computed mean,
resulting in the generation of data-driven kernels known as AC (Alternating
Current) kernels. The utilization of these AC kernels on individual patches
leads to the derivation of AC coefficients associated with the Saab transform.
In this context, for the purpose of decorrelating DC coefficients and producing
elevated-level representations, a dual-stage approach employing two successive
Saab transforms, referred to as Hop1 and Hop2, is employed.

• Hop1 Processing: We partition 32× 32 DC coefficients into non-overlap-
ping blocks of size 4× 4 and conduct the Saab transform on each block,
leading to one DC channel and 15 AC channels in Hop1. We feed the
8× 8 DC coefficients to the next hop.

• HOP2 Processing: We apply another 4× 4 Saab transform on each of
non-overlapping blocks of size 4× 4, leading to DC and 15 AC channels
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in Hop2. We collect all the representations from Hop2 and append them
to the final representation set to preserve low-frequency details.

Other Saab coefficients in Hop1 and other DCT coefficients at the top layer
contain mid- and high-frequency information. We need to aggregate them
spatially to reduce the representation number. First, we take their absolute
values and apply the maximum pooling to lower their dimension as indicated
by the down-ward gray arrow. Next, we adopt the following operations to
yield two sets of values:

• Compute the maximum value, the mean value, and the standard deviation
of the same coefficients across the spatial domain.

• Conduct the PCA transform on spatially adjacent regions for further
dimension reduction (except the coefficients in Hop2).

These values are concatenated to form spatial representations of interest. The
same process is applied to the Y, U, and V channels of all sub-images.

3.2.2 Joint Spatio-Color Representations

We first convert sub-images from the YUV to RGB color space. The corre-
sponding spatio-color cuboids have a size of H ×W × C, where H and W are
the height and width of the sub-image, respectively, and C = 3 is the number of
color channels. They serve as input cuboids to a two-hop hierarchical structure,
as shown in Figure 5. In Hop1, we split the input cuboids into non-overlapping
cuboids of size 4× 4× 3 and apply the 3D Saab transform to them individually
- leading to one DC channel and 47 AC channels, denoted by AC1-AC47. Each
channel has a spatial dimension of 64 × 64. Since the DC coefficients are
spatially correlated, we apply the 2D Saab transform in Hop2, where the DC
channel of size 64× 64 is decomposed into 16× 16 non-overlapping blocks of
size 4× 4. For other 47 AC coefficients in the output of Hop1, we take their
absolute values and conduct the 4x4 max pooling, leading to 47 channels of
spatial dimension 16× 16. In total, we obtain 16 + 47 = 63 channels of the
same spatial size 16 × 16. We use the following two steps to extract joint
spatio-color features.

• Flatten blocks to vectors, conduct PCA, and select coefficients from the
first N principal components.

• Compute the standard deviation of the coefficients in the same channel.

The above two sets of representations are concatenated to form the joint
spatio-color representations.
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3.3 Supervised Feature Selection

It is desired to select more discriminant features from a large number of
representations obtained from the second module. A powerful tool, called the
relevant feature test (RFT) [43], is adopted to achieve this objective.

RFT involves partitioning a feature dimension into two segments, left and
right, and assessing the total mean-squared error (MSE) or root-MSE (RMSE)
from them. The resulting approximation error serves as the RFT loss function,
where a smaller RFT loss indicates a more powerful feature dimension. Given
a dataset with N data samples and P features, let fi, 1 ≤ i ≤ P , represents
a feature dimension with a minimum and maximum range of f i

min and f i
max,

respectively. The three steps of deploying RFT are elaborated below.

• Training Sample Partitioning. For each feature, f i, we aim to find the
optimal threshold, f i

op, within the range [f i
min, f i

max], which allows us
to partition the training samples into two subsets: Si

L and Si
R. If the

ith feature value, xi
n, for the nth training sample xn is less than f i

op,
then xn belongs to Si

L; otherwise, xn belongs to Si
R. To narrow down

the search space for f i
op, we divide the entire feature range, [f i

min, f i
max],

into B uniform segments and search the optimal threshold among B − 1
candidates.

