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ABSTRACT

A sampling-frequency-independent (SFI) convolutional layer is
an extension of a convolutional layer to handle various sampling
frequencies (SFs) with a single deep neural network (DNN). The
SFI convolutional layer treats a standard convolutional layer as a
collection of digital filters designed from analog filters. Analogous
to the analog-to-digital filter conversion, it generates the weights
from an SFI structure (latent analog filter) with respect to an
input SF. To use the SFI layer, we need to define the mathematical
forms of the latent analog filters before training. However, it is
difficult to manually define the appropriate forms for an arbitrary
network architecture. The inappropriate definition can result in the
performance degradation. To overcome this problem, we propose
a neural representation of analog filters, which can determine
the forms of the latent analog filters in an end-to-end manner.
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The proposed method treats the latent analog filter as a function
of continuous time or frequency and represents it using a DNN.
Music source separation and speech separation experiments showed
that the proposed method outperformed manually designed latent
analog filters.

Keywords: Audio source separation, sampling-frequency-independent convolu-
tional layer, fourier feature mapping

1 Introduction

Audio source separation is a technique of extracting concurrent sources from a
mixture of audio signals. It can be used for the preprocessing of various audio
signal processing tasks. To realize an audio source separation method that
can be universally used for any downstream tasks, it should handle various
recording conditions specified by the tasks. The universality with respect to
such recording conditions is essential for constructing a widely applicable audio
source separation method.

Sampling frequency (SF) is an essential element in audio signal processing.
It is determined by the purpose of a target task, e.g., 44.1 and 48 kHz for music
source separation [17] and 8 and 22.05 kHz for automatic speech recognition
and automatic music transcription [6, 19, 21, 28]. Despite the variety in
SF, audio source separation methods based on deep neural networks (DNNs)
generally assume the SF to be the same in the training and inference stages [3,
7, 10, 13, 14, 16, 17, 18, 25, 27, 31, 33, 36, 38]. To handle untrained SFs, we
typically resample an input signal to the trained SF before it is fed into the
DNN. However, we have experimentally shown that the performance of DNN-
based music source separation methods significantly degrades with untrained
SFs when using signal resampling [26]. Thus, an alternative approach to signal
resampling should be developed to handle untrained SFs for DNN-based audio
source separation methods.

As a pioneer of this approach, we previously proposed an SF-independent
(SFI) convolutional layer [26]. The SFI layer treats the weights of a usual
convolutional layer as the discrete-time impulse responses designed from analog
filters. Since the analog filters are defined in the continuous-time or continuous-
frequency domain, they do not depend on the SF and can serve as an archetype
of the weights for any SFs. Thus, the SFI layer can generate the consistent
weights for various SFs by utilizing the analog-to-digital filter conversion
methods. We call the archetype the latent analog filter. The SFI layer is
replaceable with a usual convolutional layer in a conventional DNN such as
Conv-TasNet [14], one of the foundational DNN-based audio source separation
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models. Owing to these characteristics, it paved the way for realizing an audio
source separation model that can be universally used for various downstream
tasks.

To use the SFI layer, we need to define the explicit mathematical forms of
the latent analog filters. In our previous paper [26], we used analytic analog
filters such as multiphase gammatone filters [5] and modulated Gaussian filters
(MGFs). They were derived from the fact that part of Conv-TasNet can be
associated with a trainable filterbank. However, such an association is difficult
to find for an arbitrary layer. The inappropriate design of the latent analog
filters may limit the separation performance. Thus, we need to develop a
method that can implicitly represent latent analog filters.

In this paper, we propose a neural representation method for the latent
analog filters, neural analog filter (NAF) representation, which can determine
the latent analog filters in an end-to-end manner. It comes from our finding
that an analog filter can be viewed as a function of continuous time or frequency.
The proposed method represents this function with a DNN, i.e., we interpret
the outputs of the DNN as the values of the impulse or frequency responses at
that time or frequency, respectively. We call this DNN the NAF. By training
the proposed NAFs jointly with the other DNN components, we can determine
the latent analog filters without explicitly defining their forms. We applied
the proposed NAFs to an SFI extension of a foundational DNN for audio
source separation (SFI Conv-TasNet) [26] and examined the effectiveness of
the proposed NAFs through music source separation and speech separation
experiments.

