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ABSTRACT
We introduce GreenCOD, a green method for detecting camouflaged
objects distinct in its avoidance of backpropagation techniques.
GreenCOD leverages gradient boosting and deep features extracted
from pre-trained Deep Neural Networks. Traditional camouflaged
object detection approaches rely on complex deep neural networks,
seeking performance improvements by backpropagation-based fine-
tuning. However, such methods are typically computationally de-
manding and exhibit only marginal performance variations across
different models. It raises the question of whether effective train-
ing can be achieved without backpropagation. In this direction,
our work proposes a new paradigm that utilizes gradient boosting
for COD. This approach significantly simplifies the model design,
resulting in a system that requires fewer parameters and opera-
tions and maintains high performance compared to state-of-the-art
deep learning models. Remarkably, our models are trained with-
out backpropagation and achieve the best performance with fewer
than 20G Multiply-Accumulate Operations. This new, more ef-
ficient paradigm opens avenues for further exploration in green,
backpropagation-free model training. We make GreenCOD source
code and on-device demo available at https://greencod.ai/ for
futher research.
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1 Introduction

The study of Camouflaged Object Detection (COD) stands at the forefront
of computer vision research, delving into the challenge of identifying objects
expertly concealed within their environments. COD transcends the limitations
of traditional image segmentation [22, 12, 31, 14] by addressing the intricate
task of detecting objects that seamlessly blend into their surroundings. This
field tackles a range of camouflages, from the subtle color shifts in a chameleon
to the strategic patterns of military uniforms and even the natural disguise of
predators like lions in grasslands. The ability to detect such hidden entities
has profound implications for various applications, pushing the boundaries of
what computer vision can achieve.

The applications of COD are diverse and far-reaching. In wildlife con-
servation, for instance, it can be used for monitoring and studying naturally
camouflaged animals, aiding in population tracking and behavioral research.
Enhanced COD systems can improve surveillance and reconnaissance capa-
bilities in military and defense, offering a tactical advantage in detecting
camouflaged equipment or personnel. Effective COD in autonomous vehicles
and robotics is crucial for navigating complex environments and ensuring
safety and efficiency. Additionally, in healthcare, advanced COD techniques
could assist in identifying subtle patterns in medical imagery [25], potentially
aiding in early disease detection. Thus, the advancements in COD challenge
our understanding of visual perception and unlock new possibilities across a
spectrum of disciplines.

Recent progress in deep learning has significantly advanced the COD field,
introducing an array of sophisticated methods [10, 32, 48, 21, 24, 28, 1, 26]
and models dedicated to the precise identification of hidden objects. Central
to these developments is the use of backpropagation in training deep neural
networks. This fundamental algorithm, crucial for adjusting network weights
based on error rates, has enabled the refinement of complex models to detect
subtle and elusive camouflaged objects. These networks, characterized by
their intricate structures and extensive backpropagation training processes,
have achieved notable success in COD. However, this comes with a caveat.
The reliance on backpropagation often means these systems demand high
computational resources and involve complex designs, including extensive data
processing and iterative adjustments for model fine-tuning. As a result, while
models exhibit incremental improvements, they often do so with increased com-
putational demands. It presents practical challenges, particularly in real-world
scenarios where efficiency and resource management are vital. Additionally,
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models trained with backpropagation can exhibit a black-box nature, where
the internal decision-making processes are not transparent, posing challenges
in interpretability.

A compelling question emerges: Can COD models be effectively trained
without relying on backpropagation? Investigating this prospect could pave
the way for developing more efficient and transformative models in the COD
field. In a paradigm where backpropagation is absent, we unveil GreenCOD, a
groundbreaking approach in the COD field that depends on gradient-boosting
capabilities. At the heart of GreenCOD is the strategic employment of extreme
gradient boosting (XGBoost), a variant of gradient boosting that excels in
handling large-scale and complex data. Our method ingeniously integrates
the power of XGBoost with the deep features extracted from pre-trained
Deep Neural Networks (DNNs). GreenCOD applies a multi-scale analysis
framework, leveraging the structured approach of gradient-boosting trees. The
model works by analyzing layered images, beginning with a broad, coarse-level
detection that identifies general areas of interest where camouflage might
exist. It then progressively moves to finer scales, enhancing the details and
improving the precision of the segmentation. This hierarchical processing
allows GreenCOD to pinpoint camouflaged objects with impressive accuracy.