• RFT Loss Measured by Estimated Regression MSE. Denoting the regres-
sion target value as y, let yiL and yiR represent the mean target values
in Si

L and Si
R, respectively. These values are used as the estimated
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regression values for all samples in Si
L and Si

R. The RFT loss is defined
as the sum of estimated regression MSEs of Si

L and Si
R, given by

Ri
t =

N i
L,tR

i
L,t +N i

R,tR
i
R,t

N
, (1)

where N i
L,t, N i

R,t, Ri
L,t, and Ri

R,t represent the sample numbers and
estimated regression MSEs in subsets Si

L and Si
R, respectively. Each

feature f i is characterized by its optimized estimated regression MSE
over a set, T , of candidate partition points:

Ri
op = min

t∈T
Ri

t. (2)

• Feature Selection based on the Optimized Loss. The optimized estimated
regression MSE value, Ri

op, is calculated for each feature dimension, fi.
These values are then sorted in ascending order, representing the relevance
of each feature dimension. The lower the Ri

op value, the more relevant
the ith-dimensional feature, f i.

Following this process, after computing the Ri
op value for each dimension

of feature, f i, we sort representation indices i, according to their RMSE values
from the smallest to the largest in Figure 6. There are two curves, one for the
spatial representations and the other for the spatio-color representations. We
can use the elbow point on each curve to select a subset of representations.
In the experiment, we use RFT to select 2048-dimensional spatial features
and 2000-dimensional spatio-color features. The former is a concatenation of
spatial features from Y, U, and V channels.

3.4 Distortion-specific Prediction

Enhancing prediction accuracy in image quality assessment often entails the
classification or clustering of distorted images into distinct categories based
on their respective distortion types. This approach recognizes the inherent
difficulty of utilizing a single regressor to address the diverse range of distortion
types. To mitigate this challenge, we employ a divide-and-conquer strategy,
wherein various distortion types are classified into homogeneous groups. We
perform this analysis for synthetic-distortion and authentic-distortion datasets
independently, as illustrated in Figure 7 due to their different properties.

3.4.1 Synthetic Distortions

Images in synthetic-distortion datasets are usually associated with one specific
distortion type with multiple severity levels. For example, CSIQ [19] has 6
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Figure 6: RFT results of spatial and spatio-color representations.
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Figure 7: The diagrams of distortion-specific classifiers and distortion clustering for synthetic
and authentic datasets, respectively, where GB, WN, FN, and CC denote Gaussian blur,
white Gaussian noise, pink Gaussian noise, and contrast decrements, respectively.

distortion types with 4 to 5 different levels, as shown in Figure 8. We can
leverage the known distortion types by first training a distortion classifier to
separate images accordingly. Then, we design an individual pipeline to handle
each distortion type. We can use distortion labels of training images to train
a multi-class distortion classifier based on the selected features in Section 3.3.
There are multiple sub-images from one image, and each of them may have a
different predicted distortion type. We adopt majority voting to determine
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(a) (b) (c)

(d) (e) (f)

Figure 8: Six synthetic distortion types in CSIQ: (a) Gaussian blur, (b) Gaussian noise, (c)
Contrast decrements, (d) Pink Gaussian noise, (e) JPEG, and (f) JPEG-2000.

the image-level distortion type. Note that some distortion types are easily
confused with each other (e.g., JPEG and JPEG2000). We can simply merge
them into a single type. As a result, the class number can be reduced.

3.4.2 Authentic Distortions

Images from authentic-distortion datasets may contain mixed distortion types
introduced in image capture or transmission. Three distorted images from
KonIQ-10K are shown in Figure 9. It is difficult to define each as one specific
type. For example, the underwater image contains blurriness, noise, and color
distortion. Thus, instead of training a specific distortion classifier, we cluster
images into multiple groups using some low-level features in an unsupervised
manner (e.g., the K-means algorithm). The low-level features include statistical
information in the spatial and color domains. For spatial features, we apply
the Laplacian and Sobel edge filters to all pixels in each sub-image, take their
absolute values, and compute the mean, variance, and maximum. For color
features, we compute the variance of each color channel (such as Y, U, and
V). In addition, higher-order statistics are also collected as color features. All
these extracted low-level features are concatenated into a feature vector for
unsupervised clustering. Although unsupervised clustering does not assign a
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(a) (b) (c)

