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ABSTRACT
High dynamic range (HDR) images capture real-world luminance
values which cannot be directly displayed on the screen and require
tone mapping to be shown on low dynamic range (LDR) hardware.
During this transformation, tone mapping algorithms are expected
to preserve the naturalness and structural details of the image. In
this regard, the performance of a tone mapping algorithm can be
evaluated through a subjective study where participants rank or
score tone mapped images based on their preferences. However,
such subjective evaluations can be time-consuming and cannot
be repeated for every tone mapped image. To address this issue,
numerous quantitative metrics have been proposed for objective
evaluation. This paper presents a robust objective metric based on
deep learning to quantify image quality. We assess the performance
of our proposed metric by comparing it to 20 existing state-of-the-
art metrics using two subjective datasets, including one benchmark
dataset and a novel proposed dataset of 666 tone mapped images
comprising a variety of scenes and labeled by 20 users. Our ap-
proach exhibits the highest correlation with subjective scores in
both evaluations, confirming its effectiveness and potential to be a
reliable alternative to laborious subjective studies.
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1 Introduction

High dynamic range (HDR) images capture real-world luminance values of the
scene and have found numerous applications in immersive visualization, medical
imaging, and computer graphics. With the increasing popularity of HDR
content, tone mapping has become crucial in transforming HDR content to
Low Dynamic Range (LDR) for display on existing screens. The tone mapping
process involves compressing the dynamic range of content to match the target
display, considering various factors such as the type of content, characteristics
of the display, viewing conditions, and the perception mechanism of the average
human viewer. Although several Tone Mapping Operators (TMOs) produce
visually pleasing results, their performance is generally content-dependent,
and no single TMO is optimal for all types of scenes.

To subjectively evaluate the performance of different TMOs, study partici-
pants are requested to rank/score several tone mapped images produced by
different algorithms, and mean opinion scores are calculated for each TMO.
However, this process is tedious and time-consuming, making it infeasible to
be repeated for every new image and algorithm. Therefore, several algorithms
have been produced which evaluate different image features to estimate the
quality score. However, Traditional Image Quality Assessment (IQA) metrics
such as the Mean Square Error (MSE), Peak Signal to Noise Ratio (PSNR),
and Structural Similarity (SSIM) Index [45] cannot compare the tone mapped
images against the reference HDR images due to vastly different pixel values
of the two.

Several dedicated tone mapped image quality assessment (TM-IQA) metrics
have been proposed, such as tone mapping quality index (TMQI) [46] and
features fusion for natural tone mapped images quality evaluation (FFTMI)
[25]. TM-IQA metrics are crucial in evaluating the performance of various tone
mapping operators. Moreover, accurate TM-IQA metrics can produce better-
quality tone mapped images, which are appealing visually and in applications
like animation, computer graphics, and video games. These metrics have gained
particular attention from researchers in recent years as they can facilitate
building large training datasets for deep learning models. Such models have
gained huge popularity and are being used for HDR tone mapping, inverse
tone mapping, quality enhancement, quality evaluation, scene analysis, and
several other applications.

The strength of a metric lies in how the features work together, not to let
any distortion go undetected and unpenalized while scoring. The authors of
[25] analyzed 60 features used by different FR metrics for their effectiveness
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and shortlisted the best five to make a new FR metric called the FFTMI. The
weights of these features were optimized for a widely used benchmark dataset,
tone mapped image database (TMID) [46], and they indeed obtained better
correlation with the subjective scores than all existing metrics. However, when
tested on some images not included in TMID, the performance of FFTMI
dropped significantly. This indicates that assessment of the quality of tone
mapped images is a complex task, and even the best features picked from
existing metrics cannot detect all distortions that can occur in tone mapped
images. Therefore, there is a need for more effective and robust metrics that
can function effectively across different types of images and scenes.

TM-IQA metrics can be classified as full reference (FR) methods that need
the original HDR image to assess the quality of the tone mapped image and no
reference (NR) or blind methods that do not need the reference image. Blind
metrics measure image quality solely based on image characteristics without
prior knowledge of the expected appearance. Reference images are not always
available, and it is also difficult to compare them with their tone mapped
versions due to a vastly different range of pixel values in the two. Therefore,
blind metrics such as blind tone mapping quality index (BTMQI) [16] and
global statistical features (GSF) [43] present a promising solution in TM-IQA.

