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ABSTRACT

Traffic flow forecasting, a vital task of multivariate time series
prediction, has recently expanded to incorporate Points of Interest
(POI) as an additional source of data. Rather than merely lever-
aging historical traffic flows, POIs facilitate the understanding of
inherent geographical connections and potential functional interac-
tions between nodes. However, traditional POI-based methods tend
to use POI as static feature embeddings to compute functional sim-
ilarity matrices, failing to consider the dynamic influence of node
functionality on traffic patterns. This overlooks the reality that
even regions with analogous POIs can exhibit fluctuating traffic
flow trends, particularly over extended periods. In this paper, we
propose the POI-based Double-deck Graph Convolution Network
(PDGCN) for more nuanced traffic forecasting. To identify poten-
tial POI-based traffic patterns, we employ the spectral clustering
method to group nodes with comparable POI functionalities into
regions. We then devise a POI-based dynamic graph module with
temporal convolution and attention mechanisms to trace the evolv-
ing relationships between traffic nodes. This novel design underpins
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regional features. Experiments on two real datasets demonstrate
that PDGCN effectively detects dynamic functional relationships
between nodes and delivers superior prediction accuracy.

Keywords: traffic forecasting, dynamic graph construction, spatial attention
mechanism.

1 Introduction

Traffic forecasting is a typical task of multivariate time series forecasting and
has been widely applied in the modern Intelligent Transportation System (ITS).
It can improve traffic conditions and develop effective control measures [3].
Traffic forecasting focuses on predicting future traffic features (e.g., flow, speed)
on the road network. The early works apply traditional statistical methods [2,
26] to predict traffic flow. In recent decades, researchers have developed
many Recurrent Neural Network (RNN) based [1, 18] and Graph Convolution
Network (GCN) based methods [8, 28, 7, 9, 27] to model the spatial and
temporal information of the traffic network.

Traffic flow originates from people’s needs to move between POIs for daily
requirements fulfillment. POIs commonly refer to geographically located
entities with specific functionalities of interest to people, such as restaurants,
shopping malls, residences, and so on. Therefore, POIs reflect the functionality
of the traffic nodes and have a close relationship to traffic flow. Figure 1 shows
that nodes with similar POI often have similar traffic patterns. Therefore,
some methods employ POI to mine the inherent traffic patterns. For example,
researchers apply POIs directly as geographical features of the traffic nodes [23,
10]. In addition, some works use POIs to explore the spatial relationship
between nodes [19, 29, 31].

However, most current POI-based approaches treat POI as a static spatial
feature to calculate the functional similarity between nodes, neglecting the
dynamic effects of POI on inherent traffic patterns. For example, enterprise
areas and residences may have heavy traffic during weekday rush hours, and
shopping areas may have heavy traffic in the evening. The time-varying change
can be shown in Figure 2. Moreover, some studies adopt geographic distance as
a proxy for inter-nodal relations. They propose regional networks to facilitate
traffic flow prediction, overlooking the analogous traffic patterns between nodes
emanating from their functional similarity. Cities are naturally divided into
regions owning to the functional homogeneity of nodes, reflecting their intrinsic
geographical relation. For example, factories gather together to facilitate
centralized treatment of pollution. The region division can be seen in Figure 2.
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(a) accomodation (b) enterprise

(c) public facility (d) shopping

Figure 1: Different traffic patterns under different POIs of JiNan dataset.

Figure 2: Example of aggregating road nodes with similar POIs into regions and the time-
varying changes of traffic flow between regions.

Traffic nodes in the same region have similar traffic patterns. Mining potential
traffic patterns in the region can help predict traffic flow at the node level.

This work proposes a POI-based Double-deck Graph Convolution Net-
work (PDGCN) to capture the potential POI-based traffic patterns for traffic
forecasting. We model the features of each node according to its POI distribu-
tion. Specifically, the density and imbalance of POI distribution will influence
the functional similarity of nodes. We use these properties to calculate the
functional similarity matrix and obtain the functional region division. Unlike
the previous work that mining relationships between nodes, we explore the
traffic flow patterns at both node and regional levels, which captures the
hierarchical geographical relationship. The regional-level traffic features can
assist node-level traffic flow prediction. Moreover, aiming to extract spatial
information, we propose a POI-based dynamic graph structure inspired by
tensor decomposition. We use the dynamic graph structure to capture varying
spatial dependencies between traffic nodes. In summary, our contributions are
summarized as follows:
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• We propose a POI-based Double-deck Graph Convolution Network to
predict the traffic flow. Unlike existing methods, we use the functional
similarity matrix to construct a regional traffic network that assists in
node-level prediction.

