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ABSTRACT
This paper proposes a novel learnable linear transform, locally-
structured unitary network (LSUN), that captures tangent spaces
of a manifold latent in high-dimensional data, enabling effective,
systematic, and highly interpretable data-driven dimensionality
reduction. LSUN provides a linear layer that has locally controllable
filter kernels with shift-variability under the structural constraint
of global unitary property. It is similar to a convolutional layer as
the filter kernels share the properties of overlapping and locality,
while fixed kernels are not repeated. The kernels can be trained
in a self-supervised manner owing to the unitary property. The
proposed method can be a candidate for realizing manifold learning.
Although local selection of filter kernels, such as sparse modeling,
can capture tangent spaces as a set of coordinates, the set of
kernels is redundant, and the filters are not very interpretable. To
address these problems, this study utilizes a method that locally
controls coordinate axes by combining some primitive local linear
operations that preserve unitarity, such as Givens rotation, shift,
and butterfly operations. This study evaluates the ability to capture
the tangent space of the proposed LSUN through low-dimensional
approximation and dynamical system modeling experiments.
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1 Introduction

High-dimensional data is extensively used in many signal processing applica-
tions, with examples such as MRIs [22], satellite imagery [49], video sequence
data [16], and thermal imaging. Although high-dimensional datasets can
capture complex details, they often pose significant challenges. The curse of
dimensionality [47] becomes apparent as the data becomes sparser in higher
dimensions, leading to increased computational complexity and challenges in
visualizing and interpreting the data. The goal of dimensionality reduction is to
discover a subspace that captures the most relevant information while reducing
computational complexity. The naturally occurring high-dimensional data is
assumed to lie on a low-dimensional manifold. Manifold learning offers a non-
linear approach to dimensionality reduction commonly used for various data
types [8, 11, 36, 21], focusing on learning smooth surfaces in multi-dimensional
spaces. Using a linear system to capture the manifold structure can reduce the
computational complexity inherent in non-linear processing. Tangent space
learning [44, 50, 48, 40] aims to maintain local linear structures by assuming
that the underlying manifold can be locally approximated by a linear tangent
space. By aligning these tangent spaces across the dataset, linear tangent
space learning constructs a lower-dimensional representation that captures the
local geometry of the data. Although it may not capture intricate non-linear
relationships as effectively as some non-linear methods, the linear approach
provides computational benefits, interpretability, and a simpler comprehension
of the local structure of the data.

Tangent spaces can be sampled using various methods, including singular
value decomposition (SVD), principal component analysis (PCA)1, independent
component analysis (ICA), convolutional auto-encoders (CAE), convolutional
dictionary learning (CDL) [5, 26, 29, 25]. Differentiation between capturing
tangent spaces between the conventional block-processing/convolutional struc-
ture and the proposed structure outlined in this study is illustrated in Figure
1. Among these methods convolutional processing as shown in Figure 1 (a),
with a selection mechanism such as sparse approximation, or alternatively,
an adaptive mechanism such as block-PCA as shown in Figure 1 (b) can be
utilized for capturing the tangent spaces. This study aims to expand the
concept of block-PCA to capture overlapping local structures, enabling the
learning of tangent spaces in a data-driven manner while maintaining the
shift-variance of local coordinates.

Filter banks (FBs) [45] provide a representation of convolutional layers
for capturing tangent space. Figure 2 shows the parallel structure of multidi-
mensional (MD) FBs. Analytical FBs examples include block discrete cosine
transform (DCT) [33, 39], discrete wavelet transform (DWTs) [42, 46], and

1Known as Karhunen-Loève Transform (KLT).
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Figure 1: Two different ways of capturing tangent spaces as coordinate systems on the man-
ifold: (a) Sparse approximation (conventional) and (b) Adaptive approximation (proposal).
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Figure 2: Parallel configuration of P -channel filter banks with downsamplers DMp and
upsamplers UMp . Hp and Fp represent the pth analysis and synthesis filters. Subband
signals are denoted by {xp[n]}. All operations are linear.

lapped transforms [28, 10, 30, 27, 38, 37], which can be employed alongside
sparsity-aware approximation or other dimensional reduction techniques. Their
convolutional kernels correspond to localized coordinate systems embedded
in a high-dimensional space. However, it is important to note that such sets
of filter kernels, i.e., dictionaries, may not always match a given set of data.
This limitation can be overcome by fitting the kernels to the dataset through
the use of parametric FBs as learnable dictionaries or convolutional layers [10,
28, 23, 27, 32, 15, 14, 30, 7]. This approach is known as CDL. CDL is a data-
driven technique for designing FBs, yielding localized continuous coordinate
systems comprised of atomic vector, i.e., filter kernels, which allows for signal
representation via a linear combination of a limited number of atoms [34, 4, 9,
12]. This process is streamlined with the convolution process. See Appendix A
for reference.
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Table 1 summarizes a comparative analysis of the aforementioned dimen-
sional reduction models. These models apply low-dimensional approximation
with block processing to capture the tangent spaces, allowing us to locally
approximate a low-dimensional embedding for the focused support region
and capture tangent vectors. As the intended low-dimensional structure is
recognized as a smooth manifold, maintaining the smoothness on the block
boundaries is crucial. Lapped transforms and linear convolution processes
facilitate smooth connections among blocks, eliminating discontinuities. The
shift-invariance nature of convolutional models does not directly correspond to
the axes of tangent spaces. In contrast to the above-mentioned models, SVD,
PCA, and ICA’s localized block processing enables us to achieve shift-variance
of coordinate systems. However, the continuous property of tangent spaces is
not explicitly considered due to the lack of overlapping in the block processing.

Table 1: Comparison of dimensional reduction models. Block DCT, block PCA, convolutional
auto-encoders (CAEs), and dictionary learning with paraunitary filter banks (DL-PUFB)
are compared, where all use shift-invariant kernels. ✓ and ✗ represent satisfactory or
unsatisfactory, respectively.

Unitary Overlap Learnable
Block DCT [33] ✓ ✗ ✗

Block PCA [5] ✓ ✗ ✓
CAE [29] ✗ ✓ ✓
DL-PUFB [30] ✓ ✓ ✓

Evidently, the sampling of tangent spaces is insufficient with the conven-
tional linear transforms by themselves due to the lack of discontinuity of block
transforms and/or shift-invariant nature of the convolutional structure. The
non-linear activation and sparsity-aware selection of coordinate systems have
issues with interpretability as the localized linear transforms do not capture
bases of tangent spaces by themselves. To solve this problem, this study aims
to expand the concept of block-PCA to capture overlapping local structures,
enabling the learning of tangent spaces in a data-driven manner while main-
taining the shift-variance of local coordinates. We propose a method to locally
control coordinate axes by combining some primitive linear transforms, such
as Givens rotation, shift, and butterfly operations, under the constraints of
the unitarity so that a self-supervised learning approach is applicable. We
observe the utilization of lapped transforms with kernel switching in previous
works [19, 43], where variable kernels are applied during processing. However,
these works propose methods to control the filter shapes and lengths while
keeping the filter coefficients constant to enhance boundary processing and
the efficiency of coding. In contrast, our proposal emphasizes the capability to
dynamically control the filter itself by adaptively varying the filter coefficients.
The major contributions of this study are summarized as follows:
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Shift-variability
Filter kernels of the network can be varied adaptively according to the input.