Figure 9: Three distorted images in KonIQ-10k: (a) Dark environment, (b) Underwater,
and (c) Smeared light.

distortion type to a cluster, it reduces the content diversity of sub-images in
the same cluster. The rationale behind our utilization of low-level features,
as opposed to the extracted features detailed in Sections 3.2 and 3.3 is to
reduce the overall complexity. Our investigations reveal that low-level feature
extraction is usually fast and consumes less computation power. Furthermore,
these low-level features are effective enough to classify or cluster distortion
types.

3.5 Regression and Decision Ensemble

For each of 6 distortions, 19 distortions, and 4 clusters for CSIQ, KADID-10K,
and authentic-distortion datasets, we train an XGBoost regressor [4] that maps
from the feature space to the MOS score, respectively. In the experiment, we
set hyper-parameters of the XGBoost regressor to the following: 1) the max
depth of each tree is 5, 2) the subsampling ratio is 0.6, 3) the maximum tree
number is 2000, and 4) the early stop is adopted. Given the predicted MOS
scores of all sub-image from the same source image, a median filter is applied
to generate the ultimate predicted MOS score of the input image.

4 Experiments

4.1 Experimental Setup

4.1.1 Datasets

We evaluate GreenBIQA on two synthetic IQA datasets and two authentic IQA
datasets. Their statistics are given in Table 1. The two synthetic-distortion
datasets are CSIQ [19] and KADID-10K [21]. Multiple distortions of various
levels are applied to a set of reference images to yield distorted images. CSIQ
has six distortion types with four to five distortion levels. KADID-10K contains
25 distortion types with five levels for each distortion type. LIVE-C [8] and
KonIQ-10K [12] are two authentic-distortion datasets. They contain a broad
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Table 1: Four benchmarking IQA datasets, where the number of distorted images, the
number of reference images, the number of distortion types and collection methods of each
dataset are listed.

Datasets Dist. Ref. Dist. Types Scenario
CSIQ 866 30 6 Synthetic
KADID-10K 10,125 81 25 Synthetic
LIVE-C 1,169 N/A N/A Authentic
KonIQ-10K 10,073 N/A N/A Authentic

range of distorted real-world images captured by users. No reference image and
specific distortion type are available for each image. LIVE-C and KonIQ-10K
have 1,169 and 10,073 distorted images, respectively.

4.1.2 Evaluation Metrics

The performance is measured by two popular metrics: the Pearson Linear
Correlation Coefficient (PLCC) and the Spearman Rank Order Correlation
Coefficient (SROCC). PLCC evaluates the correlation between predicted scores
from an objective method and user’s subjective scores (e.g., MOS) in form of

PLCC =

∑
i(pi − pm)(p̂i − p̂m)√∑

i(pi − pm)2
√∑

i(p̂i − p̂m)2
, (3)

where pi and p̂i represent predicted and subjective scores while pm and p̂m
are their means, respectively. SROCC measures the monotonicity between
predicted scores from an objective method and the user’s subjective scores via

SROCC = 1−
6
∑L

i=1(mi − ni)
2

L(L2 − 1)
, (4)

where mi and ni denote the ranks of the prediction and the ground truth
label, respectively, and L denotes the total number of samples or the number
of images in our current case.

4.1.3 Implementation Details

In the training stage, we crop 15 sub-images of size 224× 224 for each image in
the two authentic datasets. This design choice is based on the SROCC perfor-
mance of validation sets, as shown in Figure 10, where the best performance
under different crop sizes is highlighted. Similarly, we crop 25 sub-images of
size 32× 32 for each image in the two synthetic datasets. In the testing (or
inference) stage, we crop 25 sub-images of size 224×224 and 32×32 for images
in authentic and synthetic datasets, respectively.
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Figure 10: Performance curve on the validation dataset of LIVE-C with different crop
numbers and sizes.