• A POI-based dynamic graph structure is implemented to model time-
varying spatial correlation. Our method extracts spatial relationships on
time slices from the dynamic graph structure.

• Currently, most traffic datasets lack POI as supplementary. We augment
two existing datasets by collecting and integrating POI data proximal
to each road node. We evaluate our proposed model on these two
real-world datasets, and it has the most advanced prediction accuracy.
The visualization of the POI relationships demonstrates their dynamic
influences.

2 Related Work

2.1 Traffic Forecasting

Many recent studies use GCN to capture the spatial feature of the graph
structure of the traffic network. Wu et al. [28] uses a learnable matrix to
get the spatial relationships. Guo et al. [6] learns an optimized graph to
reveal the latent relationship between nodes. More works focus on how to
get spatio-temporal relationships. Han et al. [9] designs a dynamic graph
construction to learn the spatial dependencies. Cirstea et al. [4] integrates the
attention mechanism to generate a location-specific and time-varying model.
Song et al. [21] explores the joint dependencies of data in space and time.
Jiang et al. [12] applies spatial self-attention to capture the dynamic spatial
dependencies. Ji et al. [11] proposes a physics-guided deep learning model to
cast the physical mechanism of traffic flow. Jiang et al. [13] uses meta-graph
learning as a graph structure on spatio-temporal data. Jin et al. [14] designs
an automated dilated spatiotemporal graph module to capture the short and
long term relationships. Liu et al. [17] takes the historical time steps as input
and incurs the spatial information into the dependency embedding. Besides,
some studies use potential geographic structure information to assist in traffic
forecasting. Guo et al. [7] uses the geographical distance between nodes to get
the regional traffic network. Sun et al. [22] uses the hypergraph of the traffic
flow to capture the dynamic spatial-temporal feature.

2.2 POI-based Traffic Forecasting

POI is an inherent feature of transportation networks and can assist in traffic
flow prediction [30]. Researchers use the distribution of POI to calculate the
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similarity matrix between nodes. Some studies use the POI embedding to
represent the geographical feature of the traffic network [23, 10]. They use
the similarity functions to measure the differences between traffic nodes, e.g.,
cosine similarity [5, 16] and JS divergence [25]. Some researchers conduct
more detailed modeling of POI. Lv uses Term Frequency-Inverse Document
Frequency (TF-IDF) to calculate the functional relationship between nodes [19].
Zhang uses the TF-IDF equation to get the inherent region properties [29].
Zheng proposes the Inherent Influence Factor (IIF) to calculate the inherent
influence of POIs on traffic flow [31].

Unlike current POI methods, we designs a novel framework to capture the
potential spatial relationships. Instead of static POI modeling, we leverage
trainable matrices and tensor decomposition to describe spatial relationships.
Besides mining correlations between nodes, our model constructs regional
traffic networks to assist node prediction.

3 Preliminaries

Traffic flow forecasting is a time series modeling problem. It uses histori-
cal traffic features (e.g., flow, speed) to predict future traffic features. The
signal from node i at time t is denoted as xi

t ∈ RD, where D is the num-
ber of the input features. The traffic data of all nodes at time t is de-
noted as Xt = [x1

t , x
2
t , ..., x

N
t ] ∈ RN×D, where N is the number of the

traffic nodes. The historical traffic data over T1 time slices is defined as
X = [X1, X2, ..., XT1

] ∈ RN×D×T1 , and we predict the future traffic data
Y = [XT1+1, XT1+2, ..., XT1+T2

] ∈ RN×D×T2 over T2 time slices. On the basis
of traffic flow data, this article additionally uses POI data to assist in predic-
tion. We use the matrix POI ∈ RN×K to represent the combination of the
POIs of all nodes, where K is the number of POI categories. In this study,
the traffic network can be modeled as a directed graph G = (V,E,A), while
V ∈ RN is the road node sets; E is the set of edges; A ∈ RN×N denotes the
adjacency matrix of graph G. In this study, we use Pf and Pb to represent the
forward and backward transition matrix of the traffic network, respectively.