2 Related Works

2.1 DNN-Based Audio Source Separation

DNN-based audio source separation methods can be classified into two types.
One approach separates the spectrogram of the input mixture signal, typically
obtained by the short-time Fourier transform (STFT) [7, 16, 33]. In this
spectrogram-based approach, the spectrogram of the input mixture signal is
fed into a DNN to predict time-frequency masks for individual sources. We call
the DNN the mask predictor. The predicted mask of each source is multiplied
by the input spectrogram and is converted into the separated signal by the
inverse STFT.

The other approach separates the input mixture signal in the waveform
domain [10, 13, 14, 18, 25, 27, 36, 38]. It is roughly classified into two types
of network architectures. The first type is based on the adaptation of a U-
Net architecture for the waveform domain [4, 18, 30]. The second type is
constructed by extending a time-frequency transform to be trainable in the
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architecture of the spectrogram-based approach, which is called the TasNet
framework [15]. In this framework, the time-frequency transform and its inverse
are implemented as a convolutional layer (frequently followed by a nonlinear
activation function) and a transposed convolutional layer, respectively. The
parameters of these layers are trained simultaneously with those of the mask
predictor. This framework is adopted in most methods of this approach, which
focuses on the improvement of the architecture of the mask predictor [10, 14,
27, 36, 38].

Some recently proposed methods utilize both spectrogram-based and
waveform-based approaches [3, 25]. These models consist of a waveform-
domain network, a spectrogram-domain network, and a network that bridges
the two domains. The bridging network integrates the features in the bottle-
neck layers of the waveform- and spectrogram-domain networks and propagates
the information extracted from the two domains to the subsequent layers.

2.2 Methods for Handling Untrained SFs

A few methods have been proposed to handle untrained SFs as an alternative
to the signal resampling [20, 26]. The SFI convolutional layer is the first
layer for handling untrained SFs [26]. The key of this layer is to generate the
weights of a usual convolutional layer from the latent analog filters, which
are defined in the continuous-time or frequency domain, i.e., the SFI domain.
The parameters of the latent analog filters are also defined in the SFI domain;
thus, the SFI convolutional layer can handle various SFs by generating the
weights in accordance with the input SF. We will describe the details of this
generation process later in Section 2.3. The advantage of this layer is that it
can be replaced with a usual convolutional layer because their architectural
difference is only the weight generation. Thus, we can easily introduce the SFI
convolutional layer into various DNNs using a convolutional layer, for example,
Conv-TasNet [14].

The other method can handle untrained SFs by restricting network archi-
tectures [20]. It targets a spectrogram-based architecture that is agnostic to
time-frequency axes and does not contain pooling and unpooling layers, e.g.,
a two-dimensional convolutional neural network with strides of one. Paulus
et al. demonstrated that this architecture works well with untrained SFs
by adjusting the window length and hopsize of the STFT to keep the time
resolution of the input spectrogram in the unit of seconds. Although it has an
advantage in simplicity, the architectural requirements are too restrictive in
modern DNNs for audio source separation. For example, MMDenseNet [34],
one of the spectrogram-based DNNs, violates these requirements because it
splits the frequency band and separates the input mixture signal based on
local patterns of each frequency band. In terms of the applicability to various
network architectures, the SFI convolutional layer has an advantage and we
target it throughout this paper.
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2.3 SFI Convolutional Layer

We briefly describe an SFI convolutional layer with C input channels and C ′

output channels. Let c = 0, . . . , C − 1 and c′ = 0, . . . , C ′ − 1 be the input and
output channel indices, respectively. This layer consists of C×C ′ latent analog
filters and a usual convolutional layer. Let t be the continuous time and ω be
the unnormalized angular frequency. Each latent analog filter is defined as a
real-valued continuous impulse response gc′,c(t) or a complex-valued continuous
frequency response Gc′,c(ω).

Given a target SF F
(target)
s , the SFI convolutional layer generates a discrete-

time impulse response {bc′,c[n]}⌊(N−1)/2⌋
n=⌊−(N−1)/2⌋ from each latent analog filter

using a digital filter design technique, where n is the discrete-time index and N
is the kernel size. Since a usual convolutional layer computes a cross-correlation
between an input and weights, bc′,c[n] is flipped along the time axis and is
used as the weights. We obtain an output by decimating the cross-correlation
by a factor stride S. We can also define an SFI version of a usual transposed
convolutional layer (the SFI transposed convolutional layer) by replacing the
convolutional layer with the transposed convolutional layer.