We adopt the standard evaluation procedure by splitting each dataset into
80% for training and 20% for testing. Furthermore, 10% of training data is
used for validation. We run experiments 10 times and report median PLCC
and SROCC values. For synthetic-distortion datasets, splitting is implemented
on reference images to avoid content overlap.

4.2 Experimental Results

4.2.1 Benchmarking Methods

We compare the performance of GreenBIQA with eleven benchmarking meth-
ods in Table 2. They include four conventional and seven DL-based BIQA
methods. We divide them into four categories.

• NIQE [27] and BRISQUE [26]. They are conventional BIQA methods
using NSS features.

• CORNIA [45] and HOSA [41]. They are conventional BIQA methods
using codebooks.

• BIECON [15] and WaDIQaM [2]. They are DL-based BIQA methods
without pre-trained models (or simple DL methods).

• PQR [47], DBCNN [54], HyperIQA [36], TReS [9], and QPT [55]. They
are DL-based BIQA methods with pre-trained models (or advanced DL
methods).

4.2.2 Comparison Among Benchmarking Methods

We first compare the performance among the eleven benchmarks. Although
some conventional BIAQ methods have comparable performance with simple
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Table 2: Performance comparison in PLCC and SROCC metrics between our GreenBIQA
method and eleven benchmarking methods on four IQA databases, where the eleven bench-
marking methods are categorized into four groups as discussed in Section 4.2.1 and the best
performance numbers are shown in boldface.

CSIQ LIVE-C KADID-10K KonIQ-10K
Model SROCC PLCC SROCC PLCC SROCC PLCC SROCC PLCC Model size (MB)

NIQE [27] 0.627 0.712 0.455 0.483 0.374 0.428 0.531 0.538 -
BRISQUE [26] 0.746 0.829 0.608 0.629 0.528 0.567 0.665 0.681 -
CORNIA [45] 0.678 0.776 0.632 0.661 0.516 0.558 0.780 0.795 7.4
HOSA [41] 0.741 0.823 0.661 0.675 0.618 0.653 0.805 0.813 0.23

BIECON [15] 0.815 0.823 0.595 0.613 - - 0.618 0.651 35.2
WaDIQaM [2] 0.844 0.852 0.671 0.680 - - 0.797 0.805 25.2

PQR [47] 0.872 0.901 0.857 0.882 - - 0.880 0.884 235.9
DBCNN [54] 0.946 0.959 0.851 0.869 0.851 0.856 0.875 0.884 54.6

HyperIQA [36] 0.923 0.942 0.859 0.882 0.852 0.845 0.906 0.917 104.7
TReS [9] 0.922 0.942 0.846 0.877 0.859 0.858 0.915 0.928 582

QPT-ResNet50 [55] - - 0.894 0.914 - - 0.927 0.941 -
GreenBIQA (Ours) 0.952 0.959 0.801 0.809 0.886 0.893 0.858 0.870 1.82

DL methods (without pre-trained models), we see a clear performance gap
between conventional BIQA methods and advanced DL methods (with pre-
trained models). On the other hand, the model size of advanced DL methods
is significantly larger. We comment on the performance of GreenBIQA against
other benchmarking methods, as shown below.

4.2.3 Synthetic-Distortion Datasets

For the two synthetic-distortion datasets, CSIQ and KADID-10K, GreenBIQA
achieves the best performance among all. This is attributed to its two charac-
teristics: 1) classification of synthetic distortions to multiple types followed by
different processing pipelines, and 2) effective usage of ensemble decisions. For
the first point, there are six distortion types in CSIQ, as shown in Figure 8.
We show the SROCC performance of the best BIQA method in each of the four
categories against each of the six distortion types in the CSIQ dataset in Table
3. GreenBIAQ outperforms all others in four distortion types. It performs
especially well for JPEG distortion because it adopts the DCT spatial features,
which match the underlying compression distortion well. GreenBIQA is also
effective against white Gaussian noise (WN), pink Gaussian noise (FN), and
contrast decrements (CC) through the use of joint spatial and spatio-color
features. GreenBIQA still works well for Gaussian blur (GB), although no
blur detector is employed. For the second point, since the number of reference
images is limited and the distortion is uniformly spread out across the whole
image, ensemble decision works well in such a setting.
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Table 3: Comparison of the SROCC performance for each of six individual distortion types
in the CSIQ dataset, where WN, JPEG, JP2K, FN, GB, and CC denote white Gaussian
noise, JPEG compression, JPEG-2000 compression, pink Gaussian noise, Gaussian blur,
and contrast decrements, respectively. The last column shows the weighted average of the
SROCC metrics.