4 Methodology

Figure 3(a) shows the architecture of PDGCN, consisting of a region network
generation layer, L spatial-temporal layers, and an output layer. We calculate
POI’s IIF modeling to obtain a functional similarity matrix and use the
spectral cluster method for functional region division, capturing hierarchical
geographical traffic network relationships. Each layer has node-level and
region-level ST blocks to extract features, with POI-based dynamic GCN in
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Figure 3: (a) The overall architecture of PDGCN. The framework processes the regional and
node networks separately and mainly consists of two parallel parts: node-level spatiotemporal
(ST) block and region-level ST block. (b) The structure of the POI-based dynamic GCN
in the node-level ST block. It is used to capture the time-varying relationship between
nodes. We use dashed lines in the graph to represent the connections between nodes. (c)
The structure of the spatial attention GCN in the region-level ST block is used to mine
spatial relationships between regions. The different thickness of edges in spatial attention
GCN indicates the closeness of the relationship between nodes.

node-level ST block handling spatial correlations and spatial attention GCN
in region-level ST block capturing spatial traffic features. After feature fusion,
skip connection combines layer output and obtains prediction after several
fully connected layers. We use mean absolute error (MAE) for training.

4.1 Traffic Node Functional Modeling

Traffic nodes sharing similar functionality have similar traffic patterns. To
explore these potential traffic patterns, we use the POI distribution to model
the traffic node functionality. We define the number of the kth POI category of
the nth traffic node as POI(n, k). We extend previous methods [31] to make it
applicable to irregular graph networks. Node functionality is calculated using
POI frequency Fre, density Den, and imbalance degree IBD. Frequency and
density reflect POI aggregation. The imbalance degree uses Shannon entropy,
weighting rarer POIs higher. Based on these three aspects, the functionality
of the traffic node can be calculated as follows:
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Fre(n, k) =
POI(n, k)∑
k POI(n, k)

,

Den(n, k) =
POI(n, k)∑
n POI(n, k)

,

IBD(n, k) =1−
−
∑

n Den(n, k)× logDen(n, k)

logN
,

IIF (n, k) =Fre(n, k)×Den(n, k)× IBD(n, k).

(1)

We merge the value of IIF (n, k) to get the matrix IIF (n) = [IIF (n, 1),
IIF (n, 2), ..., IIF (n,K)] ∈ RK and IIF = [IIF (1), IIF (2)
, ..., IIF (n)] ∈ RN×K . With the matrix IIF , we use the cosine similarity
function to calculate the functionality matrix Sim = cosine(IIF (i),
IIF (j)) ∈ RN×N between nodes.

4.2 POI-based Double-deck Graph Generating by Clustering

4.2.1 Region network generation

POI distribution naturally influences traffic flow. Nodes with similar POI
distribution exhibit akin traffic patterns. To explore these patterns, we cluster
nodes by POI distribution into regions and construct a regional traffic map. We
use the matrix Sim as the adjacent matrix and calculate its Laplacian matrix
Lsym = I −Deg−

1
2 Sim Deg−

1
2 as the input of the spectral cluster, where I

denotes the identity matrix, Deg denotes the degree matrix of Sim [24].
We could divide all the traffic nodes into NR part, where NR is the number

of the traffic regions. After clustering, nodes with similar functions will belong
to the same region. For example, all residential areas will belong to the same
region. We can notice that the number of regions may not correspond one-
to-one with the number of POI types. In other words, the classified regions
may have multiple features at the same time, such as nodes with both mall
and residential characteristics being classified into the same class. From the
historical traffic data X = [X1, X2, ..., XT1 ] ∈ RN×D×T1 , we can generate the
historical data of regions XR = [XR

1 , XR
2 , ..., XR

T1
] ∈ RNR×DR×T1 , where DR

is the feature number of the traffic regions.