This work proposes a novel blind image quality metric using a deep learning
approach, aiming to conduct evaluations closely resembling the subjective
evaluation of LDR images. The main contributions of this work are the
following:

• We propose a deep neural network trained for evaluating the quality of
tone mapped HDR images. The network works as a blind metric, taking
only the tone mapped image as input and assigning a score to its quality.
The assigned scores are well-correlated with the scores assigned by human
subjects. This makes the proposed metrics an effective alternative to
time-consuming subjective studies.

• We present a new custom dataset made up of 666 LDR images that were
obtained by using various TMOs on various HDR scenes. Mean opinion
scores obtained through a comprehensive subjective study involving 20
subjects are provided for each image. Reference images are also provided,
which makes the dataset practical to advance research in designing
and evaluating tone mapped image quality assessment metrics, both
full-reference and blind.

It is noteworthy that the proposed method is blind and operates independently
of the original image, making it applicable to general IQA rather than being
specific to tone-mapped images. However, the datasets utilized for training
consist of images generated using tone-mapping algorithms. This choice aims
to ensure that any distortions unique to tone-mapping are detected by the



4 Khan and Imtiaz

trained metric model. Therefore, we classify the proposed method as belonging
to the category of TM-IQA metrics.

The paper is organized as follows. After this introductory section covering
the problem statement and our contributions, we review the most relevant
existing literature in Section 2. Sections 3 and 4 present the proposed dataset
and the proposed deep network for tone mapped image quality assessment.
Performance evaluation of the proposed network as a quality assessment metric
is presented in Section 5. Concluding remarks are given in Section 6.

2 Literature Review

IQA can be broadly classified into subjective IQA and objective IQA based on
the nature of the evaluation. Subjective IQA can be more accurate if conducted
following standard protocols and guidelines, but it is time-consuming. There-
fore, there has been an enormous interest in developing objective alternatives
that can assign reliable scores to describe the quality of an image. In this
section, we briefly describe some TM-IQA metrics. A vast range of methods
has been developed for general IQA, not particular to TM-IQA. Those methods
are not covered in this review.

Aydin et al. [3] proposed a method known as dynamic range independent
image quality assessment (DRIM), which uses a model of the human visual
system (HVS) to detect distortions in tone mapped images. The authors
considered three types of distortions: loss of visible contrast due to detail
compression, amplification of invisible contrast due to contouring and other
artifacts, and reversal of contrast caused by strong distortions such as clipping
or salient compression artifacts. Although DRIM generates visual distortion
maps, it does not assign a quantitative score.

The TMQI [46] is a widely used method that includes two metrics – structure
fidelity and statistical naturalness. Structural fidelity compares the structure in
reference and test image patches, and if signal strengths of both HDR and LDR
patches are above/below the visibility threshold, the structure is assumed to be
intact. For naturalness, TMQI uses a blind approach utilizing the brightness
and contrast attributes of the tone mapped image alone. Ma et al. [30] claimed
that the structural fidelity measure of TMQI was overly sensitive to noise. To re-
solve the problem, they calculated the visibility threshold for each image patch
separately instead of using a global value. For naturalness, they used the HDR
image to determine desirable parameter values, thus changing it from blind to a
full-reference (FR) measure. Their algorithm is generally referred to as TMQI2.

The feature similarity (FSIM) [48] index is an FR IQA method using
contrast-invariant phase congruency and contrast-dependent gradient magni-
tude features. This method was extended by Nafchi et al. [35] for TM-IQA
and was named the feature similarity index for tone mapped images (FSITM).
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FSITM determines how well the local angle maps are preserved in each R, G,
and B channel. However, FSITM does not consider the scene brightness, and
therefore the authors recommended using FSITM with TMQI and not as a
standalone metric.

Hadizadeh and Bajić [17] proposed a metric called tone mapped Image
Quality (TIQ) that forms a “bag of features” extracted from both test and
reference images representing structural fidelity, naturalness, and brightness.
These features are used to train a support vector regression model to predict
the quality of tone mapped images. Song et al. [41] used the local exposure
function to divide the HDR picture into various pieces. A regression model
was trained to forecast quality considering abnormal exposure ratio, leftover
exposure energy, and a color-based feature.