To generate bc′,c[n], we can choose the time-domain (TD) or frequency-
domain (FD) filter design methods. To distinguish the SFI layers with the two
methods, we call the former the TD SFI layer and the latter the FD SFI layer.
TD filter design: The TD filter design method directly samples gc′,c(t) with
an interval of 1/F (target)

s :

bc′,c[n] = gc′,c(n/F
(target)
s ). (1)

Owing to the Nyquist theorem, the direct sampling causes aliasing when gc′,c(t)

has energies in the frequency band above the Nyquist frequency F
(target)
s /2.

To avoid the aliasing, we previously developed an aliasing reduction method
based on the center frequency of gc′,c(t) [26]. It forcibly sets bc′,c[n] to zero
for all n when the center frequency of gc′,c(t) is above the target Nyquist
frequency F

(target)
s /2. This method is effective when the energies of gc′,c(t) are

distributed around the center frequency.
FD filter design: The FD filter design method approximates Gc′,c(ω) using
the frequency response of the digital filter in the least-squares sense. Let
{ωk}K−1

k=0 be the series of K angular frequencies that satisfy ω1 < ω2 < . . . <

ωK and ωk ∈ [0, F
(target)
s /2] for all k. The discrete-time impulse response is

given as a solution of the following problem:

bc′,c = arg min
b̃∈RN

∥Gc′,c −Db̃∥22, (2)

where bc′,c and Gc′,c are the vectorized forms of {bc′,c[n]}⌊(N−1)/2⌋
n=⌊−(N−1)/2⌋ and

{Gc′,c(ωk)}K−1
k=0 , respectively. The second term of (2) corresponds to the
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discrete-time Fourier transform of b̃ sampled at {ωk}K−1
k=0 , and D ∈ CK×N is

a matrix whose (k, n)th entry is given by exp[jωk(n−N/2)/F
(target)
s ]. This

problem can be solved analytically as

bc′,c =

[
RD
ID

]† [
RGc′,c

IGc′,c

]
, (3)

where R and I return the real and imaginary parts of each matrix and vector
entry, respectively. The superscript † denotes the Moore–Penrose pseudo
inverse of a matrix. The FD method explicitly uses the Nyquist frequency and
the aliasing reduction is introduced by design.

3 Proposed NAF Representation

In this section, we propose two NAFs for the TD and FD filter design methods,
respectively. To reduce the number of the parameters, we designed the NAFs to
output jointly the values of the impulse or frequency responses of all channels
at the input time or frequency, respectively.

3.1 DNN for Latent Analog Filter Representation

A naive choice for the NAFs is a multilayer perceptron (MLP) because it
can approximate various functions accurately when using enough units and
appropriate nonlinearities [29]. However, using a simple MLP for the NAFs
greatly degraded the separation performance in a preliminary experiment. To
examine the cause of this degradation, we analyzed the magnitude frequency
responses of the trained NAFs. It turned out that most of their energies were
distributed in the low frequency band, as we will show later in Section 4.2.

To reduce this bias, we propose using an input transformation method, the
Fourier feature mapping (FFM) [35]. It is inspired from our finding that the
observed distribution bias in energy resembles the phenomenon (spectral bias)
that an MLP prioritizes training the low-frequency components of a target
function [1, 24]. The spectral bias can be reduced by introducing the FFM for
MLP-based image synthesis [35]. Thus, we decided to adopt the FFM for the
proposed NAFs.

The FFM γ(·) transforms a given input x ∈ R to a 2R-dimensional vector
using R parameters {vr}Rr=1:

(γ(x))r =

{
cos(2πvrx) (r = 1, . . . , R)

sin(2πvr−Rx) (r = R+ 1, . . . , 2R)
, (4)

where (γ(x))r is the r-th element of γ(x). The parameter vr is usually
determined by random sampling from a standard Gaussian distribution, but it
can be trained jointly with the other DNN parameters.
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3.2 TD SFI Layer Using NAFs

Figure 1 shows the architecture of the TD and FD SFI layers using the proposed
NAFs. The NAFs transform t or ω with the FFM and pass γ(t) or γ(ω) to
an MLP, respectively. The MLP outputs are used for the weight generation.
Owing to the high expressive power of MLPs, we can determine the latent
analog filters more flexibly compared with the manually designed filters.

Analog-to-Digital
Filter Conversion

Time Reversal

Conv1DInput Output 

Conventional latent analog filters:
Manually design the mathematical forms

oror Mathematical forms with 
trainable parameters

(a) Conventional manually designed filters.