4.2.2 Feature fusion block

Naturally, we can get the relational matrix Bel ∈ RN×NR

between nodes and
regions:

Beli,j =

{
1, if the node i is in the region j;
0, else.

(2)
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The feature fusion block combines the features between nodes and regions.
We use a dynamic transfer matrix based on the attention mechanism [7] with
the following form:

Ed =norm(V σ((F )TU1)U2((F
RU3)

T ) + b)),

Beld =σ(Ed) ∗Bel,
(3)

where V, b ∈ RT l
1×T l

1 , U1 ∈ RN , U2 ∈ RCl×N , U3 ∈ RCl are learnable parame-
ters, Cl is the number of channels of the input data in the lth layer, T l

1 is the
length of the temporal dimension in the lth layer. F , FR are the input of the
node feature and the region feature. norm indicates a normalization operation.
With the attention matrix Beld, we can get the output feature Fout for nodes
and FR

out for regions as follows:

Fout = Concat(F,Beld ∗ FR), FR
out = FR. (4)

4.3 POI-based Dynamic Graph Structure

The adjacency matrix in graph convolution denotes spatial relationships be-
tween nodes. The existing methods mainly utilize static POI distribution
modeling. However, the functional similarity between nodes changes over
time. For example, the traffic flow between the industrial and residential areas
peaks in the morning and evening. We can use the trainable matrix to mine
the dynamic relationship between nodes using POI distribution. With traffic
periodicity, we can use the same trainable functional similarity matrix at each
slice of the day. The complexity of the algorithm will be O(T

′ ×N2), where T
′

is the number of the time slice in one day. However, this method has a large
number of training parameters. In this paper, we design a POI-based dynamic
graph structure for time-varying functional similarity. Travel is purposeful
between initial and destination POIs. Therefore, we model dynamic POI
similarity and combine tensors to get node similarity.

We use a trainable tensor Hc ∈ RK×K×T
′

to model the temporal relation-
ship between POIs. Extract each time segment, we can obtain the relationship
matrix Hc(t) ∈ RK×K between POIs, where t ∈ {1, 2, ..., T ′}. We use two
static matrices Hs = Hd = IIF ∈ RN×K to represent the POI distribution of
the starting point and destination, respectively. With the above three tensors,
we can generate the tensor P ∈ RN×N×T

′

to describe the dynamic functional
similarity between nodes. The structure of the dynamic graph can be seen in
Figure 3(b). The complexity of the algorithm is O(T

′ ×K2). The math forms
are as follows:

Pi,j,t = softmax(

N∑
q=0

N∑
r=0

Hc
q,r,tH

s
i,qH

d
j,r). (5)
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4.4 The Node-level ST Block

The node-level ST block consists of Temporal Convolution, POI-based dynamic
GCN and Temporal Attention. The input of the node-level ST block in the lth

layer is X(l). The output of three parts are X1
(l), X

2
(l), X

3
(l) separately. The

structures of the three parts are as follows:

4.4.1 Temporal Convolution

Temporal convolution is aimed at extracting temporal features. We use the
dilated causal convolution to expand the receptive field of the convolution [28].
The dilated causal convolution can help generate the common features for
both nodes and regions. The input of the temporal convolution is X(l). To
distinguish the data between node and region, We divide it into two parts and
activate them separately. The math forms are as follows:

(α1, α2) =split(W ⋆X(l)),

X1
(l) =tanh(α1)⊙ σ(α2),

(6)

where ⊙ denotes an element-wise multiplication operator, σ is a sigmoid
activation function, ⋆ is the dilated convolution operation and W is learnable
parameters of convolution filters.

4.4.2 POI-based Dynamic GCN

The adjacency matrix represents spatial relationships between nodes. Existing
methods mainly employ static matrices for spatial relations. In this section,
we utilize the POI-based dynamic graph structure proposed above to capture
the time-varying spatial dependencies between nodes.

Given input X1
(l), we can get the time slice t of the data by division.