This innovative approach transcends the typical confines of back propagation-
based models, offering a more interpretable and transparent learning trajectory.
By doing so, GreenCOD sets a new precedent for future COD models, showcas-
ing that high efficiency and environmental consciousness can go hand-in-hand
without compromising detection capabilities. This paper addresses a primary
concern: Can we develop a model that retains efficacy in COD tasks but is
more efficient, interpretable, and environmentally friendly? With GreenCOD,
we believe we have taken a significant step in that direction. Our code and data
are publicly available at: https://greencod.ai/. We also provide an on-device
demo to demonstrate the effectiveness of our method.

The rest of this paper is organized as follows. Related work is reviewed in
Section 2. The GreenCOD method is presented in Section 3. Experiments are
shown in Section 4. Finally, concluding remarks are given in Section 5.

2 Related Work

2.1 Recent Approaches in COD

In recent years, various strategies have emerged to tackle the COD challenge.
[10] laid the groundwork by introducing a foundational framework SINet
dedicated to identifying camouflaged objects within images. Following this
initiative, different network architectures and feature aggregation methods are
proposed.

https://greencod.ai/
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Network Architectures and Features Aggregation: The D2C-Net,
introduced by [34], employs a dual-branch, dual-guidance, and cross-refine net-
work to enhance detection performance. Similarly, [32] proposed the C2F-Net,
a context-aware cross-level fusion network, to leverage contextual information
for improved detection across different levels. [52] took a novel architectural
approach by introducing the CubeNet, which features X-shape connections.
For segmentation of camouflaged objects, [28, 27] utilized distraction mining in
their PFNet. The exploration of neighbor connection and hierarchical informa-
tion transfer, termed NCHIT, was discussed in the work of [40]. Additionally,
[44] presented the TPRNet, a transformer-induced progressive refinement
network. The feature aggregation and propagation network (FAPNet) was
developed by Zhou et al. [46], while M. Zhang et al. [43] proposed Preynet,
featuring a bidirectional bridging interaction module. The recent introduction
of Camoformer by Yin et al. [38], which applies masked separable attention,
demonstrates ongoing advancements in the field. Lastly, Ji et al. [15] high-
lighted the pursuit of optimization in this field through their efficient approach
using deep gradient learning.

Uncertainty Methodology: In uncertainty exploration, [21] introduced
JSCOD, an uncertainty-aware method for the joint detection of salient and
camouflaged objects. Building on this concept, Liu et al. [23] proposed OCENet,
a detection model that integrates aleatoric uncertainty. Further extending
the application of uncertainty in detection methodologies, [36] focused on
a transformer reasoning approach guided by uncertainty, named UGTR, to
enhance the detection capabilities.

Texture, Edge, and Frequency Information:
Several methods have leveraged additional information, such as texture,

edge, and boundary, to improve performance. TINet, introduced by [48],
utilizes texture awareness through a texture-aware interactive guidance network
and texture labels. Focusing on boundary awareness, [30] developed BAS,
a segmentation network for mobile and web applications. Several methods
have effectively employed edge information, including BSANet [47], BGNet
[33], and the Edge-based reversible re-calibration network, ERRNet [16]. Each
of them enhances detection performance through an edge-centric approach.
Additionally, the exploration of frequency domain analysis by FDNet [45]
highlights the diversification of methodologies in this field. Furthermore, R. He
et al. [13] demonstrated performance improvements using weakly-supervised
learning with scribble annotations.

Diverse Methodologies:
Exploring a multifaceted strategy, [24] introduced Rank-Net, a novel ap-

proach designed to simultaneously localize, segment, and rank camouflaged
objects, concurrently performing these tasks. In a different vein, [39] proposed
a method incorporating mutual graph learning, specifically R-MGL, and S-
MGL, to enhance detection and segmentation capabilities. Further diversifying
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the field, Pang et al. [29] developed a mixed-scale triplet network, broadening
the scope of methodological approaches. Additionally, Wu et al. [35] broke
new ground with their source-free depth approach, enabling the reasoning of
camouflaged objects in 3D space.