Unitarity
Preserves total energy through the network.

Self-supervised learning
Specific dataset is not required for training. Input data can be utilized as
training data.

Note that we have already applied one of the specific examples of our
proposed locally-structured unitary network (LSUN) to video denoising in [16].
The difference is that this paper focuses on the theoretical background, design
method, implementation method, and detailed evaluation of low-dimensional
embedding performance of LSUN, which were not described in detail in [16].
The remainder of this paper is organized as follows. Section 2 reviews the
linear models for dimensional reduction. Section 3 introduces the proposed
network, in Section 4, we share some design examples to verify the significance
of LSUN, and Section 5 evaluates the performance of the proposed network,
followed by the conclusions in Section 6.

2 Review of Linear Dimensional Reduction

This section reviews some conventional data-driven linear transforms which
have the potential to capture tangent spaces.

2.1 Principal Component Analysis (PCA)

PCA provides a data-driven coordinate system to represent the statistical
variations of high-dimensional correlated data. The resultant principal compo-
nents (PCs) can be interpreted as coordinate axes of a space that represent the
direction of dominant variances. These coordinate axes are orthogonal to each
other. PCA refers to the problem of fitting a low-dimensional affine subspace
of dimension p≪M to a set of points {yn}n ⊂ RM , where

∑S
n=1 yn = 0.

The problem setting is represented as

{Φ̂, {x̂n}n} = arg min
{Φ,{xn}n}

1

2S

S∑
n=1

∥yn −Φxn∥22, (1)

subject to

Φ⊺Φ = ΦΦ⊺ = IM , (2a)
∥xn∥0 ≤ p, n ∈ {1, 2, . . . , S}, p ∈ {1, 2, . . . ,M − 1} (2b)
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to find the unknown synthesis dictionary Φ ∈ RM×M and features {xn}n ⊂
RM for {yn}n, where IM is the M ×M identity matrix and ∥ · ∥0 denotes
the number of non-zero entries. (1) is equivalently represented by Φ̂ =

argmaxΦ∈RM×M tr(Φ⊺
:,1:pΣ̂yΦ:,1:p), s.t. Φ⊺Φ = IM , where Σ̂y is the sample

covariance matrix of the given set {yn}n. The first p columns of Φ is expressed
as Φ:,1:p. The solution is the eigendecomposition as Φ̂⊺Σ̂yΦ̂ = Λ, where
Λ = diag(λ1, λ2, · · · , λM ), and λ1 ≥ λ2 ≥ · · ·λM are the eigenvalues of Σ̂y,
and x̂n = Φ̂⊺yn.

This study cites two variants of block PCAs as reference methods, namely
global block PCA (GBPCA) and local block PCA (LBPCA). Both methods
are originated from PCA [5, §1.5],[17, §2.12] where we suggest the latter for
showing the advantage of local adaptability inspired by some works regarding
local processing of PCA [20].

2.1.1 Global block PCA (GBPCA)

Consider subdividing a high-dimensional signal y ∈ RBM , where BM denotes
the number of signal or pixel values, such as an image, into B blocks to
generate a dataset {yn}n as shown in Figure 3 (a). PCA is performed on the
vectorized dataset {yn}n and PCs are obtained. Since a single dictionary is
derived for all blocks, we refer to this approach as global block PCA (GBPCA)
in this paper. GBPCA exhibits the properties of linearity and unitarity, and it
captures localized constant coordinate axes to the entire input. The resulting
dictionary can be regarded as a special case of a convolutional dictionary with
a block-size stride. Note that it lacks the ability to capture tangent spaces of
a manifold by itself. By changing the way of defining the input dataset, the
global representation of GBPCA can be changed to a local representation.

(a) (b)

Figure 3: 2-D illustration of training region in (a) GBPCA and (b) LBPCA, respectively.
The training region for GBPCA is extracted from the whole data array, while LBPCA
extracts the training region only from surrounding local blocks.
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2.1.2 Local block PCA (LBPCA)

The dataset {yn}n is defined in the following way. After subdividing a high-
dimensional signal y, PCA can be applied for a collection of blocks marked as
“Training region” in Figure 3 (b). Since multiple local dictionaries {Φ̂b}b are
derived for the original signal y, we refer to this approach as local block PCA
(LBPCA) in this paper, where b denotes the block index, and the number of
training blocks S for each target block is less than the total number of blocks B.
LBPCA exhibits linearity, unitarity, and shift-variability properties, making it
possible to capture PCs independently for each of the blocks. Therefore, it has
the potential to capture tangent spaces. However, LBPCA does not satisfy
the overlapping property, which is essential for continuously capturing tangent
spaces on a smooth manifold.

2.2 Review of Filter Banks

A typical FB arrangement features analysis and synthesis banks as demon-
strated in Figure 2. It exhibits a parallel structure of a P channel FB described
by the filtering operators Hp and Fp respectively for the pth analysis and syn-
thesis filters. These filters are usually realized by linear shift-invariant (LSI)
systems via convolutional filter kernels. DMp and UMp are the pth downsam-
pler and upsampler, respectively, with resampling matrix Mp ∈ ZD×D which
exactly denotes the stride. The resampling ratio for each channel is calculated
as Mp = |det(Mp)|, and the redundancy as R =

∑P−1
p=0 M−1

p . A FB with
R > 1 is referred to as oversampled, whereas critically sampled FBs have
R = 1. Note that perfect reconstruction (PR) requires that R ≥ 1, and that
the output {yout[m]} is a scaled and shifted form of the input {yin[m]}.

Oversampled FBs increase the degree of freedom, resulting in a set of
redundant filter kernels. Nonetheless, the system’s complexity is increased
by the realization of an infinite number of analysis and synthesis banks.
The FBs can be created by introducing various constraints, including linear
phase, orthogonality and so forth, with consideration for potential applications.
Examples falling under this category include LPPUFB [32, 31], GenLOT [10],
NSOLT [30], modulated lapped transform (MLT) [41], and extended lapped
transform (ELT) [27]. These FBs are constructed through cascaded primitive
block operations, which inherently maintain locality and unitarity. Owing to
the unitarity of both analysis and synthesis FBs, they can be represented by
structured matrices.