Analog-to-Digital
Filter Conversion

Time Reversal

Conv1DInput Output 

FC
N
orm

R
eLU
FC
N
orm

R
eLU
FC

FFM

DNN

or or

Proposed NAFs:
Train DNN parameters and determine the filters

(b) Proposed NAFs.

Figure 1: Architecture of SFI convolutional layer using conventional filters and proposed
NAFs. “FC”, “Norm”, and “ReLU” denote fully-connected layer, layer normalization, and
rectified linear unit activation, respectively.

For the TD SFI layer, we need to reduce aliasing caused by sampling from
the latent analog filters, as described in Section 2.3. The aliasing reduction
method proposed by Saito et al. [26] assumes that the energies of gc′,c(t) are
distributed around the center frequency. However, this assumption does not
always hold for the NAFs because gc′,c(t) is implicitly defined.

To solve this problem, we propose an anti-aliasing method using oversam-
pling (see Figure 2). The oversampling is the process of sampling a continuous-
time signal with an SF that is sufficiently higher than the target SF. The
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Resampling at 
with anti-aliasing filter

Sampling at

Figure 2: Illustration of proposed anti-aliasing method based on oversampling.

proposed method applies it to the NAFs and generates the F
(over)
s Hz-sampled

discrete-time impulse responses of length N ′, {b(over)c′,c [n′]}⌊(N
′−1)/2⌋

n′=⌊−(N ′−1)/2⌋, where

N ′ = F
(over)
s N/F

(target)
s . Resampling b

(over)
c′,c [n′] (with an anti-aliasing filter)

yields the discrete-time impulse responses bc′,c[n] of the target SF F
(target)
s .

While the NAFs are not guaranteed to have zero energies in the frequency
above F

(over)
s /2 Hz, we empirically found that the proposed method works

well by setting F
(over)
s to the trained SF.

3.3 FD SFI Layer Using NAFs

The FD SFI layer using the proposed NAFs does not require an anti-aliasing
method, but it requires additional care in handling SFs higher than the trained
SF. For these SFs, the range used in the filter design contains the frequencies
higher than the trained Nyquist frequency. The proposed NAFs should not
provide proper outputs for the untrained frequencies. In a preliminary exper-
iment, we observed that using the NAF outputs above the trained Nyquist
frequency degraded the separation performance. Thus, we apply the ideal
low-pass filter with a cutoff frequency of the trained Nyquist frequency to
Gc′,c. That is, we forcibly set Gc′,c(ω) = 0 for ω above the trained Nyquist
frequency.
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3.4 Comparison of TD and FD SFI Layers Using NAFs

The main difference between the TD and FD SFI layers using the proposed
NAFs is the treatment of aliasing, as described in Sections 3.2 and 3.3. The
TD SFI layer generates the weights by the direct sampling from the latent
analog filters and is easy to implement. However, it requires the additional
oversampling-based anti-aliasing method with an adequate F

(over)
s . The FD

SFI layer can avoid the aliasing by design, but its implementation is less simple
than that of the TD SFI layer. Thus, the decision as to whether to use the
TD and FD SFI layers depends on whether we prioritize anti-aliasing or ease
of implementation.

4 Experimental Evaluation in Music Source Separation

4.1 Experimental Settings

Data: To evaluate the proposed NAF representation, we conducted music
source separation experiments using the MUSDB18-HQ dataset [23]. This
dataset contains 150 tracks and each track contains audio signals of four
musical instruments (vocals, bass, drums, and other). We used the official data
split provided in the musdb library (https://github.com/sigsep/sigsep-mus-db):
86, 14, and 50 tracks for training, validation, and test respectively. The trained
SF F

(train)
s was set to 32 kHz. The test data were created by resampling the

test tracks at SFs from 8 to 48 kHz with an interval of 4 kHz.
Evaluation metric: The evaluation metric was the signal-to-distortion ratio
(SDR) calculated by the BSSEval v4 toolkit [32]. To reduce the dependency
on the initial values, we computed the SDRs for models with four random
seeds, and their means and standard errors were used for comparison.
Network architecture: All the methods used the network architecture of
SFI Conv-TasNet [26]. The SFI Conv-TasNet architecture is an SFI extension
of the Conv-TasNet architecture defined in Samuel et al. [27].1 It consists of an
encoder, four mask predictors, and a decoder. The encoder transforms an input
signal into a pseudo time-frequency representation using the SFI convolutional
layer and ReLU. The mask predictors predict masks from the encoder output
for individual sources. The decoder converts the masked pseudo time-frequency
representations into separated signals using the SFI transposed convolutional
layer. Table 1 shows the hyperparameters of SFI Conv-TasNet. We set the
same hyperparameters as Saito et al. [26].