Through the tensor P ∈ RN×N×T
′

calculated by POI above, we substitute t
into the time dimension and obtain the tensor Pt ∈ RN×N , which represents
the POI-based adjacency matrix on time slice t. The math forms of the
dynamic GCN are as follows:

X2
(l) =

M∑
m=0

(Pm
f X1

(l)Wk1
+ Pm

b X1
(l)Wk2

+ Pm
t X1

(l)Wk3
), (7)

where Wk1
,Wk2

,Wk3
is learnable matrix, Pf is the forward transition matrix of

the traffic network, Pb is the backward transition matrix of the traffic network,
Pm
f represents the power series of the transition matrix.
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4.4.3 Temporal Attention

We use an attention mechanism to capture the different correlations between
nodes [8]. The input of the temporal convolution is X2

(l). The math forms are
as follows:

E =V σ((X)TU1)U2((XU3)
T ) + b),

X3
(l) =softmax(E)×X2

(l),
(8)

where V, b ∈ RT l
1×T l

1 , U1 ∈ RN , U2 ∈ RCl×N , U3 ∈ RCl are learnable parame-
ters. X is the traffic data. Cl is the number of channels of the input data in
the lth layer, T l

1 is the length of the temporal dimension in the lth layer.

4.5 The Region-level ST Block

The region-level ST block consists of Temporal Convolution, Spatial Attention
convolution, and Temporal Attention. The input of the block in the lth layer
is XR

(l). The output of three parts are XR,1
(l) , XR,2

(l) , XR,3
(l) separately. After

clustering, nodes with similar functions form the regions, so the relationship
between regions can be directly modeled using functional similarity. We use
the dynamic GCN to capture spatial traffic features.

4.5.1 Spatial Attention GCN

In node functional modeling above, we calculate the matrix Sim ∈ RN×N to
represent the functional similarity between nodes. We use the same method
to calculate the SimR ∈ RNR×NR

. The input of the region feature is XR,1
(l) .

The superscript R represents the region data. As the relation between regions
is changeable, we use the spatial attention mechanism to capture the dynamic
relationships (similar to Equation 3). The structure of the spatial attention
graph can be seen in Figure 3(c). The math forms are as follows:

ER = norm(V σ((XR)TU1)U2((X
RU3)

T ) + b)),

XR,2
(l) =

M∑
m=0

((PR
f )mXR,1

(l) Wk1
+ (PR

b )mXR,1
(l) Wk2

+ (SimR ∗ ER)mXR,1
(l) Wk3

).

(9)
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5 Experiments

5.1 Datasets

Currently, most datasets of traffic flow provide only traffic volume or velocity
data, lacking supplementary information such as POI. This study scraped
POI data proximal to each road node from Gaode AMAP Inside (https:
//lbs.amap.com/) and systematically organized said data. Two traffic speed
datasets used in our experiments are collected by Didi Chuxing GAIA Initiative
(https://gaia.didichuxing.com) in JiNan and XiAn cities of China. These
datasets contain the average speed of road segments sampled per 10 minutes.
There are 561 and 792 road segments (nodes) for the JiNan and XiAn datasets.
The total sample number of the two datasets is 52286 each. We use the
preprocessed dataset for experiments [7]. We split the data with a ratio of
6:2:2 at two datasets into training sets, validation sets, and test sets. We
divide all POIs into 23 classes (listed in Table 1). There are 72722 and 117865
POIs on JiNan and XiAn datasets. The resulting dataset will be made publicly
available. The specific information of two datasets are summarized in Table 2.

Table 1: POI category taxonomy.

ID Category ID Category

01 Auto Service 13 Government Organization
02 Auto Dealers 14 Science/Culture Education Service
03 Auto Repair 15 Transportation Service
04 Motorcycle Service 16 Finance & Insurance Service
05 Food & Beverages 17 Enterprises
06 Shopping 18 Road Furniture
07 Daily Life Service 19 Place Name & Address
08 Sports & Recreation 20 Public Facility
09 Medical Service 21 Incidents and Events
10 Accommodation Service 22 Indoor facilities
11 Tourist Attraction 23 Pass facilities
12 Commercial House

Table 2: Datasets description and statistics.