2.2 Green Learning

The innovative framework of Green Learning, as introduced by [18], represents
a paradigm shift in the computational strategies of modern artificial intelligence.
Distinctly moving away from the reliance on deep learning methodologies,
this approach pivots towards more computation-efficient machine learning
techniques, thereby addressing the escalating resource demands of conventional
AI systems.

At the core of Green Learning lies the strategic abandonment of backprop-
agation, a staple in traditional neural network training. Instead, it harnesses
the potential of unsupervised feature extraction, utilizing either the Saab
Transform [19] or its advanced iteration, the channel-wise Saab Transform [6].
This methodological transition facilitates more nuanced and efficient data pro-
cessing, enabling the extraction of diverse features without the computational
burden of backpropagation algorithms.

Further enhancing its efficacy, Green Learning employs sophisticated feature
selection mechanisms, namely the discriminant feature test (DFT) and the
relevant feature test (RFT) [37]. These techniques are instrumental in isolating
a subset of discriminant features and are pivotal for the subsequent stages of
model training. This selective approach ensures that only the most relevant and
impactful features are carried forward, optimizing both the training process
and the performance of the final model.

To train these discriminant features, Green Learning leverages various
advanced algorithms, including XGBoost, Logistic Regression, SVM, and SLM
[11]. Each of these methodologies brings unique strengths to the table, allowing
for a flexible and robust training process tailored to the specific characteristics
of the data set and the task at hand.

The hallmark of Green Learning is its operational efficiency, characterized
by the absence of backpropagation and end-to-end training requirements. It
reduces the computational load and enhances the framework’s scalability and
applicability across various domains.

The practical applications of Green Learning have been demonstrated across
various fields, showcasing its versatility and effectiveness. Notable examples
include its role in deepfake detection [3, 2], where it has been instrumental
in identifying and mitigating the spread of synthetic media. In the realm
of geographic forensics [4, 5], Green Learning has provided new avenues for
analyzing and interpreting geographic data with greater accuracy and efficiency.
Additionally, its application in image forensics [49, 50, 51] and texture analysis
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[42, 41] further underscores its potential in enhancing our understanding and
processing of visual information.

In summary, Green Learning emerges as a transformative approach in arti-
ficial intelligence, offering a sustainable, efficient, and versatile data processing
and analysis framework. It redefines the computational paradigms of AI and
paves the way for more resource-efficient and scalable solutions across many
applications.

3 GreenCOD Method

GreenCOD, which stands for Green Camouflaged Object Detection, is poised
to revolutionize the COD field by forgoing the traditional reliance on back-
propagation. It seeks to maintain high efficiency and performance standards
while dramatically reducing the computational complexity typically measured
by Multiply-Accumulate Operations (MACs) and the overall number of model
parameters.

In our approach, we draw upon the strengths of the U-Net architecture. It
is renowned for its adeptness in feature extraction across various scales and
its capability to refine segmentation iteratively from broader strokes down to
finer details. We have innovated upon this model by replacing the expansive
pathway found on the right-hand side of U-Net with Extreme Gradient Boosting
(XGBoost). This integration taps into XGBoost’s proficiency in identifying
objects camouflaged within their surroundings.

A key benefit of GreenCOD is the circumvention of the exhaustive end-to-
end training that deep learning models usually demand. Utilizing XGBoost
contributes to a leaner model in terms of parameters and obviates the need for
backpropagation in the training phase. This break from end-to-end training
introduces a modular and adaptable methodology that differentiates our model
from standard deep learning practices. To our knowledge, GreenCOD is the
first to harness the power of XGBoost to detect concealed objects, marking a
groundbreaking advancement in object detection.

In Figure 1, the proposed method integrates the power of deep learning
with the robustness of gradient-boosted trees to achieve sophisticated COD. It
adopts a multi-resolution approach, utilizing feature extraction and multi-scale
XGBoost to effectively capture object hierarchies in images. Additionally,
the method involves neighborhood construction to enhance context awareness
during segmentation.