Let A and D represent the operators by analysis and synthesis FBs, respec-
tively. If DA = I, perfect reconstruction is sufficiently achieved. Furthermore,
if A⊺A = DD⊺ = I holds, they satisfy orthonormality, which ensures that
energy is preserved before and after the transform (Perceval’s theorem). Fac-
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torizations of analysis and synthesis FBs into product forms, i.e., the cascade
of primitive block operations, can be expressed as

A = HI−1HI−2 · · ·H1H0, (3a)
D = F0F1 · · ·FI−2FI−1. (3b)

The structural constraints for the FBs can be attained by parameterizing the
I factors {Hi} or {Fi} while imposing some structural constraints. Examples
of primitive block operations include Givens rotations and shift operations,
as discussed in Appendix B [31, 13]. The combination of these primitive
operations allows for the parametric design of convolutional dictionaries that
adhere to preferred structural constraints. However, these FBs consist of a
global representation of coordinate axes, similar to GBPCA in Section 2.1.1.
Consequently, they lack the ability to define coordinate axes locally.

2.3 Dictionary Learning

GBPCA can be regarded as a dictionary learning method in the form of
D = A⊺ = blkdiag(Φ,Φ, · · · ,Φ) with Φ ∈ RM×M and LBPCA as D = A⊺ =
blkdiag(Φ1,Φ2, · · · ,ΦB) with Φb ∈ RM×M , where blkdiag(· · · ) denotes the
block diagonal matrix of the entries. We can find other instances of dictionary
learning such as K-SVD [1, 12]. Dictionary learning can be regarded as a
variant of PCA in which the orthogonal constraint is relaxed and redundant
systems emphasizing sparse representation are preferred.

Dictionary learning is capable of capturing a low-dimensional representation
of a high-dimensional signal with sparse approximation by (1) subject to

∥xn∥0 ≤ K, n ∈ {1, 2, · · · , S}. (4)

Here K(≪ M) denotes the upper limit of the number of non-zero coeffi-
cients. Φ̂ ∈ RM×N represents the dictionary learned from {yn}n ⊂ RM , and
{xn}n ⊂ RN is a set of coefficients, where M ≤ N . Typical dictionary learning
alternatively applies sparse approximation and dictionary update steps [12, 1].

2.3.1 Block K-SVD

Note that K-SVD, a representative dictionary learning technique, can be used in
a global block processing manner. After subdividing a high-dimensional signal
y ∈ RBM into patches {yn}n, we can design a single redundant dictionary
Φ ∈ RM×N . Although Φ is globally applied to every block, the dictionary works
in a localized manner. The axes are locally selected with sparse approximation.
While the block K-SVD can be designed like GBPCA, it is also possible to
produce local dictionaries {Φ̂b}b as LBPCA.
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2.3.2 Convolutional dictionary learning (CDL)

Block K-SVD operates in a block-processing manner regardless of the adjacent
blocks. A convolutional dictionary also realizes a local process [34, 4, 9].
Unlike block PCA and K-SVD, it processes a local signal in relation to the
neighboring region. CDL estimates local atoms to represent signals sparsely.
In contrast to K-SVD, a convolutional dictionary consists of a set of linear
shift-invariant filters with some stride. The redundant design allows us to
locally select coordinate systems related to adjacent region. A coordinate
selection, such as sparse approximation, is used to pick the major coordinate
axes which capture low-dimensional structure out of the redundant filters.

Let D ∈ RBM×BN be a global synthesis convolutional dictionary, x ∈ RBN

be a concatenation of coefficient vectors {xn}n, and y ∈ RBM be a target
signal. Then, we can rewrite the problem setting of the dictionary learning as

{D̂, x̂} = arg min
{D,x}

1

2
∥y −Dx∥22 s.t. ∥x∥0 ≤ BK, (5)

where K ≪M , i.e., K ≪ N . Note that, as special cases, the global distinct
block transform matrix can be expressed as D = blkdiag(Φ,Φ, · · · ,Φ).

A synthesis FB can be regarded as a convolutional dictionary D. A
parametric FB enables the design of a dictionary comprising overlapping
linear shift-invariant filter kernels with specified strides subject to certain
structural constraints [10, 28, 23, 27, 32, 14, 30]. Such FBs can be employed
for CDL while incorporating various structural constraints such as unitarity.
This, in turn, aligns the discussed CDL models closely with our intended
framework which is capable of capturing tangent spaces within a smooth
manifold. Nevertheless, the inherent shift-invariance in these FBs limits the
direct capture of local coordinate axes. Consequently, the redundant local
coordinate system employed by the FBs does not directly correspond to the
tangent spaces.

3 Locally-structured Unitary Network

Let us propose a locally-structured unitary network (LSUN). We aim to
establish a linear shift-variant network, as shown in Figure 1 (b). Our proposed
system is a learnable linear network that satisfies global unitarity A⊺A =
DD⊺ = I.

Figure 4 illustrates the basic idea of our proposal in a simple network, where
(a) and (b) denote signal flows of weighted sum operations in a convolutional
paraunitary FB (PUFB) and a shift-variant FB with the global unitarity,
respectively. Specific examples will be shown in Section 4. The former
gives a convolution layer with structural unitary constraints. On the other
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(a) (b)

Figure 4: Signal flows of weighted sum operations in (a) convolutional structure and (b)
shift-variant structure, where Vθ denotes Givens rotation with angle θ.

hand, the latter can realize a local shift-variant system to capture tangent
vectors under the unitary constrained structure. Note that both structures
can be decomposed into a multilayer network with localized linear layers by
block processing with independent design parameters and can be expressed as
Dθ = F0F1 · · ·FI−2FI−1.

Multi-layer PUFBs will be selected as our baseline, considering its simplicity
and ease of understanding. In the following, we summarize the requirements
for baseline filter banks:

• Layered structure with independent design parameters,

• Local and unitary processing layers that control overlapping blocks.

In this study, under the assumption that a shift-variable unitary network
Dθ is adopted, we set the following problem:

θ̂ = argmin
θ
−∥ΓB,KD⊺

θy∥22, s.t. DθD
⊺
θ = IBM , (6)

where Dθ ∈ RBM×BM is a locally-structured synthesis unitary dictionary
with shift-variant filter kernels controlled by design parameters in θ, ΓB,K ∈
{0, 1}BM×BM is a block diagonal matrix of B diagonal matrices with K
diagonal entries of 1 and (M−K) diagonal entries of 0 to reduce dimensionality
of the input y, i.e., K ≤M . Note that ∥y∥22 − ∥ΓB,KD⊺

θy∥22 ≥ 0 holds from
Parseval’s identity since Dθ is unitary. The identity sufficiently holds when
the dimension reduction is not applied, i.e., K = M .