WN JPEG JP2K FN GB CC Average
BRISQUE 0.723 0.806 0.840 0.378 0.820 0.804 0.728
HOSA 0.604 0.733 0.818 0.500 0.841 0.716 0.702
BIECON 0.902 0.942 0.954 0.884 0.946 0.523 0.858
HyperIQA 0.927 0.934 0.960 0.931 0.915 0.874 0.923
GreenBIQA (Ours) 0.943 0.980 0.969 0.965 0.894 0.857 0.934

4.2.4 Authentic-Distortion Datasets

For the two authentic-distortion datasets, LIVE-C and KonIQ-10K, Green-
BIQA outperforms conventional BIQA methods and simple DL methods. This
demonstrates the effectiveness of its extracted quality-aware features and
decision pipeline in handling diversified distortions and contents. There is,
however, a performance gap between GreenBIQA and advanced DL methods
with pre-trained models. The authentic-distortion datasets are more chal-
lenging because of non-uniform distortions across images and a wide variety
of content without duplication. Since pre-trained models are trained by a
much larger image database, they have advantages in extracting features for
non-uniform distortions and unseen contents. Yet, they demand much larger
model sizes as a tradeoff.

4.3 Cross-Domain Learning

To evaluate the cross-domain generalizability of BIQA methods, we train
models on one dataset and test them on another dataset. Due to the huge
differences in synthetic-distortion and authentic-distortion datasets, we focus
on authentic-distortion datasets and conduct experiments on LIVE-C and
KonIQ-10K only. We consider two experimental settings: I) trained with LIVE-
C and tested on KonIQ-10K, and II) trained with KonIQ-10K and tested on
LIVE-C. The SROCC performance of GreenBIQA and five benchmarking
methods under the two settings are compared in Table 4, where benchmarks
include the five best BIQA methods in Table 2 (e.g., PQR, DBCNN, HyperIQA,
TReS, and QPT) and two conventional BIQA methods (e.g., BRISQUE and
HOSA).

By comparing the performance numbers in Tables 2 and 4, we see a
performance drop in the cross-domain condition for all methods. We see that
GreenBIQA has a performance gap of 0.019 against the best one, HyperIQA,
for Experimental Setting I. GreenBIQA has a performance gap of 0.089 against
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Table 4: Comparison of the SROCC performance under the cross-domain learning scenario.

Settings I II
Train Dataset LIVE-C KonIQ-10K
Test Dataset KonIQ-10K LIVE-C
BRISQUE 0.425 0.526

HOSA 0.651 0.648
PQR 0.757 0.770

DBCNN 0.754 0.755
HyperIQA 0.772 0.785

TReS 0.733 0.786
QPT-ResNet50 0.749 0.821

GreenBIQA(Ours) 0.753 0.732

the best one, QPT, for Experimental Setting II. As shown in Table 1, KonIQ-
10K is much larger than LIVE-C. Experimental Setting I provides a more
proper environment to demonstrate the robustness (or generalizability) of a
learning model. We compare the performance gaps in Table 4 under Setting I
with those in the KonIQ-10K/SROCC column in Table 2. The gaps between
PQR, DBCNN, HyperIQA, TReS, QPT, and GreenBIQA narrow down from
0.022, 0.017, 0.048, 0.057, and 0.069 to 0.004, 0.001, 0.019, -0.02, and -0.004,
respectively. We see a greater potential for GreenBIQA in this direction.

4.4 Model Complexity

A lightweight model is critical to applications on mobile and edge devices.
We analyze the model complexity of BIQA methods in four aspects below:
model sizes, inference time, computational complexity in terms of floating-point
operations (FLOPs), and memory/latency tradeoff.