3.1 Feature Extraction

The initial phase of our process is the feature extraction stage, where the
input image is resized to 672x672 and processed through the EfficientNetB4
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Figure 1: An overview of the GreenCOD method, where the input is an image of dimension
672× 672× 3, and the output is a probability mask of dimension 168× 168× 1. NC stands
for Neighborhood Construction.

backbone. The EfficientNetB4 architecture is recognized for its exceptional
ability to extract high-quality features and is considered cutting-edge in deep
learning. As the image traverses through the sequence of eight blocks, labeled
Block1 to Block8, it is processed by an array of convolutional, pooling, and
normalization operations. This block progression allows the model to capture
a comprehensive range of features—from the fine-grained details to the broader
semantic aspects. Given that the backbone has been pre-trained on the
expansive ImageNet database, we eliminate the need for further fine-tuning,
thereby streamlining the model’s training process.

3.2 Concatenation and Resizing

We will bring the feature maps to uniform dimensions suitable for each process-
ing stage once we derive the feature maps from the EfficientNetB4 backbone.
Specifically, the input features of XGBoost 1 and XGBoost 2 are resized to
dimensions of 42x42. For the XGBoost 3, the maps are resized to 84x84,
while for XGBoost 4, they are resized to 168x168. All features from Block
1 through Block 8, encompassing 1152 channels, are merged into a single
cohesive structure. This standardization of the feature maps results in a com-
prehensive multi-resolution image representation spanning a range of scales
and complexities. Such an arrangement is pivotal for the model’s proficiency
in detecting and delineating objects and patterns of various sizes within the
image.
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(a) RGB Image (b) 42x42 supervision

(c) 84x84 supervision (d) 168x168 supervision

Figure 2: The illustration of the multi-scale supervision of each XGBoost

3.3 Multi-scale XGBoost

We delve into the sophisticated design of the XGBoost gradient-boosting
framework, a technique favored for its effectiveness with structured data. In
our innovative application, XGBoost is adapted to process image feature data
derived from the previous concatenation of multi-scale feature maps. This
multi-scale approach means the feature data is analyzed at various resolutions,
each managed by a dedicated XGBoost model.

Our model is structured in a staged fashion, where each stage of XGBoost
addresses a specific level of detail within the image. The process begins with
XGBoost 1, which manages the broadest feature representation at a resolution
of 42x42, setting the stage for the initial detection of camouflaged objects.
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The following stages, XGBoost 2 and XGBoost 3, escalate in resolution to
42x42 and 84x84, respectively, progressively refining the detection accuracy
and bringing the focus to subtler details of the camouflaged objects. XGBoost
4 is the terminating stage, which operates at the most refined resolution of
168x168, meticulously capturing the most intricate details for a comprehensive
final detection. In Figure 2, we show the supervision at multiple scales, ranging
from 42x42 to 168x168.

In the stages of XGBoost 2, 3, and 4, the methodology incorporates the
predictions from the preceding XGBoost model, focusing exclusively on the
discrepancies between these predictions and the actual ground truth. This
approach is rooted in the core principles of boosting, where each model
iteratively corrects the errors of its predecessor, thereby enhancing the overall
predictive accuracy and reliability of the object detection process. This multi-
scale approach ensures accurate and robust detection across various object
sizes and complexities, strengthening the model’s overall performance and
reliability.

3.4 Neighborhood Construction (NC)

We examine a pivotal stage following each XGBoost analysis. The "Neighbor-
hood Construction" phase is integral to our segmentation method, enhancing
the model’s context-aware capabilities. During this phase, the probabilities
surrounding each pixel or region are aggregated, providing a richer dataset
from which the model can draw more accurate segmentations. Such contextu-
ally enriched information is critical to increasing the precision with which the
model delineates segmented areas, ensuring that objects and regions within
the image are defined with clarity and correctness. The window size is a
hyperparameter, and we set it to 19x19 in our experiment. Let’s denote:

• P (x, y) as the probability map output by the XGBoost model for a pixel
at location (x, y) in the image. This map indicates the probability that
each pixel belongs to a particular segment or class.

• W as the window size for the neighborhood, which is 19× 19 in our case,
leading to a total of 361 pixels in the neighborhood.

• Nx,y as the neighborhood matrix formed around the pixel (x, y), with
dimensions equal to the window size W .