Figure 5 displays an example configuration of the learning process of LSUN.
LSUN can learn local variable filters to preserve the original energy ∥y∥22 in
low dimensions in a self-supervised manner. Let us denote the cost by

ℓy(θ) := −∥ΓB,KD⊺
θy∥22 (7)
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Figure 5: Example configuration of the learning process, where Dθ and θ are unitary
transform and design parameters, respectively. The loss function is given by ℓy(θ) =
−∥ΓB,KD⊺

θy∥
2
2 = −∥Ď⊺

θy∥
2
2, where Ďθ = DθS

⊺
B,K and SB,K ∈ {0, 1}BK×BM is the

subsampling matrix that holds ΓB,K = S⊺
B,KSB,K .

If this loss function ℓy(θ) is differentiable by θi = [θ]i, ∀i, The gradient∇θℓy(θ)
is given as

[∇θℓy(θ)]i =
∂

∂θi
ℓy(θ) = −2

〈
Ď⊺

θy,
∂

∂θi
Ď⊺

θy

〉
(8)

where ⟨·, ·⟩means the inner product, Ďθ := DθS
⊺
B,K and SB,K ∈ {0, 1}BK×BM

is the subsampling matrix that holds ΓB,K = S⊺
B,KSB,K . We here used the

fact that Γ⊺
B,KΓB,K = ΓB,K .

Using the gradient in (8), we can set the initial value n ← 0, θ(0) and
optimize parameters sequentially, e.g., by gradient descent

n← n+ 1, (9a)

θ(n) ← θ(n−1) − µ∇θℓy(θ
(n−1)), (9b)

where µ ∈ [0,∞) is the step size.
As a result of selecting a simple system, we are able to establish that the

parameters {θi} are independent of each other and Fi depends only on θi; we
obtain,

[∇θℓy(θ)]i = −2
〈
Fi+1 · · ·FI−1x(θ),

∂

∂θi
F⊺

i F
⊺
i−1 · · ·F⊺

0y

〉
(10)

from the inner product property ⟨x,Ay⟩ = ⟨A⊺x,y⟩, where x(θ) := ΓB,KD⊺
θy.

(10) represents a specific instance of the error backpropagation method, and
its efficient solution can be achieved by employing a deep learning framework,
such as the MATLAB Deep Learning Toolbox or PyTorch in Python.

4 Construction Examples

LSUN can be defined by a distinctive class of convolutional FBs built on
cascaded primitive block operations. Some of the candidate systems that
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meet the conditions outlined in Section 3 include linear-phase PUFB (LP-
PUFB) [32], cosine modulated FBs [23], non-separable oversampled lapped
transform (NSOLT) [30], generalized linear-phase lapped orthogonal transform
(GenLOT) [10] among others. This section presents two examples of LSUN
constructions using existing 1-D and 2-D FBs. Examples of notable differences
in 2-D systems are illustrated in Figure 6.

(a) (b)

Figure 6: Comparison between (a) shift-invariant unitary parameters W0, U0, and U
{d}
j

of NSCLT, a convolutional FB and (b) the adaptively variable unitary parameter matrices
W0,i, U0,i, and U

{d}
j,i of LSUN, a shift-variant FB.

4.1 1-D LSUN Example

The Gan’s PUFBs in [14] can be used as a base system to construct 1-D LSUN.
The original PUFB configurations are given by a polyphase representation.
For example, the analysis system in even-channel real-coefficient symmetric
delay factorization (Real SDF) configuration [14, Fig. 7 (b)] is represented by

E(z) = GJ−1(z)GJ−2(z) · · ·G2(z)G1(z)E0, (11)

where the number of channels and resampling ratio are all set to P = M = 2m
with a natural number m and

Gj(z) = VjΣiΛ(z), (12a)
Vj = blkdiag(Wj ,Uj), (12b)

Σj =

(
Cj −Sj

Sj Cj

)
, (12c)

Cj = diag(cos θj,0, cos θj,1, · · · , cos θj,m−1), (12d)
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Si = diag(sin θj,0, sin θj,1, · · · , sin θj,m−1), (12e)

Λ(z) = blkdiag(Im, z−1Im), (12f)
E0 = V0Σ0. (12g)

In (11), J > 1 controls the number of overlapping local blocks. In (12),
Wj ,Uj ∈ Rm×m are parameter orthonormal matrices and θj,i is an angular
parameter. In the original construction, these parameters are shift-invariant,
but in LSUN, they are made shift-variant. Since the polyphase matrix repre-
sentation consisting of transfer functions is no longer valid, it is represented
by a global matrix as in (3a).

4.2 2-D LSUN Example

M-D PUFBs proposed in [32, 15, 30] can also be used as a base system
to construct M-D LSUN. For example, the analysis system in 2-D even-
channel non-separable oversampled lapped transform (NSOLT) configuration
[30, Figs. 3(a) and 4(a)] is expressed in terms of the polyphase matrix by

E(z) =

Jh−1∏
j=1

G
{h}
j (zh)

Jv−1∏
j=1

G
{v}
j (zv)

E0, (13)

where
∏J−1

j=1 Gj := GJ−1GJ−2 · · ·G2G1, z = (zv, zh)
⊺,

G
{d}
j (zd) = V

{d}
j Q(zd), (14a)

V
{d}
j = blkdiag(Im,U

{d}
j ), (14b)

Q(zd) = BMΛ(zd)BM , (14c)

BM =
1√
2

(
Im Im
Im −Im.

)
, (14d)

Λ(z) = blkdiag(Im, z−1Im), (14e)
E0 = V0CMJM , (14f)

V0 = blkdiag(W0,U0) (14g)

for d ∈ {h, v}. Jh and Jv control the numbers of overlapping blocks in the
horizontal and vertical directions, respectively. It is possible to construct
a 2-D LSUN based on this system. Since redundancy is not needed in the
LSUN configuration, the number of channels and resampling ratio are all set
to P = M = 2m with a natural number m. In other words, since we are
based only on the case of critical sampling, we will refer to this base system
as the non-separable critically sampled lapped transform (NSCLT) instead of
NSOLT.
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In (14), W0,U0,U
{d}
j ∈ Rm×m are parameter orthonormal matrices, where

d denotes either of the horizontal or vertical direction, expressed as ‘h’ or ‘v’,
respectively. JM ∈ RM×M is the counter identity matrix. CM ∈ RM×M is
an orthonormal matrix that consists of basis vectors satisfying even or odd
symmetry. We adopt the 2-D separable DCT for CM. See Appendix B for
further discussion on NSCLT.