Datasets #Nodes #POINums #TimeSteps #MissingRatio

JiNan 561 72722 52309 6.511%
XiAn 792 117865 52309 5.014%

5.2 Experiments Settings

For the PDGCN experiment, the model’s layer number is L = 2. We set the
regional feature sizes DR = 2 with the average and minimum speed in the

https://lbs.amap.com/
https://lbs.amap.com/
https://gaia.didichuxing.com
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region. We set the diffusion step of GCN M = 2, the input channel of GCN
cin = 32, the output channel of GCN cout = 512 and the hidden representation
h = 32. We set the number of regions NR = 20 in the Jinan dataset and
NR = 50 in the Xian dataset. We conduct experiments using different NR

and select the parameter with the best performance on the validation set.
The comparison result can be seen in Figure 4. Due to the two datasets
collecting data every 10 minutes, 144 data are obtained in one day, so we set
the time slice number T

′
= 144. For other baselines, in GCN-based methods

including GWNET [28], MTGNN [27], HGCN [7], DMSTGCN [9], DeepSTD
[31], We set the diffusion step of GCN M = 2, the input channel of GCN
cin = 32, the output channel of GCN cout = 512 and the hidden representation
h = 32. In ST-WA [4], we set the hidden representation h = 32. We use a 3
layer fully connected network with 32 neurons for the encoder. We use a 3
layer fully-connected network with 16, 32, and 5 neurons for the decoder. We
use 2 fully connected layers, each with 512 neurons for the predictor. When
computing the attentions, we utilize multi-head attention with a total of 8
heads. In MegaCRN [13], each RNN layer in encoder and decoder has 64
units and the memory bank has 20 meta-nodes with 64-dimension. For all
methods, we set the input time interval T1 = 12 and the forecasting time
interval T2 = 12. We use Adam optimizer [15] for the training with an initial
learning rate of 0.001. The batch size is 64. We run the model for 70 epochs.
The model is trained in Pytorch 1.12.1 environment with one GeForce RTX
3090 GPU.

(a) Jinan (b) Xian

Figure 4: MAE and RMSE loss of 1 hour forecasting with different NR on the two datasets.

5.3 Comparison with Baselines

The proposed method is compared with the several baselines on the Jinan
and Xian datasets as below: Historical Average (HA), LSTM [20], GWNET
[28], MTGNN [27], HGCN [7], DMSTGCN [9] (We only use the traffic speed
as input), MegaCRN [13], ST-WA [4], DeepSTD [31] (Since the DeepSTD
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method is not open source, we conduct experiments in the GWNET using
POI models).

Tables 3 and 4 show the performance of the proposed model and the
baselines on two datasets for 30, 60, and 120 minutes predictions. On the
Jinan dataset, our method performs best in horizons 3 and 6, while horizon
12 is close to HGCN. For Xian, PDGCN performs better in all horizons.
Overall, deep learning models surpass traditional statistics like HA. RNNs like
LSTM underperform due to the inability to learn spatial relationships. Our
method surpasses GCN-based methods, including DMSTGCN and HGCN. The
lack of traffic speed data potentially impairs the performance of DMSTGCN.
Compared to HGCN, we introduce POI to enhance spatial node correlations.
Compared to recent methods, including ST-WA and MegaCRN, our method
performs better. Compared to other POI methods, our method performs
better, which means the dynamic GCN and the spatial attention GCN can
capture the spatio-temporal feature better.

Table 3: Performance comparison on the JiNan datasets. The superscript * denotes the
method that uses POI.

Method Year horizon 3 horizon 6 horizon 12

MAE MAPE(%)RMSE MAE MAPE(%)RMSE MAE MAPE(%)RMSE

HA - 5.690 20.02 7.600 5.690 20.02 7.600 5.690 20.02 7.600
LSTM[20] - 3.196 12.83 4.830 3.661 14.90 5.466 4.290 17.52 6.255
GWNET[28] IJCAI19 2.933 11.47 4.404 3.194 12.47 4.740 3.450 13.64 5.151
MTGNN[27] KDD20 3.013 11.83 4.499 3.284 12.94 4.848 3.637 14.30 5.276
HGCN[7] AAAI21 2.887 11.49 4.370 3.112 12.50 4.680 3.412 13.62 5.041
DMSTGCN[9] KDD21 2.906 11.62 4.394 3.210 12.91 4.790 3.577 14.60 5.268
ST-WA[4] ICDE22 3.620 13.41 6.270 3.830 14.26 6.440 4.080 15.24 6.550
MegaCRN[13] AAAI23 2.940 11.67 4.458 3.172 12.65 4.775 3.475 13.74 5.142
DeepSTD* [31] TITS19 2.919 11.59 4.411 3.145 12.60 4.716 3.443 13.63 5.076
PDGCN* - 2.877 11.42 4.358 3.103 12.43 4.665 3.412 13.61 5.057

Table 4: Performance comparison on the Xian datasets. The superscript * denotes the
method that uses POI.