Given a pixel at location (x, y), the neighborhood Nx,y can be constructed
by aggregating the probabilities of the pixels falling within the 19× 19 window
centered at (x, y). Mathematically, this can be represented as follows:

Nx,y =

{
P (i, j) | i ∈

[
x− W − 1

2
, x+

W − 1

2

]
, j ∈

[
y − W − 1

2
, y +

W − 1

2

]}
.
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This neighborhood matrix Nx,y is then flattened into a vector PFx,y with
dimension 361, which represents the new feature derived from the neighborhood
for the pixel at (x, y):

PFx,y = flatten(Nx,y).

This feature vector Fx,y is concatenated with other relevant features for
the pixel at (x, y), forming an enriched feature set used for the final segmen-
tation prediction. The concatenation can be denoted as follows, where IFx,y

represents other existing image features for the pixel:

Fx,y = [IFx,y ∥PFx,y]

Our proposed approach to COD is a hybrid one, combining the strengths of
the deep learning model with the gradient-boosted modeling. It harnesses the
feature extraction capabilities of the EfficientNetB4 architecture, the layered
analytical power of multi-scale XGBoost processing, and the contextual insights
afforded by Neighborhood Construction. This integration enables the model
to produce high-accuracy and high-resolution segmentations.

4 Experiments

4.1 Datasets

In our experiment, we maintain consistency with the methodology of previous
experiments. Training is performed on a dataset that combines the CAMO
[20] and COD10K [10] datasets, totaling 4040 images. Testing is carried out
on two datasets: COD10K and NC4K [24]. The COD10K dataset contains
2026 images. The NC4K dataset is the largest dataset for testing, with 4121
images.

4.2 Evaluation Metrics

To benchmark the performance of our proposed method, we conducted a
comprehensive comparison with the state-of-the-art methods employing identi-
cal evaluation metrics. The comparative analysis focused on several critical
aspects including Mean Absolute Error (MAE), Structural measure, Enhanced-
alignment Measure, and F-measure, where W and H are the width and height
of the images respectively, G(x, y) represents the pixel value of the Groundtruth
at coordinates (x, y), and P (x, y) represents the pixel value of the prediction
at coordinates (x, y).

• The Mean Absolute Error (MAE) is computed as:
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M =
1

W ×H

∑
x

∑
y

|P (x, y)−G(x, y)| (1)

The function |P (x, y)−G(x, y)| computes the absolute difference between
the corresponding pixel values of the two masks.

• The Structural measure [7] is given by:

Sα = (1− α)So(P,G) + αSr(P,G), (2)

where α serves to adjust the balance between the object-aware simi-
larity So and the region-aware similarity Sr. Following the convention
established in the original publication, we set α to a default value of 0.5.

• The Enhanced-alignment Measure [9] is computed as:

Eϕ =
1

W ×H

∑
x

∑
y

ϕ[P (x, y), G(x, y)] (3)

The function ϕ is the enhanced alignment matrix applied to the pixel
values from masks P and G.

• The F-measure is given by:

Fβ =
(1 + β2)Precision × Recall

β2Precision + Recall
, (4)

where the term β2 = 0.3 gives more weight to the precision than the
recall in the computation, as suggested in the previous work.

The comparative analysis results underscore our method’s efficacy and robust-
ness, showcasing superior or comparable performance across the evaluated
metrics.

4.3 Experiment results

Table 1 presents a comparative analysis of our proposed GreenCOD method
against other leading-edge methods from recent literature, utilizing the COD10K
dataset. The comparison includes explicitly models that operate under the
computational threshold of 50G Multiply-Accumulate Operations (MACs) to
ensure computational efficiency. Remarkably, our GreenCOD achieves the
highest F-measure and the lowest Mean Absolute Error (MAE) with just 24.34
million parameters and 16.22 G MACs. This performance is notably superior
to that of SegMaR, which requires 56.21 million parameters and 33.63 G MACs.
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The favorable balance between performance and efficiency that GreenCOD
offers illustrates its potential as a robust architecture worthy of further investi-
gation. While GreenCOD does not secure the top spot in E-measure—where it
ranks third, behind SegMaR and DGNet—it still demonstrates commendable
overall efficacy.