In the original construction of NSCLT, the design parameters are shift-
invariant, but LSUN adopts a shift-variant construction. Therefore, the
polyphase matrix representation is no longer valid. Figure 6 compares primitive
block operations with learnable parameters, where (a) and (b) illustrate the
shift-invariant construction in NSCLT and the shift-variant construction in
LSUN, respectively. Note that both implementations structurally maintain the
unitary property, while the operations in Figure 6 (b) realize variability of local
block transform. In combination with block shift and butterfly operations, as
with convolution, surrounding blocks can be related to each other.

The overlapped block process maintains the continuity of tangent spaces.
The adaptive filter kernels can directly capture tangent spaces on a manifold
embedded in the high-dimensional space. The unitary property of LSUN
enables efficient network training using only the analyzer, eliminating the need
for an encoder-decoder structure. Furthermore, specialized training datasets
are not necessary, but can be used if desired. LSUN provides a novel linear
layer which is an alternative to the conventional convolutional layers.

5 Performance Evaluation of LSUN

Let us evaluate the performance of LSUN through approximation experiments.
We aim to investigate the ability of LSUN to capture the underlying low-
dimensional structure. The approximation process

ỹ = DθΓB,KD⊺
θy (15)

is applied as shown in Figure 7, where Dθ ∈ RBM×BM is a synthesis dictionary,
and y ∈ RBM is a target signal. The experiments presented in Sections 5.1,
5.2, and 5.3 are conducted to evaluate the performance of 1-D and 2-D LSUN.

5.1 1-D LSUN Experiment

We use the 1-D LSUN built on the Gan’s PUFBs [14] in Section 4.1 for the
1-D experimental evaluation.2

The task involves approximating the Rosenbrock function

f(w1, w2) = (a− w1)
2 + b(w2 − w2

1)
2, (16)

2The code can be viewed at https://codeocean.com/capsule/3430476/tree/v2.

https://codeocean.com/capsule/3430476/tree/v2
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Figure 7: Layout for the approximation experiment.

where a, b ∈ R and w1, w2 ∈ R. The function f(w1, w2) is discretized on a 2-D
grid to generate a dataset as

[y(t)]ℓ := f(ℓ∆w1 − 2, t∆w2 − 1) (17)

where ℓ, t ∈ {0, 1, · · · , 99}, ∆w1 = ∆w2 = 0.04, and [·]ℓ denotes the ℓ-th
element of the vector. This 1-D vector sequence is treated as a dataset
{y(t)} ⊂ RBM . The parameters were set to a = 1 and b = 100.

In the context of our 1-D LSUN experiment, the problem setup described
in (6) is modified as follows:

θ̂ = argmin
θ
−

T−1∑
t=0

∥ΓB,KD⊺
θy

(t)∥22, s.t. DθD
⊺
θ = IBM , (18)

for {y(t)}T−1
t=0 , where T = 100. Note that the error back propagation discussed

in Section 3 is still valid. As per the boundary operations, circular extensions
were applied to signal boundaries within the LSUN process.

The comparison of 1-D LSUN approximation results is presented in Table 2,
with visual illustrations provided in Figure 8 and Figure 9, where (a), (b),
(c) and (d) illustrate the original representation and the results for GBPCA,
LBPCA, and LSUN, respectively. In the 1-D LSUN approximation test, the
parameters for all models were configured as follows: the block size (stride) was
set to M = 4, the number of coefficients per block was chosen as K ∈ {1, 3} for
different instances, and the overlapping factor (polyphase order plus one) for
LSUN was set to J = 9, the number of blocks per training sample for LBPCA
was set to S = 9, and the number of blocks is B = 25.

The experimental results show that the 1-D LSUN performs better than
GBPCA and LBPCA, offering insights into their respective abilities to capture
the underlying structure of the Rosenbrock function.
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Table 2: Approximation results for the Rosenbrock function in terms of mean squared error
(MSE).

K GBPCA LBPCA LSUN
1 2.0301× 103 1.7213× 103 4.3499× 100

3 2.3049× 10−4 4.6973× 10−5 3.7445× 10−6

(a) (b) (c) (d)

Figure 8: Approximation of Rosenbrock function by (a) Original, (b) GBPCA (MSE:2.0301×
103), (c) LBPCA (MSE:1.7213× 103), and (d) LSUN (MSE:4.3499× 100), where M = 4,
J = 9 and the number of coefficients per block is set to K = 1.

(a) (b) (c) (d)

Figure 9: Approximation of Rosenbrock function by (a) Original, (b) GBPCA (MSE:2.3049×
10−4), (c) LBPCA (MSE:4.6973×10−5), and (d) LSUN (MSE:3.7445×10−6), where M = 4,
J = 9 and the number of coefficients per block is set to K = 3.

5.2 2-D LSUN Experiment

We use 2-D LSUN built on NSCLT from the framework of the LPPUFBs [31]
for the evaluation. The 2-D LSUN experiment was conducted using image
approximation, comparing the performance of GBPCA, LBPCA, NSCLT,
NSOLT, and K-SVD, where K-SVD and NSOLT are processed with the
normalized iterative hard thresholding (IHT) [3]. The selection of models
for evaluation was based on the variation of properties outlined in Table 3.
The parameters for each model were configured as follows. For NSCLT, the
number of channels ps + pa = 8 + 8, block size [Mv,Mh] = [4, 4], the number
of overlapping blocks [Jv, Jh] = [9, 9] (polyphase order [Nv, Nh] = [8, 8] plus
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Table 3: Comparison of the properties of the models used in performance evaluation, ✓ and
✗ represent satisfactory or unsatisfactory, respectively.

Overlap Shift-variability
GBPCA ✗ ✗

LBPCA ✗ ✓
NSCLT ✓ ✗

K-SVD ✗ ✗

NSOLT ✓ ✗

LSUN ✓ ✓

one for each direction) and, tree levels τ = 1 were used.3 NSOLT, a redundant
extension of M-D LPPUFB, was designed and used as a convolutional dictionary.
It was paired with IHT as a method for finding the solution in a greedy manner,
as denoted in (5). Type-I NSOLT is used with the following configuration,
where the number of channels ps + pa = 34 + 34, block size [Mv,Mh] = [4, 4],
the number of overlapping blocks [Jv, Jh] = [9, 9], and tree levels τ = 1. K-SVD
also uses a similar configuration with block size [Mv,Mh] = [4, 4], the number
of coefficients per block K is 1 and the number of atoms per dictionary is 38,
where there is no overlapping among blocks, i.e. [Jv, Jh] = [1, 1].