4.4.1 Model Size

There are two ways to measure the size of a learning model: 1) the number
of model parameters, and 2) the actual memory usage. Floating-point and
integer model parameters are typically represented by 4 bytes and 2 bytes,
respectively. Since a great majority of model parameters are in floating point,
the actual memory usage is roughly equal to 4 × (no. of model parameters)
bytes (see Table 5). To avoid confusion, we use the “model size” to refer to
actual memory usage below.

Figure 11 shows the time and memory analysis on a synthetic-distortion
dataset, CSIQ, and an authentic-distortion dataset, KonIQ-10K, for nine BIQA
methods. The vertical axis represents the model performance in SROCC. The
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Table 5: Comparison of SROCC/PLCC performance, no. of model parameters, model sizes
(memory usage), no. of GigaFlops, and no. of KiloFlops per pixel of several BIQA methods
tested on the LIVE-C dataset, where “X” denotes the multiple no.

Model SROCC PLCC Model Parameters (M) Model Size (MB) GFLOPs KFLOPs/pixel
NIMA(Inception-v2) 0.637 0.698 10.16 (22.6X) 37.4 (20.5X) 4.37 (128.5X) 87.10 (128.5X)

BIECON 0.595 0.613 7.03 (15.6X) 35.2 (19.3X) 0.088 (2.6X) 85.94 (126.8X)
WaDIQaM 0.671 0.680 5.2 (11.6X) 25.2 (13.8X) 0.137 (4X) 133.82 (197.4X)
DBCNN 0.851 0.869 14.6 (32.4X) 54.6 (30X) 16.5 (485.3) 328.84 (485.1X)

HyperIQA 0.859 0.882 28.3 (62.9X) 104.7 (57.5X) 12.8 (376.5X) 255.10 (376.3X)
GreenBIQA (Ours) 0.801 0.809 0.45(1X) 1.82(1X) 0.034 (1X) 0.678(1X)

horizontal axis represents the time efficiency of the methods in milliseconds.
The maker sizes are proportional to model sizes. The size of the GreenBIQA
model includes the feature extractor (600KB), the distortion-specific classifier
(50KB), and regressors (1.17MB), leading to a total of 1.82 MB. As com-
pared with the two conventional methods (CORINA and HOSA), GreenBIQA
achieves much better performance with comparable model sizes. GreenBIQA
outperforms two simple DL methods (BIECON and WaDIQaM), with a smaller
model size. As compared with four DL methods, e.g., NIMA, WaDIQaM,
DBCNN, and HyperIQA, GreenBIQA achieves the best performance on CSIQ
and competitive performance on KonIQ-10k at a significantly smaller model
size. Note that advanced DL methods have a huge pre-trained network of size
larger than 100MB as their backbones.

4.4.2 Inference Time

Another important factor to consider is running time in inference, which is
especially the case for mobile/edge clients. Figure 11 shows the SROCC
performance versus the inference time (measured in milliseconds per image)
for several benchmarking methods on CSIQ and KonIQ-10K. All methods are
tested in the same environment with a single CPU. We compare GreenBIQA
with four conventional methods, e.g., NIQE, BRISQUE, CORNIA, and HOSA,
and four DL methods, e.g. NIMA, WaDIQaQ, DBCNN, and HyperIQA.
GreenBIQA has clear advantages over all benchmarking methods by jointly
considering performance and inference time. It is worthwhile to point out
that GreenBIQA can process around 31 images per second with a single CPU.
In other words, it can meet the real-time requirement by processing videos
of 30 fps on a frame-by-frame basis. The inference time of GreenBIQA can
be further reduced by code optimization and/or with the support of mature
packages.
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Model size

(a) The SROCC performance on CSIQ dataset.

Model size

(b) The SROCC performance on KonIQ-10K dataset.

Figure 11: Illustration of the tradeoff between SROCC (vertical axis), inference time
(horizontal axis), and model size (area of the dot) on (a) CSIQ and (b) KonIQ-10K datasets
among several BIQA methods.