1In Samuel et al. [27], the Conv-TasNet was adapted for music source separation and
modified from the original Conv-TasNet architecture [14]. See Saito et al. [26, Section V-A]
for its details.

https://github.com/sigsep/sigsep-mus-db
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Table 1: Hyperparameters of SFI Conv-TasNet for music source separation

Hyperparameter Value

Number of output channel of encoder
440and input channel of decoder

Number of channels in bottleneck
160and residual paths’ 1 × 1 convolutional blocks

Number of channels in skip-connection
160paths’ 1 × 1 convolutional blocks

Number of channels in convolutional blocks 160
Kernel size in convolutional blocks 3

Number of convolutional blocks in each repeat 6
Number of repeats of convolutional blocks 2

N of encoder and decoder in training 160
S of encoder and decoder in training 80

In inference, the time resolution of the encoder output should be constant
regardless of SFs since the mask predictors do not include SFI convolutional
layers. Therefore, we changed the kernel size and stride so that these values
were the same in the unit of seconds during training and inference, as in Saito
et al. [26]. For example, when we set N = 160 and S = 80 (5 ms and 2.5 ms,
respectively) at the SF of 32 kHz, we use N = 80 and S = 40 (5 ms and
2.5 ms, respectively) at the SF of 16 kHz.
Training configurations: We used the same training configurations as in
Saito et al. [26]. The models were trained for 250 epochs using RAdam [12]
and LookAhead [39]. The loss function was the negative scale-invariant source-
to-noise ratio (SI-SNR) [9]. SI-SNR between the estimated signals â[n] and
ground-truth signals a[n] is denoted as

atarget[n] =

∑
n′(â[n′]a[n′])∑
n′(a[n′])2

a[n], (5)

enoise[n] = â[n]− atarget[n], (6)

SI-SNR = 10 log10

∑
n(atarget[n])

2∑
n(enoise[n])2

. (7)

Owing to the scale invariance of the loss function, the outputs of the trained
models may have different scales from the groundtruth signals. To compensate
for the scale ambiguity, we adjusted the scales of the network outputs to align
with the input mixture in scale, as in Samuel et al. [27], which is denoted as

{αm}Mm=1 = arg min
{α̃m}M

m=1

N−1∑
n=0

(
y[n]−

M∑
m=1

α̃mâm[n]

)2

, (8)
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where y[n] is the mixture signal, âm[n] is the estimated signal, and αm is the
scale for source m.
Methods: Table 2 shows the methods used in the experiments, where TD
and FD mean the use of the TD and FD filter design methods, respectively.
TD- and FD-MGFs used the manually designed latent analog filters, MGFs,
which achieved the highest separation performance on average in Saito et al.
[26]. The impulse response of the MGF is given as

g(MGF)(t) = 2
√
2σ2π exp

(
−σ2t2

2

)
cos(µt+ ϕ), (9)

where µ is the center frequency in radians, σ is a parameter corresponding to
the bandwidth, and ϕ is the phase shift. These parameters were defined for
each pair of input and output channels. σ2 was initialized with (80π)2, and
the other parameters were the same as those in Saito et al. [26].

Table 2: Characteristics of compared methods

Method Latent analog Domain of Anti-aliasing methodfilter filter design

TD-MGF
g(MGF)(t)

Time [26]
FD-MGF Frequency -

TD-NAF Proposed NAF Time Oversampling-based
FD-NAF Frequency -

TD-NAF and FD-NAF used the proposed NAFs instead of the MGFs. TD-
NAF used the oversampling-based anti-aliasing method proposed in Section 3.2.
For a fair comparison, all the hyperparameters except for the NAF parameters
were the same as those for TD-MGF and FD-MGF.

Figure 1 shows the network architecture for the NAFs. The first FC layer
had 256 input units (i.e., R = 128). The last FC layer had 440 and 880 output
channels for TD- and FD-NAFs, respectively. For FD-NAF, the first 440
output channels were for RGc′,c and the other channels were for IGc′,c. The
input and output channels of the other FC layers were set to 224. The FFM
inputs t and ω were normalized as t/F

(target)
s and ω/F

(train)
s to squash their

values within [0, 1], respectively. We initialized vr with the standard normal
distribution and jointly trained it with the other layers. We found that this
joint training slightly improved the SDRs in a preliminary experiment.