The LSUN architecture for this evaluation was based on the reference
NSCLT, where the number of channels ps + pa = 8 + 8. The number of
coefficients per block K is 1, block size (stride) is [Mv,Mh] = [4, 4], the
number of overlapping blocks for LSUN was set to [Jv, Jh] = [9, 9]. Similar to
the 1-D experiment, circular extensions are utilized to signal boundaries within
the 2-D LSUN process. LBPCA and GBPCA also employed with similar
parameters to LSUN, where the block size (stride) is [Mv,Mh] = [4, 4], K = 1
and the number of blocks is B = 128× 192 = 24576. The number of sample
blocks per training region for LBPCA was set to S = 9× 9 = 81.

For the 2-D LSUN approximation, the Kodak dataset consisting of 24
images was used. Each image has a size of 512× 768 pixels and a bit depth of
8 bpp. The results are presented in Table 4, while the average for the total
dataset is given in Table 5. Figure 10 and Figure 11 visualize the results of the
approximation test for the Kodak images kodim01 and kodim21, respectively.
It is evident that LSUN outperforms in terms of approximation performance
for most of the instances, showing better average performance for the images
in the Kodak dataset.

5.3 Dimensional Reduction for Dynamic System Modeling

LSUN can reduce dimensionality and decrease computational complexity
in applications involving high-dimensional signals, such as the modeling of

3The symbols are inherited from [30, 13].
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Table 4: Approximation results for each image in PSNR [dB], where K-SVD and NSOLT are
paired with IHT. The number of channels K is set to 1. Best results are highlighted in bold.

Im GBPCA LBPCA NSCLT K-SVD NSOLT LSUN
01 21.5746 22.2596 22.2499 23.3883 45.5939 55.5688
02 28.7108 29.6735 29.2189 34.3887 51.8891 49.2904
03 28.4433 29.0207 29.5146 31.1289 54.1636 49.5122
04 27.6568 28.3572 28.8698 27.7029 51.0219 51.0437
05 20.9029 21.1124 22.2294 20.7751 46.7815 57.5899
06 23.4314 23.8015 24.0569 22.0179 48.5984 52.2242
07 25.6959 26.0441 27.9085 27.8332 53.3019 51.6631
08 18.9501 19.3258 19.9320 18.9712 44.2331 55.2865
09 25.7672 26.6639 27.0177 28.1891 50.6422 47.1693
10 26.0671 26.6249 27.3315 24.4945 50.7356 49.0067
11 24.4906 25.0829 25.3446 25.5364 49.0279 51.1946
12 26.6003 27.1958 28.1615 27.2001 51.7021 49.4966
13 20.1337 20.3206 20.7878 20.8253 40.6788 64.0321
14 23.9734 24.1802 24.9775 24.1972 47.0001 54.4873
15 26.6497 27.2781 27.8306 21.1087 51.6795 50.3687
16 27.3089 27.7478 27.7075 26.8729 51.0189 51.9633
17 26.5895 26.8366 28.1092 25.0858 50.2599 51.4081
18 23.4821 23.6324 24.2766 24.5879 45.2982 51.1779
19 23.2453 24.1077 23.8718 23.8947 48.3095 50.0852
20 25.1995 25.5980 26.4054 26.5395 52.3848 51.9855
21 23.6225 23.9749 24.5378 25.0235 48.6529 48.6653
22 25.8677 26.4694 26.3343 26.7786 49.1581 50.1351
23 28.0388 28.6753 29.2068 26.9834 52.6607 50.0164
24 22.7534 22.9423 23.3451 21.8009 46.7303 52.2141

Table 5: The average of approximation results for Kodak dataset in PSNR [dB], where
K-SVD and NSOLT are paired with IHT. The number of channels K is set to 1. Best result
is highlighted in bold.

GBPCA LBPCA NSCLT K-SVD NSOLT LSUN
24.7981 25.2886 25.8011 25.2218 49.2301 51.8994

dynamical systems. As well, LSUN is useful for acquiring essential features
from contaminated data.

Recent advancements in dynamical system modeling, such as physics-
informed dynamic mode decomposition (piDMD) [2], have shown promising
results under some physical constraints. We utilize LSUN to assist the proper
orthogonal decomposition (POD) [6] before piDMD and to improve the perfor-
mance of piDMD for modeling conservative systems.
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(a)

(b) (c) (d)

(e) (f) (g)

Figure 10: Results of the approximation experiments for the image kodim01, where (a)
Original, (b) GBPCA (PSNR:21.574 dB), (c) LBPCA (PSNR:22.259 dB), (d) NSCLT
(PSNR:22.249 dB), (e) K-SVD (PSNR:23.388 dB), (f) NSOLT (PSNR:45.593 dB), (g) LSUN
(PSNR:55.568 dB).

(a)

(b) (c) (d)

(e) (f) (g)

Figure 11: Results of the approximation experiments for the image kodim21, where (a)
Original, (b) GBPCA (PSNR:23.622 dB), (c) LBPCA (PSNR:23.974 dB), (d) NSCLT
(PSNR:24.537 dB), (e) K-SVD (PSNR:25.023 dB), (f) NSOLT (PSNR:48.652 dB), (g) LSUN
(PSNR:48.665 dB).

We conducted a conservative dynamical system modeling with orthogonal
DMD, which is a type of piDMD, and 2-D LSUN from contaminated noisy
simulation data. The following steps show our evaluation procedure.

Step 1: Generate noisy observation data {vk} from clean data {uk}
Step 2: Train LSUN Ď⊺

θ with {vk}
Step 3: Project coefficients {Ď⊺

θvk} to the leading POD modes Ψ

Step 4: Train piDMD K from {Ψ⊺Ďθvk} under unitary constraint
Step 5: Develop time-evolution equation uk+1 ≃ Ď⊺

θΨKΨ⊺Ďθuk
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Step 6: Estimate uk for k > 0 from the initial noisy observation v0

Step 7: Evaluate the estimation {ûk} in terms of MSE with {uk}

In Step 1, to investigate the incompressible flow around a cylinder, a
standard problem for modal decomposition is adopted [24]. The analysis focuses
on a system comprising 151 vorticity measurement samples,4 representing five
periods of vortex shedding, collected on a grid with dimensions of 199× 449
points. The observation vk is assumed to be contaminated by additive white
Gaussian noise (AWGN) wk as

vk = uk +wk, (19)

where uk denotes the original data at the k-th frame. Throughout the experi-
ment, the signal-to-noise ratio (SNR) varies from 10% to 50%.