Several blind IQA methods can be used for TM-IQA without using the
reference HDR image. However, tone mapping induces specific distortions such
as details and color loss [7], which may not be well-understood by general IQA
methods, thus leaving room for the development of blind metrics specifically
for tone mapped images. Gu et al. [16] proposed a blind version of TMQI,
called BTMQI, in which the naturalness measure of TMQI remains unchanged
while the structure is measured as the sum of pixels in the binarized gradient of
tone mapped image. An additional feature, information content, is measured
using local and global Shannon entropy in 9 nine intensity scaled versions of
the tone mapped image. These 11 features are combined into a single score
using a network trained on a subjective dataset.

Fang et al. [14] noted that BTMQI [16] does not consider microstructural
level distortions, and therefore they used relative gradient magnitudes instead
of absolute values in the measurement of structure. In addition, they used
chromatic descriptors to penalize fading of color. The metric called visual
quality evaluation using gradient and chromatic statistics (VQGC) trains a
support vector regression model for scoring using these features.

Jiang et al. [24] used the same three attributes of information content,
naturalness, and structure as in BTMQI [16] to define several features and
used the extreme learning machine to obtain a quantitative score. Kundu
et al. [27] proposed the HDR image gradient-based elevator (HIGRADE)
metric based on a statistical model using log-derivative features and scene
statistics in spatial and gradient domains. Yue et al. [47] extracted 38 features
from the Tone mapped Image to evaluate image quality. These features
include colorfulness, measured as saturation in opponent yellow-blue and red-
green channels; exposure, measured using entropies of several intensity-scaled
image variants; and structural variation, measured using gradient images. For
naturalness measurement, illumination extracted using the Retinex theory was
used. The average and range of lightness were used for contrast, while the
halo effect was estimated using the gradient of the illumination channel. A
support vector machine was trained using these features for scoring.
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Chen et al. [9] segmented images and extracted global contrast and local
entropy features from dark and bright regions and colorfulness from the normal
region. All features were extracted at multiple image resolutions and mapped to
an objective quality score by a random forest regression algorithm. Jiang et al.
[21] extracted features similar to Chen et al. [9] from portioned luminance maps
and additional features of microstructural distortions and halo measurements.
These features were used to train a support vector regression model for scoring.

Wang et al. [44] used texture, structure, colorfulness, and naturalness
attributes to extract several local and global features. These features were
combined using regression into a single score. He et al. [18] proposed a multi-
scale multi-layer convolutional neural network for image quality evaluation.
Images were represented at different scales, and several local and global features
were extracted, which were aggregated over several layers to predict a score for
image quality. He et al. [19] considered the effect of color and details on the
Human Visual System (HVS) and derived several local and global features to
use in their Regional Sparse Response and Aesthetics (RSRA) metric. These
features were combined using the random forest algorithm.

Cui et al. [10] used low and high-level perception characteristics to extract
several features, some of them using a deep learning model, from tone mapped
images. They used regression to obtain an overall score for image quality.
These studies have made significant contributions to the field of objective image
quality evaluation by proposing different features and models for scoring.

Alotaibi et al. [2] presented a metric that measures the loss of color, contrast,
brightness, and structure using 16 features extracted from the test tone mapped
image and the reference HDR image. The effect of these attributes on image
quality is combined into a single score in the [0, 1] range describing the quality
of tone mapped image.

Jiang et al. [23] address the challenge of evaluating underwater image
enhancement techniques by introducing a comprehensive benchmark dataset
along with a tailored objective metric for quality assessment. Furthermore,
Jiang et al. [22] present a real-world dataset for single image super-resolution,
complemented by thorough subjective studies and the development of a ded-
icated objective quality metric. On other hand, Chen et al. [8] investigate
the quality evaluation of style transfer algorithms, providing insights through
subjective studies and proposing an objective metric to quantify the aesthetic
success of arbitrarily stylized images.

3 Proposed Dataset

Datasets are crucial for adequate training of machine learning models. However,
generating large datasets is a daunting task that takes excessive time and
effort. Smaller datasets can lead to overfitting, which means that the model
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becomes too specialized to the features of the small training data and fails
to generalize well to new data. TMID [46] is quite popular in the existing
literature because it provides reference and tone mapped images, making it
useful for the training and testing of FR metrics. However, the dataset uses
only 15 HDR images and 8 TMOS; therefore, it contains only 120 tone mapped
images. The metrics trained on this small dataset are prone to overfitting [2].