4.2 Effect of Using FFM

We first examined the effect of the FFM. Figure 3 shows the magnitude
frequency responses of the trained TD-NAF encoders with and without the
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Figure 3: Magnitude frequency responses of TD-NAF encoders.

FFM. The energies of the NAFs without the FFM were distributed in the
frequency band below 4 kHz, showing that the high-frequency components
tended to be ignored. For FD-NAF, we observed a similar trend for the
magnitude frequency responses of the trained encoders. We also found that
the SDRs of FD-NAF without the FFM quickly decreased as the SF moved
away from the trained SF. For example, it had SDRs of around 0 dB for all
instruments at an SF of 8 kHz, although it provided similar SDRs to FD-NAF
with the FFM at an SF of 32 kHz. These results clearly demonstrate the
effectiveness of using the FFM. We hereafter show the results obtained with
the methods using the FFM.
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4.3 Effect of Using Proposed Anti-aliasing Method

We next examined the effect of the proposed anti-aliasing method for TD-
NAF. Table 3 shows the SDRs of TD-NAFs with and without the proposed
anti-aliasing method for 8, 12, and 16 kHz-sampled data. For the other SFs,
the two methods had similar SDRs. The lack of the anti-aliasing method
caused the SDRs to drop substantially for 8 and 12 kHz, demonstrating the
effectiveness of the proposed anti-aliasing method. As the SF increased, the
SDR drop became less because the aliasing artifacts decreased.

Table 3: SDRs [dB] with and without proposed anti-aliasing method in TD-NAF and
p-values of statistical tests

SF Instrument
Anti-aliasing method

p-value
Without With

8 kHz

vocals 1.04 ± 0.35 5.08 ± 0.32 < 10−18

bass 3.40 ± 0.10 4.80 ± 0.20 < 10−4

drums 1.91 ± 0.23 4.75 ± 0.12 < 10−15

other 0.53 ± 0.31 2.94 ± 0.21 < 10−14

12 kHz

vocals 2.58 ± 0.60 5.39 ± 0.20 < 10−16

bass 4.02 ± 0.22 5.25 ± 0.13 < 10−5

drums 3.21 ± 0.34 5.07 ± 0.18 < 10−14

other 1.82 ± 0.24 3.05 ± 0.12 < 10−9

16 kHz

vocals 5.26 ± 0.09 5.68 ± 0.08 < 10−8

bass 5.32 ± 0.11 5.42 ± 0.13 0.03
drums 5.38 ± 0.18 5.66 ± 0.07 < 10−9

other 3.56 ± 0.14 3.75 ± 0.09 < 10−7

Table 3 also shows the p-values of the statistical tests for SDRs with and
without the proposed anti-aliasing method. We computed the p-values by
paired t-tests for the SDRs obtained for the 50 test tracks. TD-NAF with the
proposed anti-aliasing method had higher SDRs than without the proposed
method at 8, 12, and 16 kHz and for all the instruments with a significance
level of 5%.

4.4 Comparison with Manually Designed Latent Analog Filters

We compared TD- and FD-NAFs with TD- and FD-MGFs. Figure 4 shows
the SDRs of all the methods per instrument. TD-NAF had higher SDRs than
TD-MGF at SFs lower than 24 kHz for all the instruments. For the SFs of
24 kHz and higher, TD-NAF had similar SDRs to TD-MGF for other and
higher SDRs than TD-MGF for vocals, bass, and drums. As shown in Table 4,
TD-NAF had significantly higher SDRs than TD-MGF at lower SFs for all
the instruments. TD-NAF also had significantly higher SDRs at the trained
SF for drums and bass. FD-NAF provided comparable or higher SDRs than
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Figure 4: Averages and standard errors of SDRs for SFI Conv-TasNets using MGFs and
proposed NAFs. Black dotted lines denote trained SFs.

FD-MGF at SFs lower than the trained SF. For the SFs higher than the trained
SF, FD-NAF showed a higher SDR than FD-MGF for vocals and bass and
similar SDRs for drums. Although FD-NAF had lower SDRs than FD-MGF
for other, their gap was slight (at most 0.15 dB) and typically inaudible. These
results show that using the NAFs achieved higher or comparable separation
performance compared with the manually designed latent analog filters.