Method Year horizon 3 horizon 6 horizon 12

MAE MAPE(%)RMSE MAE MAPE(%)RMSE MAE MAPE(%)RMSE

HA - 6.020 21.80 8.160 6.020 21.80 8.160 6.020 21.80 8.160
LSTM[20] - 3.151 11.92 4.816 3.692 14.22 5.506 4.510 17.31 6.509
GWNET[28] IJCAI19 2.771 10.51 4.305 3.038 11.70 4.671 3.349 13.01 5.082
MTGNN[27] KDD20 2.812 10.64 4.314 3.082 11.92 4.674 3.486 13.70 5.175
HGCN[7] AAAI21 2.751 10.52 4.275 2.982 11.62 4.576 3.251 12.71 4.910
DMSTGCN[9] KDD21 2.801 10.67 4.329 3.101 12.00 4.712 3.516 13.73 5.220
ST-WA[4] ICDE22 3.300 12.02 5.900 3.460 12.91 6.020 3.680 13.97 6.150
MegaCRN[13] AAAI23 2.753 10.46 4.283 3.019 11.75 4.633 3.471 13.67 5.181
DeepSTD*[31] TITS19 2.780 10.50 4.293 3.043 11.93 4.652 3.393 13.40 5.095
PDGCN* - 2.743 10.36 4.268 2.966 11.41 4.569 3.214 12.47 4.874
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5.4 Experiments Analysis

5.4.1 Evaluation of hyper-parameter

NR denotes the number of regions, which impacts the scale of the regional
traffic network. As shown in Figure 4, the performance on two datasets first
fluctuates and then stabilizes at a certain level. Further increases will make
the regional feature closer to the node feature, which loses its heterogeneity.
From the results, we stack NR = 20 on the Jinan dataset and NR = 50 on
the Xian dataset.

5.4.2 Evaluation of the Dynamic GCN and the Spatial attention GCN

We conduct an ablation study on the Dynamic GCN (D) and the Spatial
Attention GCN (SA) to verify the performance of the proposed model. We
test the network with the different block combinations. Table 5 shows the
different variants of our model on the Jinan and Xian datasets.

Table 5: Results of ablation study of the Dynamic GCN (D) and the Spatial attention GCN
(SA) on the Jinan and Xian datasets.

Dataset Components MAE

D SA horizon 3 horizon 6 horizon 12

Jinan

2.910 3.142 3.460

✓ 2.895 3.137 3.441

✓ 2.896 3.126 3.425

✓ ✓ 2.878 3.102 3.412

Xian

2.764 3.004 3.326

✓ 2.765 2.999 3.291

✓ 2.751 2.979 3.266

✓ ✓ 2.743 2.966 3.214

It can be concluded that PDGCN has the best performance compared
with the models removing specific components. Concretely, Models with only
Dynamic GCN or Spatial Attention GCN surpass the baseline without either,
indicating the effectiveness of Dynamic GCN and Spatial Attention GCN.
Moreover, PDGCN excels over variants with single modules, illustrating that
the interaction of the dynamic GCN and the Spatial Attention GCN benefits
traffic prediction.
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5.4.3 Evaluation of different cluster methods

Functional similarity matrices from various POI modeling and similarity
functions are input to generate regional traffic. "POI embedding", "tf_idf" and
"IIF" indicate that we adopt different POI modeling methods: POI embedding,
"tf_idf" [29] and "IIF". "cos", "js" and "euci" indicate cosine similarity,
Jensen-Shannon divergence and euclidean distance as similarity metrics.