Another dataset, ESPL LIVE [26], contains 1811 tone mapped images
but does not provide reference images. The subjective scores for this large
number of tone mapped images were collected through crowd-sourcing. This
subjective evaluation method collects opinions and ratings from individuals
on a particular subject or dataset [11]. Without reference images, ESPL LIVE
cannot be used to train and test FR metrics. However, since we propose a blind
metric in this work, ESPL LIVE is a good resource for us to train our network.

For additional diversity of scenes, which is desirable in training, we take
another set of 74 HDR images and tone map each of them using 9 different
TMOs, thus producing 666 tone mapped images. Each tone mapped image was
evaluated by a group of human subjects who ranked the tone mapped images
between 1 and 9. The mean opinion scores for the images were normalized to
a [0, 100] scale, following the convention used in ESPL LIVE. The reference
images, the tone mapped images, and the mean opinion scores are available
in the public domain (will be provided with the published article). Note that
ESPL LIVE does not provide reference images; hence, its use is limited to the
design and evaluation of blind metrics, whereas the proposed dataset can be
used for FR and blind metrics both. The only other noteworthy dataset of
tone mapped images with reference images is TMID [46], which has only 120
images. Therefore, the proposed dataset is a valuable addition that can be
useful in advancing research in the domain of TM-IQA.

Figure 1 employs Whisker plots to illustrate the variation in scores at-
tributed to each TMO. The TMOs utilized to compile the dataset include
Drago [13], Expo [37] , Kim and Kautz (KKT) [36], Larson [42], Logar [29],
Normal [5], Reinhard [40], Tumblin [38], and Ward Global [12]. These algo-
rithms are renowned, and their source codes are accessible in Banterle’s HDR
toolbox (https://github.com/banterle/HDR_Toolbox), ensuring error-free im-
plementations and enabling result reproduction by readers. The 74 HDR
images used to generate the dataset are sourced from the TMID [46], featuring
diverse scenes under various lighting conditions. Figure 2 presents a set of nine
tone-mapped images reproduced from a typical HDR image within this dataset.

4 The Proposed Deep-Learning Model

In this study, a deep learning model is proposed for predicting image quality
scores using convolutional neural networks (CNNs) [1]. The proposed model

https://github.com/banterle/HDR_Toolbox
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Figure 1: Visual representation of subjective scores with respect to TMOs.

Figure 2: Representation of Each TMO result.
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Figure 3: Proposed Model Architecture, containing several layers including convolutional,
max-pooling, flatten and dense layers.

comprises multiple CNN and two dense layers, with a linear activation function
in the output layer, as shown in Figure 3. The input to the model is an image
of size 512× 512× 1, represented as a single grayscale channel.

The CNN layers are designed to extract increasingly complex features
from the input image using a combination of convolutional filters, activation
functions, and max-pooling layers. The output of each CNN layer is passed
through a max-pooling layer, which reduces the spatial dimensions of the
output while retaining the most significant features. This process is repeated
for multiple CNN layers, with increasing filter sizes and numbers of filters, to
extract high-level features from the image.

After the final CNN layer, the output is flattened and passed through
two dense layers with ReLU [15] activation functions. The purpose of the
dense layers is to combine the high-level features extracted by the CNN layers
and to generate a single output value that represents the predicted image
quality score. Activation functions introduce non-linearity to the network
and help in modeling complex relationships. Popular choices include ReLU
(Rectified Linear Unit), sigmoid, and tanh. The selection of activation functions
depends on the problem domain and the characteristics of the data. The final
activation function in our design is linear [28] because the output of the model
is continuous rather than a categorical value.

To finetune the performance, we experimented with different network
configurations, including changing the number of layers and the number of
nodes in each layer. We used the same training and validation data for all
configurations. Through this experimentation, we determined the optimal
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Table 1: Parameters of the proposed model for quality assessment of tone mapped low
dynamic range images.

Layer Type Shape # Parameters

conv2d Conv2D (None , 510, 510, 16) 160
max_pooling2d Max_Pooling2D (None , 225, 225, 16) 0
conv2d_1 Conv2D (None , 253, 253, 32) 4640
max_pooling2d_1 Max_Pooling2D (None , 126, 126, 32) 0
conv2d_2 Conv2D (None , 124, 124, 128) 36992
max_pooling2d_2 Max_Pooling2D (None , 62, 62, 128) 0
conv2d_3 Conv2D (None , 60, 60, 256) 295168
max_pooling2d_3 Max_Pooling2D (None , 30, 30, 256) 0
flatten Flatten (None , 230400) 0
dense Dense (None , 64) 14745664
dense_1 Dense (None , 64) 4160
dense_2 Dense (None , 1) 65

Note: Total parameters: 15,086,849
Trainable parameters: 15,086,849
Non-trainable parameters: 0

hyperparameters for the model, which were used to train the final model. These
parameters are described in Table 1. Overall there are 15 million trainable
parameters in the proposed model.