In Table 2, our focus shifts from evaluating our proposed method against
smaller models to benchmarking it alongside larger-scale models. This table is
confined to models exceeding the computational complexity of 50G Multiply-
Accumulate Operations (MACs). Although our model does not outperform the
leading method, CamoFormer-C, it is essential to note that CamoFormer-C
demands fourfold more parameters and a threefold increase in MACs compared
to our model. Upon examining the Mean Absolute Error (MAE) and F-measure
metrics, our model outperforms 11 of the 16 methods considered, all of which
have significantly larger model sizes than ours. Regarding E-measure, our
model surpasses 10 out of the 16 methods. Notably, our method substantially
reduces MACs compared with R-GML, plummeting from 249.89G to 16.22G.
This reduction translates to an energy consumption decrease by a factor of 15,
emphasizing our model’s enhanced efficiency.

In Table 3, we extend the evaluation of our model to the NC4K dataset, cur-
rently the most extensive testing set, to assess our model’s ability to generalize
across extensive conditions. Our model secures a second-place ranking in Mean
Absolute Error (MAE), matching the performance of SegMaR while boasting
a significantly smaller model size and fewer Multiply-Accumulate Operations
(MACs). Introduced in 2023, DGNet leads the pack for models under 50 G
MACs, with 19.22 million parameters and 2.77G MACs, achieving the best
results. Nonetheless, our model stands out by offering greater interpretability.
Moreover, it eliminates the need for end-to-end training of the entire model,
thereby forgoing any requirement for backpropagation—an advantage that
DGNet does not provide.

In Table 4, about the NC4K dataset, we assess our model alongside larger
models with computational complexities exceeding 50G Multiply-Accumulate
Operations (MACs). Our model demonstrates robustness by outscoring 7 of
the 13 models in Mean Absolute Error (MAE), F-measure, and E-measure.
This performance underscores the effectiveness of our model on the NC4K
dataset, showcasing its capability to generalize successfully to larger datasets.

4.4 Visualization analysis

As illustrated in Figures 3 and 4, our attention is drawn to segmenting large
concealed objects. In the first row, our model demonstrates exceptional detail
in segmenting the camouflaged object, precisely identifying the butterfly with
remarkable accuracy. The second row showcases the model’s capability to
differentiate subtle details, such as the bird’s tail. The third row presents a
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(a) Tampered (b) Ground-truth (c) Prediction

Figure 3: Illustration of mask predictions using the proposed GreenCOD. Easy images
are taken from the COD10K test dataset. From left to right: (a) tampered images, (b)
ground-truth masks, (c) prediction.
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(a) Tampered (b) Ground-truth (c) Prediction

Figure 4: Illustration of mask predictions using the proposed GreenCOD. Difficult images
are taken from the COD10K test dataset. From left to right: (a) tampered images, (b)
ground-truth masks, (c) prediction.
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challenging scenario: a rabbit immersed in snow, representing the complex
conditions that could be encountered in everyday environments. Finally, in
the fourth row, despite the fish being obscured by dust, our model successfully
delineates its contours with high precision, highlighting the effectiveness of our
approach in detecting concealed objects even with excellent boundaries.

4.5 Ablation Study

In this section, we present an ablation study to evaluate the contribution of
each XGBoost model in a hierarchical coarse-to-fine architecture for COD. The
architecture leverages XGBoost models that predict segmentation masks at
corresponding resolutions. XGBoost 1 operates on the coarsest level (42x42),
laying the groundwork for the segmentation. XGBoost 2 and 3 build upon
this, providing mid-level refinements at resolutions of 42x42 and 84x84, respec-
tively. XGBoost 4 delivers the final high-resolution mask (168x168x1). The
segmentation performance is quantified using Mean Absolute Error (MAE) at
each stage of the XGBoost integration.

In Table 5, The MAE decreases with each subsequent XGBoost model,
indicating the importance of multi-scale feature integration for accurate COD.
The initial coarse segmentation provided by XGBoost 1 is crucial for estab-
lishing the base structure of the mask. Each subsequent XGBoost model
refines this structure by focusing on finer details, leading to a more accurate
final segmentation. It suggests combining coarse prediction with high-level
contextual information is critical to the model’s success.