4.4.3 Computational Complexity

We compare the SROCC and PLCC performance, the numbers of model
parameters, model sizes (in terms of memory usage), the numbers of Flops,
and Flops per pixel of several BIQA methods tested on the LIVE-C dataset in
Table 5. FLOPs is a common metric to measure the computational complexity
of a model. For a given hardware configuration, the number of FLOPs is
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linearly proportional to energy consumption or carbon footprint. Column
“GFLOPs” in Table 5 gives the number of GFLOPs needed to run a model
once without considering the patch number and size used in a method. For
a fair comparison of FLOPs, we compute the number of FLOPS per pixel
defined by

FLOPs/pixel =
FLOPs/patch

H ×W
, (5)

where H and W are the height and width of an input patch to a model,
respectively. NIMA with the pre-trained Inception-v2 network has low perfor-
mance, large model size, and high complexity. Although simple DL methods
(e.g., WaDIQaM and BIECON) use smaller networks with lower FLOPs, their
performance is still inferior to GreenBIQA. Finally, advanced DL methods
(e.g., DBCNN and HyperIQA) outperform GreenBIQA in SROCC and PLCC
performance. However, their model sizes are much larger and their computa-
tional complexities are much higher. The numbers of FLOPs of DBCNN and
HyperIQA are 485 and 376 multiples of that of GreenBIQA, respectively.

It is important to emphasize that GreenBIQA, as a non-DL-based method,
will benefit less from GPU than DL-based methods at this time due to the lack
of hardware-software integration for non-DL-based methods. On the other
hand, the extremely low complexity in the computation of GrenBIQA, as
shown in Table 5, suggests its potential in GPU-supported environments, with
further advancements in third-party libraries and coding optimizations.

4.4.4 Memory/Latency Tradeoff

There is a tradeoff between memory usage and latency in the image quality
inference stage. That is, latency can be reduced when given more computing
resources. To observe the tradeoff, we control the memory usage using different
test image numbers in each run (i.e. the batch size). Figure 12 shows the
latency (in linear scale along the vertical axis) and memory usage (in log scale
along the horizontal axis) of GreenBIQA and three advanced DL methods,
where we set the batch size equal to 1, 4, 16, and 64 in four experiments.
We see from the figure that the latency of GreenBIQA is much smaller than
NIMA, DBCNN, and HyperIQA under the same memory size (say, 103MB).
Along this line, the memory requirement of GreenBIQA is much lower than
that of NIMA, DBCNN, and HyperIQA at the same level of latency. Again,
the memory/latency tradeoff curve of GreenBIQA can be further improved
through code optimization.

4.5 Ablation Study

To understand the impact of individual components on the overall performance
of GreenBIQA, we conduct an ablation study in Table 6, where S-features, SC-
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Figure 12: Tradeoff between memory usage and latency for four BIQA methods: 1) NIMA,
2) DBCNN, 3) HyperIQA, and 4) GreenBIQA.

Table 6: Ablation Study for GreenBIQA.

CSIQ LIVE-C KADID-1K KonIQ-10k
Components SROCC PLCC SROCC PLCC SROCC PLCC SROCC PLCC
S-features 0.925 0.936 0.774 0.778 0.847 0.848 0.822 0.838

S-features + SC-features - - 0.782 0.783 - - 0.835 0.850
S-features + Dist-predict 0.952 0.959 0.786 0.788 0.886 0.893 0.839 0.856

S-features + SC-features + Dist-predict - - 0.801 0.809 - - 0.858 0.870

features, and Dist-predict denotes spatial features, spatio-color features, and
distortion-specific prediction, respectively. We first examine the effectiveness
of the spatial features and then add spatio-color features in the first two
rows. Both SROCC and PLCC improve on the two authentic-distortion
datasets. Similarly, adding distortion-specific prediction to S-features can
improve SROCC and PLCC for all datasets in the third row. Finally, we use
all the components in the fourth row and see that SROCC and PLCC can be
further improved to reach the highest value. Note that we do not report the
performance of joint spatial and spatio-color features for synthetic datasets
since spatial features are powerful enough. The distortion-specific prediction
benefits the performance significantly on synthetic datasets by leveraging the
distortion label.