Figure 5 shows the frequency responses of TD-MGF’s encoder and decoder,
and examples of the predicted masks, and Figure 6 shows those of TD-NAF.
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Table 4: p-values of statistical tests for SDRs of TD-MGF and TD-NAF

SF
Instrument

vocals bass drums other

8 kHz 0.002 < 10−7 < 10−8 0.008
16 kHz < 10−6 0.003 < 10−31 < 10−18

24 kHz 0.02 0.0003 < 10−10 0.3
32 kHz 0.4 0.02 < 10−6 0.9
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Figure 5: Frequency responses of TD-MGF’s encoder and decoder, and examples of predicted
masks for individual sources at 32 kHz.

For clear visualization, we first calculated the frequency index with the largest
magnitude of the frequency response for each channel. We then sorted the
channels so that these frequency indexes were in ascending order. Similar to
TD-MGF, TD-NAF had frequency responses in which each channel corresponds
to a different frequency band, especially in the lower frequency range. TD-
MGF and TD-NAF had similar trends in the distribution of center frequencies.
For the channels with center frequencies below 6 kHz (the channel indexes
below around 350), the frequency responses of TD-NAF and TD-MGF had
similar trends. Some channels with the center frequencies above 6 kHz had
energies in a broader frequency band. Nevertheless, the predicted masks of
TD-NAF were active in fewer channels than those of TD-MGF. It suggests
that the TD-NAF encoder encoded sources more compactly without sacrificing
the separation performance.
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Figure 6: Frequency responses of TD-NAF’s encoder and decoder, and examples of predicted
masks for individual sources at 32 kHz.

4.5 Evaluation on MoisesDB

We further compared the NAF and MGF methods by another music source
separation dataset, MoisesDB [22]. This dataset contains 240 tracks. We used
235 tracks consisting of four musical instruments: vocals, bass, drums, and
other. We split 235 tracks into 132, 25, and 78 tracks for training, validation,
and test, respectively. The other settings were the same as in Section 4.1.

Figure 7 shows the SDRs of all the methods per instrument. We observed
similar trends to the results of MUSDB18-HQ. Table 5 shows the p-values
of the statistical tests for SDRs of TD-MGF and TD-NAF. We computed
the p-values by paired t-tests for the SDRs obtained for the 78 test tracks.
These results showed that TD-NAF provided higher SDRs than TD-MGF at
8 kHz for all the instruments and at 16, 24, and 32 kHz for vocals with a
significance level of 5%. In FD-NAF, the standard errors of SDRs are large for
bass and drums, suggesting a high initial value dependence. For vocals and
others, the SDRs of FD-NAF were higher than those of FD-MGF at lower SFs.
These results provide another evidence that the proposed NAFs are effective
for handling untrained SFs in music source separation.

5 Experimental Evaluation in Speech Separation

5.1 Experimental Settings

To examine the generality of the proposed NAFs, we conducted a speech
separation experiment.



Neural Analog Filter for Sampling-Frequency-Independent Convolutional Layer 17

10 20 30 40 50
Sampling frequency

of test data [kHz]

4.0

4.5

5.0

5.5

6.0

SD
R 

[d
B]

vocals

10 20 30 40 50
Sampling frequency

of test data [kHz]

4.0

4.2

4.5

4.8

5.0

5.2

5.5
bass

10 20 30 40 50
Sampling frequency

of test data [kHz]

4.0

4.5

5.0

5.5

drums

10 20 30 40 50
Sampling frequency

of test data [kHz]

2.5

2.8

3.0

3.2

3.5

3.8

other

TD-MGF FD-MGF TD-NAF FD-NAF

10 20 30 40 50
SF of test data [kHz]

4.5

4.8

5.0

5.2

5.5

5.8

6.0

SD
R 

[d
B]

(a) vocals

10 20 30 40 50
SF of test data [kHz]

7.6

7.8

8.0

8.2

8.4

SD
R 

[d
B]

(b) bass

10 20 30 40 50
SF of test data [kHz]

6.0

6.5

7.0

7.5

SD
R 

[d
B]

(c) drums

10 20 30 40 50
SF of test data [kHz]

3.4

3.6

3.8

4.0

4.2

SD
R 

[d
B]

(d) other

Figure 7: Averages and standard errors of SDRs of TD-MGF, FD-MGF, TD-NAF, and
FD-NAF trained with MoisesDB. Black dotted lines denote trained SFs.