Table 5: The MAE of each layer of XGBoost for different numbers of trees and depth.

42x42 42x42 84x84 168x168
tree-depth XGBoost 1 XGBoost 2 XGBoost 3 XGBoost 4

1000-D3 0.041 0.036 0.034 0.033
10000-D3 0.039 0.035 0.033 0.033
1000-D6 0.040 0.035 0.032 0.032
10000-D6 0.038 0.035 0.032 0.031

In Table 6 examines the impact of input resolution on the MAE of the first
layer of XGBoost. The results indicate that higher input resolutions generally
lead to lower MAE, underscoring the importance of fine-grained input data
for segmentation. The model captures more details as the input resolution
increases, enhancing segmentation accuracy. The 672x672 resolution yields the
best results, so we used this resolution for the remainder of the experiment.
The 736x736 resolution does not provide any further improvement.

Table 7 presents the effect of different window sizes on the MAE of the
second layer of XGBoost. The results show that increasing the window size
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Table 6: The MAE of the first layer of XGBoost with different input resolution.

input resolution XGBoost 1 (42x42,1000-D3)

352x352 0.044
416x416 0.042
672x672 0.041
736x736 0.041

Table 7: The MAE of the second layer of XGBoost with different window sizes.

W window size XGBoost 2 (42x42,1000-D3)

3 0.0376
11 0.0357
19 0.0355
25 0.0354

improves the MAE, suggesting that larger windows enable the model to
integrate contextual information better. This further refines the segmentation
mask by capturing more surrounding details and reducing errors. We set W
= 19 for the remainder of the experiment, as a window size of 25 does not
provide much additional improvement.

Figure 5 illustrates the segmentation capabilities of a multi-scale XGBoost-
based model at various stages within an ensemble learning framework. Sub-
figure 3a depicts the preliminary segmentation output from the first decision
tree of the initial XGBoost model, providing a foundational understanding
of the target structure with a coarse prediction. Progressing to Subfigure
3b, we observe the segmentation enhancements achieved by the same model’s
hundredth tree, suggesting an iterative refinement within a single model’s
scope. Further sophistication in the segmentation task is evident in Subfigure
3c, where the hundredth tree of the second XGBoost model likely captures
more complex patterns, benefiting from an accumulation of learned features.
The process culminates in Subfigure 3d, where the third XGBoost model’s
hundredth tree presumably integrates the preceding models’ insights, offering
the most detailed and precise delineation of the object of interest. Collectively,
these subfigures demonstrate the sequential and additive nature of feature inte-
gration and decision-making in XGBoost ensembles, highlighting the intricate
interplay between depth and breadth in learning representations for COD.
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(a) XGBoost 1 Tree 1 (b) XGBoost 1 Tree 100

(c) XGBoost 2 Tree 100 (d) XGBoost 3 Tree 100

Figure 5: The illustration of the prediction of each XGBoost

4.6 Model Size and MACs computation

In this section, we detail the composition of the GreenCOD model in terms
of its size (represented by the number of parameters) and its computational
complexity (quantified through Multiply-Accumulate Operations (MACs)).
XGBoost model size and MACs are computed by https://hongshuochen.com/
XGBoost-calculator/

4.6.1 Model Size Analysis

In Table 8, the GreenCOD model integrates a convolutional neural network,
EfficientNetB4, with four subsequent XGBoost models. A detailed distribution
of parameters is as follows.

https://hongshuochen.com/XGBoost-calculator/
https://hongshuochen.com/XGBoost-calculator/
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Table 8: Number of Parameters in GreenCOD Submodules

Submodule Number of Trees Depth Number of Parameters (%)
EfficientNetB4 - - 16,742,216 (95.0%)

XGBoost 1 10000 3 220,000 (1.2%)
XGBoost 2 10000 3 220,000 (1.2%)
XGBoost 3 10000 3 220,000 (1.2%)
XGBoost 4 10000 3 220,000 (1.2%)

Total - - 17,622,216

EfficientNetB4 Backbone: Constitutes the majority (95.0%) of the
model’s parameters. With 16,742,216 parameters, it forms the parameter-
intensive component of GreenCOD, highlighting the complexity inherent in
convolutional neural networks.