Table 6 shows the different cluster methods for different horizons on two
datasets. Compared to the no-cluster method, PDGCN performs better in
all horizons, which proves the effectiveness of the POI-based cluster method.
We can observe that "POI embedding + cos" outperforms "POI embedding
+ euci" and "POI embedding + js", which indicates that cosine similarity
is more beneficial in extracting node functional information. The last three
experiments show that IIF modeling performs better in horizon 3 and 6 on
two datasets, demonstrating its efficacy in modeling POI distribution.

Table 6: Results of ablation study of different cluster methods on the Jinan and Xian
datasets."POI embedding", "tf_idf" and "IIF" indicate different POI modeling methods:
POI embedding, "tf_idf" [29] and "IIF". "cos", "js" and "euci" mean cosine similarity,
Jensen-Shannon divergence and euclidean distance in the study.

Dataset Method MAE

horizon 3 horizon 6 horizon 12

Jinan

no cluster 2.890 3.150 3.430
POI embedding + js 2.908 3.134 3.404
POI embedding + euci 2.940 3.182 3.449
POI embedding + cos 2.905 3.125 3.399
tf_idf + cos 2.915 3.165 3.476
IIF + cos (PDGCN) 2.878 3.102 3.412

Xian

no cluster 2.764 3.004 3.326
POI embedding + js 2.769 3.001 3.304
POI embedding + euci 2.764 2.993 3.267
POI embedding + cos 2.754 2.975 3.218
tf_idf + cos 2.754 2.974 3.261
IIF + cos (PDGCN) 2.743 2.966 3.214

5.4.4 Case Study

We learn POI dynamics via dynamic graph convolution and use linear com-
binations to generate node dependencies. We select a case from the dataset
Jinan to confirm the rationality of the dynamic graph convolution model.
Historical average traffic speed from two different nodes in one day is illus-
trated in Figure 5(a). We extract the main POIs from the two nodes (node1:
Transportation Service, node2: Finance & Insurance Service) and get the
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(a) (b) (c)

Figure 5: Illustration of the learned dynamic graph. (a) the average traffic speed of two
nodes in one day. (b) the weight between two POIs in one day. In periods 1 and 3, the
high inter-node weight indicates similar traffic patterns. In period 2, the weight is low in
the learnable dynamic graph, while the traffic pattern is different. (c) The matrix is the
part of the spatial attention matrix ER for chosen regions. A deeper color indicates closer
node relationships. The coordinate 0-8 means the main POI of nine selected regions: Auto
Service, Food, Shopping, Daily Life Service, Sports, Medical Service, Tourist Attraction,
Commercial House, and Enterprises. Cell 1 shows a close shopping-tourist relationship. Cell
2 reflects enterprise-food proximity.

weight between two POIs after normalization in Figure 5(b). In period 1, the
average speed of the two nodes is relatively stable, which means the traffic
pattern between nodes is similar. The weight between the two nodes is also
high. In period 2, the speed on node 1 keeps stable, while the speed on node 2
decreases to the minimum. In this period, the weight is low in the dynamic
graph. Period 3 has a rising speed and high inter-node weight.

The study uses the spatial attention model to describe the relationships
between regions. Functional similarity provides regions grouping nodes with
similar POI distribution, reflecting inherent patterns. The main POI in each
region can reflect the inherent traffic pattern. We select nine regions from the
Jinan dataset to confirm the rationality of the spatial attention model. The
average spatial attention matrix between 9 regions is shown in Figure 5(c).
The coordinate 0-8 means the main POI of nine selected regions. The deeper
color indicates closer relationships. Cell 1 shows a close shopping-tourist
relationship. Cell 2 reflects enterprise-food proximity.

6 Conclusions

This paper proposes a graph convolution network named PDGCN for traffic
forecasting. We use the functional similarity matrix to construct a regional
traffic network that assists in the node-level prediction. The proposed model
uses dynamic GCN and spatiotemporal attention to capture the time-varying
correlations between nodes. Experimental results on two real-world datasets
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demonstrate that PDGCN outperforms state-of-the-art methods. Except for
POI, other external factors such as weather and holidays can also impact traffic
patterns. In future work, we will add other external factors to the existing
network structure.
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