In this evaluation, we try to obtain the following time-evolution equation
in a data-driven manner:

ûk = Ďθ(Ψ
⊺K̂Ψ)kĎ⊺

θv0, (20)

where Ψ denotes the leading POD modes obtained by SVD for LSUN coefficient
data matrix

X0 := Ď⊺
θ

(
v0 v1 · · · v149

)
, (21)

and K̂ is a matrix given by solving the problem

K̂ = arg min
K s.t. K⊺K=KK⊺=I

∥X1 −Ψ⊺KΨX0∥2F , (22)

where ∥ · ∥F denotes the Frobenius norm, and

X1 := Ď⊺
θ

(
v1 v2 · · · v150

)
. (23)

In Step 2, the block size (stride) is fixed at [Mv,Mh] = [4, 4]. The number
of channels K is varied from 1 to 4, and overlapping blocks [Jv, Jh] is varied
for Jv = Jh ∈ {1, 3, 5}. By varying the number of channels used for LSUN
reconstruction, the spatial compression can be controlled by a factor of R =
K/(Mv ×Mh), thereby relaxing the computational complexity of the SVD
process in piDMD. In Step 3, the number of the leading POD modes is
fixed to 15 for all the cases following the original piDMD construction [2]
i.e., K̂ ∈ R15×15 . In Step 4, the orthogonal piDMD framework is used for
obtaining K̂, then Step 5 follows.

The estimated results in Step 6 are presented in Figure 12, which compares
the performance of piDMD with LSUN and the original piDMD, i.e., the case
that Ďθ = I. In Step 7, the detailed results are provided in Tables 6 and 7.

4The original data is obtained from: http://databookuw.com/DATA.zip.

http://databookuw.com/DATA.zip
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(a) (b)

(c) (d)

Figure 12: Estimation with noisy data using piDMD with and without LSUN: (a) Source
data u150, (b) Noisy data v150 with noise energy set to 50% of signal energy (MSE: 0.6283),
(c) Estimation using piDMD û150 (MSE: 0.0649), (d) Estimation using piDMD with LSUN
û150 (MSE: 0.0110). LSUN is configured as the number of channels K = 2 and the number
of overlapping blocks [Jv, Jh] = [3,3].

Table 6 demonstrates the performance of piDMD with LSUN for varying the
numbers of channels K and overlapping factors [Jv, Jh]. Table 7 presents a
comparison of piDMD with and without LSUN under different noise energy
levels. All the values are presented in terms of MSE at the 150th estimation
û150 with the source u150. Note that the MSE values are taken from the
average of five independent trials since the noise wk is random. The results
demonstrate that LSUN introduces spatial compression to the data while
preserving the essential data structure of the system.

Figure 13 presents a comparison of the learned spectra between the original
piDMD and piDMD via LSUN. It is apparent that the eigenvalue distributions
are on the unit circle in both cases, that the orthogonal piDMD requests.
Figure 14 shows the comparison of estimation averaged MSEs with original
piDMD and piDMD via LSUN. Note that there is no estimation for the initial
frame u0. The plot starts from the first frame û1. In addition to POD,
LSUN can improve the low-dimensional representation by providing spatial
compression to the data. Incorporating LSUN with piDMD is expected to
increase the efficiency of conservative dynamical system modeling.

The LSUN demonstrates superior performance in both 1-D and 2-D approx-
imation experiments and exhibits enhanced performance in dynamical system
modeling when integrated with piDMD. The efficacy of its shift-variant, unitary
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Table 6: Estimation performance of piDMD with LSUN for varying numbers of coefficients
K and overlapping blocks [Jv, Jh]. Noise energy is set to 50% of signal energy. R indicates
the factor of spatial compression. All the values are presented in terms of averaged MSE
processed for five trials. Indicated MSE values represent the last 150th frame of estimated
data.

K R [Jv, Jh] MSE
Original piDMD - - - 0.0637

piDMD via LSUN

1 1/16 [1,1] 0.0894
2 2/16 [1,1] 0.0132
3 3/16 [1,1] 0.0180
4 4/16 [1,1] 0.0218
2 2/16 [3,3] 0.0121
2 2/16 [5,5] 0.0120

Table 7: Comparison of estimation of a dynamical system with piDMD w/o LSUN and
piDMD w/ LSUN against different noise levels, where LSUN is configured as the number
of channels K = 2 and the number of overlapping blocks [Jv, Jh] = [3,3]. All the values
are presented in terms of averaged MSE processed for five trials. Indicated MSE values
represent the last 150th frame estimated data.

SNR Original piDMD piDMD via LSUN
10% 0.0136 0.0039
20% 0.0259 0.0059
30% 0.0339 0.0079
40% 0.0591 0.0112
50% 0.0637 0.0121

structure in capturing low-dimensional structures from high-dimensional data
is confirmed by the provided examples. Additionally, due to its local structure
and linearity, LSUN is well-suited for parallel processing of large-scale prob-
lems, similar to convolutional structures, utilizing overlap-add or overlap-save
methods.

6 Conclusion

This paper proposed a locally-structured linear dictionary for tangent space
sampling. The proposed model was validated through approximation and
dynamical system modeling experiments. The shift-invariant kernels of the con-
volutional dictionary were replaced with shift-variant ones while preserving the
locality, unitarity, and overlapping properties. The introduction of adaptively
variable filters throughout the dataset may lead to more learnable parameters
than the CDL counterpart, depending on the configuration. However, the
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Figure 13: Comparison of learned spec-
tra for original piDMD and piDMD via
LSUN, where SNR is set at 50%, and the
number of channels K = 2, the number
of overlapping blocks [Jv, Jh] = [3,3], and
λ denotes the eigenvalues of K.

Figure 14: Comparison of average MSE
for estimation with original piDMD and
piDMD via LSUN, where SNR is set at
50%, the number of channels K = 2, and
the number of overlapping blocks [Jv, Jh]
= [3,3].

encoder-based self-supervised learning approach avoids coordinate selection
mechanisms, such as sparse approximation. The proposed architecture was
inspired by M-D LPPUFB, and the design parameters were adaptively varied
block by block. We achieved a better low-dimensional representation than
K-SVD, NSCLT, and NSOLT. The LSUN introduces a novel, data-driven,
self-supervised learnable network designed for tangent space sampling. While
this study is evaluated with 1-D and 2-D data approximation and dynamic
system modeling examples, the underlying idea exhibits the potential for
broader applications, extending to other signal types.

For future research directions, we propose investigating the application of
LSUN in modeling nonlinear conservative dynamic systems. Another potential
application of LSUN is realizing invertible networks such as normalizing
flows [18]. We can replace the convolutional layer with LSUN to improve the
performance of the network.

Appendices

A Convolutional Dictionary Learning

A convolutional dictionary offers efficient local feature extraction and signal
representation similar to block processing. By constructing a composite
dictionary with a synthesis FB and parameterizing it, we can design a learnable
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convolutional dictionary that encourages sparsity for specific data instances,
similar to methods such as PCA and K-SVD. In this paper, the CDL problem
is formulated as (5). Typical dictionary learning alternates between sparse
approximation and dictionary update as in K-SVD [12, 1, 30].