4.6 Weak Supervision

We train BIQA models using different percentages of the KonIQ-10K training
dataset (e.g., from 1% to 90%) as shown in Figure 13 and show the PLCC per-
formance against the full test dataset. For a fair comparison, we only compare
GreenBIQA with WaDIQaM, which is a simple DL method. Note that we do
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Figure 13: The PLCC performance curves of GreenBIQA and WaDIQaM are plotted as
functions of the percentages of the full training dataset of KonIQ-10K, where the solid line
and the banded structure indicate the mean value and the range of mean plus/minus one
standard deviation, respectively.

not choose advanced DL methods with pre-trained networks for performance
benchmarking since pre-trained networks have been trained by other larger
datasets. We show the mean and the plus/minus one standard deviation. We
see that GreenBIQA performs robustly under the weak supervision setting.
Even if it is only trained on 1% of training samples, GreenBIQA can achieve a
PLCC value higher than 0.67. Conversely, WaDIQaM does not perform well
when the percentage goes low since a small number of samples is not sufficient
in the training of a large neural network.

4.7 Active Learning

To further investigate the potential of GreenBIQA, we implement an active
learning scheme [32, 34] below.

1. Keep the initial training set as 10% of the full training dataset and obtain
an initial model denoted by M1.

2. Predict the performance of remaining samples in the training dataset
using Mi, i = 1, 2, · · · , 8. Compute the standard derivation of predicted
scores of all sub-images associated with the same image, which indicates
prediction uncertainty.
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3. Select a set of images that have the highest standard derivations in Step
2, where its size is 10% of the full training dataset. Merge them into
the current training image set; namely, their ground truth labels are
leveraged to train Model Mi+1.

We repeat the above process in sequence to obtain models M1, · · · ,M9. Model
M10 is the same as the one that uses all training samples. We compare the
PLCC performance of GreenBIQA with active learning and with random
sampling in Figure 14. We see that the active learning strategy can improve
the performance of the random selection scheme in the range from 20% to 70%
of full training samples.

Figure 14: Comparison of the PLCC performance of GreenBIQA using active learning (in
green) and random selection (in red) on the KonIQ-10k dataset.

5 Conclusion and Future Work

A novel and lightweight blind image quality assessment method, called Green-
BIQA, was presented in this paper. Its performance is quantified using PLCC
and SROCC on two synthetic-distortion datasets and two authentic-distortion
datasets. GreenBIQA demonstrates superior performance compared to all con-
ventional (non-DL-based) BIQA methods, as well as basic deep learning-based
(DL-based) BIQA methods, across all four datasets. As compared to SOTA
methods (average performance of five DL-based methods with pre-trained
models shown in Table 2), GreenBIQA achieves 1.02× performance in syn-
thetic datasets and 0.93× performance in authentic datasets with 133× smaller
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model size. It can predict accurate visual quality for images in real-time,
i.e., 31 images per second, using only CPUs. These characteristics position
GreenBIQA as a highly suitable choice for BIQA tasks, particularly in the
context of resource-constrained mobile and edge devices.

There are several research topics worth further investigation. First, we
illustrate the performance of GreenBIQA through the assessment of three
exemplary images, each paired with a GreenBIQA predicted MOS value
and corresponding ground truth (refer to Figure 15). The left two images
demonstrate accurate prediction scores, while the remaining one exhibits a
suboptimal prediction. Specifically, GreenBIQA tends to underestimate the
MOS value for images with blurred backgrounds, as exemplified by the long-
horn deer image. To further improve the performance of GreenBIQA, there is
a need to develop a cost-effective mechanism for identifying attention regions
and/or a method to assess prediction confidence effectively. Second, there is a
critical need to extend the capabilities of GreenBIQA to encompass lightweight
yet high-performance blind video quality assessment. Achieving this involves
the incorporation of temporal information, which is essential for assessing
video quality accurately.

MOS(G) = 3.63 MOS(G) = 3.72 MOS(G) = 4.21

MOS(P) = 3.65 MOS(P) = 3.81 MOS(P) = 3.75

Figure 15: Comparison of the ground truth MOS and GreenBIQA-predicted MOS values of
three exemplary images, which are denoted as MOS(G) and MOS(P), respectively.
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