Data: The commonly used WSJ0-2mix dataset [8] and LibriMix [2] are not
suitable for this experiment, since SFs of these datasets are 16 kHz. Therefore,
we used the VCTK corpus [37], which consists of speech data with SFs of
96 kHz, and created two-speaker mixtures in the same way as the WSJ0-2mix
dataset. We divided 109 speakers into 93 speakers for train and validation
and 16 speakers for test. We generated the two-speaker mixtures by randomly
selecting two utterances from different speakers and mixing them with a random
signal-to-noise ratio between 0 and 5 dB. We generated 20000 mixtures for
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Table 5: p-values of statistical tests for SDRs of TD-MGF and TD-NAF

SF
Instrument

vocals bass drums other

8 kHz < 10−4 < 10−5 < 10−10 0.03
16 kHz < 10−9 1 < 10−10 0.09
24 kHz < 10−5 0.12 0.02 0.2
32 kHz < 10−5 0.2 0.1 0.05

train, 5000 mixtures for validation, and 3000 mixtures for test.
Evaluation metric: The evaluation metric was the SI-SNR improvement
(SI-SNRi). SI-SNRi was calculated for each utterance and averaged across the
test datasets. To reduce the dependency on the initial values, we computed
the SI-SNRi for models with four random seeds, and their means and standard
errors were used for comparison.
Network architecture: The speech separation model was based on the
original Conv-TasNet [14]. We replaced the convolutional and transposed
convolutional layers of the encoder and decoder with the SFI convolutional
and SFI transposed convolutional layers, respectively. Table 6 shows the
hyperparameters of SFI Conv-TasNet. Since N and S were set to 16 and 8
(2 ms and 1 ms, respectively) at the SF of 8 kHz in Luo and Mesgarani [14],
we used N = 64 and S = 32 (2 ms and 1 ms, respectively) at the trained SF of
32 kHz. The other hyperparameters were the same as Luo and Mesgarani [14].

Table 6: Hyperparameters of SFI Conv-TasNet for speech separation

Hyperparameter Value

Number of output channel of encoder
512and input channel of decoder

Number of channels in bottleneck
128and residual paths’ 1 × 1 convolutional blocks

Number of channels in skip-connection
128paths’ 1 × 1 convolutional blocks

Number of channels in convolutional blocks 512
Kernel size in convolutional blocks 3

Number of convolutional blocks in each repeat 8
Number of repeats of convolutional blocks 3

N of encoder and decoder in training 64
S of encoder and decoder in training 32
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Training configuration: We used the same training configurations as [14].
The models were trained for 100 epochs using Adam [11]. The loss function
was the negative SI-SNR.
Methods: We compared four methods in Table 2. Figure 1 shows the network
architecture for the NAFs. The last FC layer had 512 and 1024 output channels
for TD- and FD-NAFs, respectively. The input and output channels of the
other FC layers were set to 64. The other parameters were the same as in
Section 4.1.

5.2 Results

Figure 8 shows the SI-SNRi of all the methods. TD-NAF had higher SI-SNRi
than TD-MGF at SFs lower than the trained SF and similar SI-SNRi at SFs
higher than the trained SF. FD-NAF had higher SI-SNRi than FD-MGF at all
SFs. Table 7 shows the p-values of the statistical tests for SI-SNRi of TD-MGF
and TD-NAF. We computed the p-values by paired t-tests for the SI-SNRi
obtained for the 3000 test utterances. NAFs provided higher SI-SNRi than
MGFs at 8, 16, 24, and 32 kHz with a significance level of 5%. These results
clearly demonstrate the effectiveness of NAFs in speech separation.
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Figure 8: Averages and standard errors of SI-SNRi of TD-MGF, FD-MGF, TD-NAF, and
FD-NAF. Black dotted lines denote trained SFs.
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Table 7: p-values of statistical tests for SI-SNRi of NAF and MGF models

SF
NAF vs. MGF

TD FD

8 kHz 0.02 < 10−90

16 kHz < 10−9 < 10−164

24 kHz < 10−10 < 10−147

32 kHz < 10−3 < 10−143

6 Conclusion

We proposed an NAF representation that enables us to train latent analog
filters without explicitly defining their forms. It treats the latent analog filter
as a function of continuous time or frequency. By representing this function
using a DNN combined with the FFM, we can determine the forms of the
latent analog filters by training. We further proposed the oversampling-based
anti-aliasing method for the NAFs to reduce the aliasing artifacts caused by the
TD filter design method. By applying the proposed NAFs to SFI Conv-TasNet,
we demonstrated the effectiveness of the proposed NAFs through music source
separation and speech separation experiments.
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