• Sparse approximation: Solve the following problem for the convolutional
dictionary D̂:

x̂ = argmin
x

1

2
∥y − D̂x∥22 s.t. ∥x∥0 ≤ BK. (24)

(24) is NP-hard; therefore, heuristic methods such as orthogonal matching
pursuit (OMP) [35] and iterative hard thresholding (IHT) [3] are used.

• Dictionary update: Solve the following problem for the sparse coefficients
x̂:

θ̂ = argmin
θ

1

2
∥y −Dθx̂∥22, (25)

D̂ = Dθ̂, (26)

where θ is a vector representation of the design parameter set.

A.1 Sparse Approximation Step

The objective of this step is to find a sparse representation of the high-
dimensional signal using the given convolution dictionary. Because the atoms
of D are utilized in a manner that allows for local overlap while contributing
to the overall representation of y, it is desirable to employ a feasible sparse
approximation technique available for high-dimensional signals. IHT is a good
candidate [3].

A.2 Dictionary Update Step

The purpose of this step is to find a convolutional dictionary D that provides a
better approximation of the high-dimensional signal y ∈ RBM using the given
sparse coefficients x ∈ RBN , or their support supp(x).

If the convolutional dictionary can be controlled by the design parameters
θ, we can define the loss function as

ℓy(θ) :=
1

2
∥ry(θ)∥22 (27)

with the approximation error

ry(θ) := y −Dθx̂. (28)

When the dictionary Dθ is factorable into matrix products and the design
parameters of each building block matrix are independent, then some deep
learning framework can be used for optimization design.
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A.3 Extension to Training Data Set

The above discussion on CDL can be extended to the problem

{D̂, {x̂(t)}} = arg min
{D,{x(t)}}

1

2

T−1∑
t=0

∥y(t) −Dx(t)∥22 s.t. ∥x(t)∥0 ≤ BK (29)

that assumes a training data set {(y(t),x(t))}T−1
t=0 with the loss function ℓ(D) :=

1
2

∑T−1
t=0 ∥y(t) −Dx̂(t)∥22 in the dictionary update step.

B Nonseparable Critically Sampled Lapped Transform (NSCLT)

The advantage of data-driven dictionary design lies in the ability to tailor atoms
to specific data and applications. The following outlines the design method
of NSCLT as an illustrative example of a convolutional dictionary learning
procedure. NSCLT is the critically sampled implementation of NSOLT [30].

B.1 Lattice Structure

NSCLT is a convolutional dictionary composed of a lattice structure. The filter
kernels satisfy the properties of non-separable, symmetric, real coefficients and
overlapping [30]. In addition, structural constraints of Parseval tight and no
DC-leakage property can be realized. Figure 15 illustrates the lattice structure
of the NSCLT analyzer. In the following, for convenience, we assume that the
number of overlapping blocks in each dimension d is even. Figure 15 is given
by the polyphase matrix representation in (11).

(a) Initial building block and vertical extension (b) Horizontal extension

Figure 15: Lattice structure of NSCLT analyzer, where d(z) is the delay chain determined by
the downsampling factor M = diag(Mv,Mh). E0 denotes the orthonormal transformation
matrix which is directly given by 2-D DCT and W0, U0, U

{d}
i are the parameter matrices,

where d denotes the direction of extension d ∈ {h, v}. V0, V
{d}
i , Λ(zd), Λ(zd) and T

denotes the block butterfly operations illustrated in Figure 16.
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B.2 Block Processing

Each stage of Figure 15 can be realized by primitive block processing as shown
in Figure 16. Blocks (a) to (h) represent the primitive block operations for
the synthesis process of the 2-D NSCLT [31, 13]. Combining these primitive
operations makes it possible to parametrically design convolutional dictionaries
with structural constraints such as unitary. The upper and lower triangles
correspond to the upper and lower half channels of Figure 15, respectively. The
processing in Figure 16 (a)–(d) are non-overlapping blocks that are processed
independently of other blocks. On the other hand, Figure 16 (e)-(h) illustrates
the coefficient shift between adjacent blocks. It serves as a memory of the
polyphase matrix and provides dependencies between blocks.

Figure 16: Primitive block operations of 2-D LPPUFBs. W0, U0 and {U{d}
j }j,d denote pa-

rameter orthonormal matrices, where j and d are indices of stages and directions, respectively.
(a) a symmetric orthonormal transform, (b), (c) rotation operations, (d) butterfly operation,
and (e)-(h) shift operations. ©IEEE Reprinted, with permission, from S. Muramatsu et
al., “Boundary Operation of 2-D Nonseparable Linear-Phase Paraunitary Filter Banks,”
in IEEE Transactions on Image Processing, vol. 21, no. 4, pp. 2314-2318, April 2012,
doi:10.1109/TIP.2011.2181527 [31].

B.3 Parameterization

When the parameter matrix {U{d}
j } is invertible, W0 and U0 are right invert-

ible. Hence, the NSOLT synthesis dictionary Dθ is right invertible. Further-
more, R(z) is PU, and NSCLT synthesis dictionary Dθ is Parseval-tight if these
parameter matrices satisfy unitary, i.e., U{d}⊺

j U
{d}
j = IP/2, W

⊺
0W0 = I⌈M/2⌉,
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U⊺
0U0 = I⌊M/2⌋. The p × p orthogonal matrix U can be decomposed into

p(p− 1)/2 Givens rotations and p signs.

U = diag (s0, s1, · · · , sp−1)

p−2∏
k=0

p−1∏
ℓ=k+1

Tk,ℓ(θi(k,ℓ)) (30)

where si ∈ {−1, 1},

[Tk,ℓ(θ)]m,n =


cos θ, m = n ∩ (m = k ∪m = ℓ)
− sin θ, m = k ∩ n = ℓ
sin θ, m = ℓ ∩ n = k
1, m = n ∩ (m ̸= k ∪m ̸= ℓ)
0, otherwise

(31)

Let i(k, ℓ) ̸= i(k′, ℓ′) when k ̸= k′ ∪ ℓ ̸= ℓ′.
Figure 17 (a) shows an example of Givens rotation configuration. θ ∈ R

is the angle of rotation. This structure allows for unitary constraints on the
parameter matrix. The right invertible unitary matrix is given by U⊺ (I O).
The Tk,ℓ(θ) in (31) is differentiable with θ, and has the structure of Figure
17 (b). This can be used for the error backpropagation method in (10).

(a) Tk,ℓ(θ) (b) ∂
∂θTk,ℓ(θ)

Figure 17: Example of Givens rotation configuration.
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