XGBoost Models: Each model, from XGBoost 1 to 4, contains an
identical number of parameters (220,000), cumulatively contributing to 4.8%
of the total parameters. This uniformity indicates a scalable approach to
segmentation across different resolutions without escalating parameter count.

Total Parameter Count: The entire GreenCOD model encompasses
17,622,216 parameters, with a significant proportion attributed to the CNN
layers. Deep learning architectures rely heavily on convolutional filters for
feature extraction. In the future, we will attempt to replace EfficientNet with
other more efficient solutions to reduce the model size further.

4.6.2 Computational Complexity Analysis

In Table 9, the computational complexity for the GreenCOD model is assessed
using MACs, which indicate the model’s efficiency during inference.

Table 9: MACs in GreenCOD Submodules

Submodule Size Number of Trees Depth MACs (%)
EfficientNetB4 - - - 13,503,446,880 (89.7%)

XGBoost 1 42 10000 3 70,560,000 (0.5%)
XGBoost 2 42 10000 3 70,560,000 (0.5%)
XGBoost 3 84 10000 3 282,240,000 (1.9%)
XGBoost 4 168 10000 3 1,128,960,000 (7.5%)

Total - - - 15,055,766,880

EfficientNetB4 Backbone: Dominates the computational process with
89.7% of the total MACs, amounting to 13,503,446,880 MACs. It reveals that
the convolutional layers of the backbone are the primary contributors to the
model’s computational load.
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XGBoost Models: There is a notable increase in MACs from the coarsest
model, XGBoost 1, to the finest, XGBoost 4. The former requires 70,560,000
MACs, while the latter necessitates 1,128,960,000 MACs, aligning with the
increased resolution of the output masks.

Overall Computational Demand: The total MACs for GreenCOD
amount to 15,055,766,880 (15.06G), lower than most deep learning methods.

4.7 On-device Demo for GreenCOD

We offer an on-device demo for our GreenCOD at https://greencod.ai/demo,
utilizing the GreenCOD-D3-1000 model. The model is converted into a mobile-
compatible format using ONNX and then run using ONNX.js on a web browser.
Initially, the model is downloaded from the website (this only needs to be
done once). Inference starts directly in the browser when you upload an image
or take a photo with your phone. The results might be slightly different due
to the model’s conversion and device performance variations, but the core
functionality remains the same.

Our GreenCOD demo provides several key benefits:

• Privacy:

– Images are processed locally on your device, not uploaded to a
server.

– This approach helps protect your sensitive information from leaking.

• Offline Capability:

– Once the model is loaded, it operates without an internet connection.

– This is especially useful in remote areas where internet access is
unavailable, such as during hiking trips.

• Device Compatibility:

– The model runs on CPUs and uses a web-based interface.

– It is accessible on any device with a web browser, including smart-
phones, tablets, and computers.

• Eco-Friendliness:

– Inference is performed without servers or GPUs, reducing opera-
tional costs and environmental impact.

In summary, our GreenCOD demo ensures user privacy and offline capability.
It promotes device compatibility and eco-friendliness, making it a versatile
and sustainable solution for camouflaged object detection on the go.

https://greencod.ai/demo
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5 Conclusion and Future Work

This research presents GreenCOD, an innovative methodology for COD that
marries the efficiency of Extreme Gradient Boosting (XGBoost) with the
robust deep feature extraction capabilities of Deep Neural Networks (DNNs).
In the current landscape, the trend is to craft more complex DNN structures
to improve detection efficacy. Yet, these approaches come with a significant
computational load. In contrast, GreenCOD distinguishes itself by utilizing gra-
dient boosting for detection, leading to a more streamlined model that demands
fewer parameters and lower Multiply-Accumulate Operations (MACs) without
compromising performance. A standout feature of GreenCOD is its ability to
be trained effectively without the traditional reliance on backpropagation.

GreenCOD not only stands as an efficient approach in its current form
but also signals potential for future explorations. Prospective studies may
investigate the substitution of EfficientNet with alternative non-deep learning
feature extraction methods to diminish the model size further. Additionally,
there are expansive opportunities for applying GreenCOD in other domains,
such as Salient Object Detection (SOD), Video COD, and Edge Detection, to
broaden the scope of its applicability and impact.
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