5 Performance Validation

In the previous section, we discussed our strategy to design a reliable metric
for TM-IQA involving designing and training a neural network using CNNs.
We also presented a finetuned set of hyperparameters for accurate score pre-
diction. The results of the proposed deep learning model are very promising
on both datasets discussed in Section 3. In this section, we present a de-
tailed comparison of the proposed metric with the existing state of that art
algorithms.

To train the model, we used the combined dataset of 2477 images, containing
1811 images from the ESPL LIVE dataset and 666 images of our own, each
labeled with a quality score ranging from 0 to 100. To prepare the data for
training, we performed some preprocessing steps, which included resizing the
images to 512× 512 pixels, computing the luminance to transform 3-channel
color images to single-channel grayscale images, and normalizing pixel values
in [0, 1] range by dividing them by 255.

The images were split randomly into three sets, with 70% of the data used
for training, 20% used for testing, and 10% used for validation. For training,
we used the mean squared error (MSE) loss function to measure the difference
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between predicted and actual scores. Stochastic gradient descent (SGD) was
used as the optimization algorithm. Learning rate determines the step size at
each iteration during gradient descent optimization. A larger learning rate can
lead to faster convergence but may cause instability, while a smaller learning
rate can result in slower convergence. We determined a suitable learning rate
of 0.001 through experimentation which lead to convergence at a reasonably
fast speed.

The network was trained for 30 epochs with a batch size of 16. During
training, the data is divided into batches, and the weights are updated after
processing each batch. The batch size determines the number of samples seen
before each update. Smaller batch sizes provide faster convergence, but larger
batch sizes may yield a more accurate gradient estimate.

During the learning process, we fine-tuned various hyperparameters, in-
cluding the learning rate, regularization strength, and batch size. The error
graph was monitored during the training process, as shown in Figure 4, which
indicated that the model was learning well without overfitting or underfitting.
It can be seen that the error reduces drastically after a few iterations, indi-
cating that the model well-learned the relevant features for quality evaluation
from the data, thereby validating that the design configurations and the hy-
perparameters were appropriate. Here we would like to address the temporary
spike observed in the validation error around epoch 20. It is not uncommon
to see such fluctuations in the learning process. These are mainly caused by
data shuffling, which introduces new patterns to the model, leading to brief
adjustments in performance. This effect normalizes in subsequent epochs, as
shown in the figure.

The most common way to evaluate the performance of an objective metric is
to study how aligned its scores are with the mean opinion scores assigned by the
human subjects. Pearson’s correlation coefficient [4], Spearman’s rank-order
correlation coefficient [34], and Kendall’s rank-order correlation coefficient [31]
are widely used algorithms to measure this correlation between the two scores.
Pearson’s correlation coefficient calculates the covariance of the two variables
divided by the product of their standard deviations. For a sample size n of
two variables x and y, the Pearson’s coefficient can be written as:

rxy =

∑n
i=1 (x− x̄)(y − ȳ)√∑n

i=1 (x− x̄)
2 ·

∑n
i=1 (y − ȳ)

2
(1)

where x̄ and ȳ are the mean values of xand y. Spearman’s rank-order correlation
coefficient measures the monotonicity of the relationship between two sets,
and it is a variant of the Pearson Correlation Coefficient for the data that is
ranked (and not scored on a continuous scale). If ranks of values in the sets
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Figure 4: Training (blue curve) and Validation (orange curve) loss Graph. The error drops
after a few epochs indicating that the design and the selected hyperparameters are adequate.

are distinct integers, then Spearman coefficient can be calculated as:

SRCC = 1−
6
∑N

i=1 d
2
i

N (N2 − 1)
(2)

where d is the difference between the objective and subjective ranks, and N is
the number of tone mapped images in one set. Kendall’s rank-order correlation
coefficient also finds the correlation between the ranks of scores and is defined
as

KRCC =
2(N c −Nd)

N (N − 1)
(3)

where Nc and Nd are the number of concordant and discordant pairs. The term
concordant is used for the pairs with the same relative order of magnitudes in
the objective and subjective scores, and those which do not meet this condition
are called discordant. The correlation coefficients lie in the range of [0, 1],
where a higher value indicates a better correlation. A high correlation value
indicates that the metric can well-replicate the laborious and time-consuming
subjective studies for assessment of the quality of the image.

Table 2 compares our method with 20 advanced state-of-the-art techniques
currently available in the existing literature using our proposed dataset of 666
images. Our dataset provides reference images; therefore, both FR and blind
metrics are included in this study. Scores are calculated for the images in
the dataset using each metric, and their correlation with the subjective scores
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is calculated using Pearson [4], Spearman [34], and Kendall [31] correlation
algorithms. Our proposed metric demonstrates outstanding performance
surpassing all existing methods. It obtained the highest correlation coefficients
among all existing techniques.

The table also shows the confidence level (p-values) in computing the
correlation. The p-value indicates the probability that the null hypothesis
(zero correlation between metric and subjective scores) is true. The p-values
obtained for the correlation coefficients in Table 2 are generally small, except
for the cases when the correlation is very low. For the proposed metric, the
p-values are close to zero, indicating a nearly 100% confidence level.

In the second experiment, we tested our algorithm on the ESPL LIVE HDR
dataset [26]. Again, our method showed a high correlation to the subjective
scores compared to other state-of-the-art methods, as demonstrated in Table 3.
In this experiment, only blind metrics are included since ESPL LIVE dataset
does not provide reference images. The proposed metric performed well and
easily surpassed the performance of all other metrics.

The metrics used for comparison with the proposed method in Tables 2
and 3 are generally feature-based methods. These methods have certain
advantages, such as shorter inference time, smaller model sizes, and lower
computation requirements. However, deep learning models can generally
surpass them in terms of accuracy. The disadvantages of deep models are
their large size, i.e., the number of layers, which increases the computational
complexity and training requirements. In Table 4, we have shown a comparison
of the proposed method with three state of the art deep learning based blind
IQA metrics proposed by Zhang et al. [49], Bosse et al. [6], and Jia et al. [20].
These methods employ deep learning models featuring 16, 14, and 10 layers,
respectively; whereas our approach stands out by utilizing only 4 layers, tailored
to accommodate smaller datasets, and achieving computational efficiency. In
terms of training data, Jia et al. [20] and Zhang et al. [49] work with 2055
and 852,891 images respectively, while Bosse et al. [6] leverage a substantial
training dataset comprising 294 million image patches. In contrast, our model
is trained on a very small number of images, 500 and 1358, respectively when
tested on the proposed custom and the ESPL LIVE datasets. Despite its
significantly smaller scale in both computational complexity and training data,
our proposed method exhibits slightly inferior yet comparable accuracy to
these deeper models on the ESPL LIVE dataset. On the proposed dataset,
our model ranks second, outperformed only by Bosse et al. [6].

Overall, the proposed method represents a significant advancement in the
field of image quality assessment. By combining machine learning and image
processing techniques, it is able to accurately and efficiently assess image
quality, even in the presence of different types of distortions. Its impressive
results and high correlation with human scores make it a promising tool for a
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wide range of applications, including digital image processing, computer vision,
and multimedia technology.

6 Conclusion

This paper introduced a novel no-reference metric for evaluating the quality of
tone mapped images. The metric constitutes a deep neural network trained
on a large number of images labeled for their quality by human subjects. The
metric scores are compared with the subjective scores by computing three
widely-used algorithms, and a very high correlation between the two is observed.
Therefore, the proposed algorithm can effectively replicate human subjects’
observation and thus eliminate the need for time-consuming subjective studies
for image quality assessment. This performance makes it potentially a valuable
tool for various applications, including digital image processing, computer
vision, and multimedia technology.

The paper also proposed a new dataset of 666 tone mapped images. Iin
our experiments, the performance of some existing metrics did not remain
consistent across different datasets, indicating that these metrics were not
trained on a diverse set of images. The images included in our proposed
dataset constitute a variety of scenes and were evaluated by 20 human subjects
each. To our knowledge, this is the largest full-reference dataset of labeled
tone mapped images, and therefore, it can be instrumental in advancing the
research in tone mapping and tone mapped image quality assessment.
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