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ABSTRACT

Traditionally, either applying the hard prompt for sentences by
handcrafting the prompt templates or directly optimizing the soft
or continuous prompt may not sufficiently generalize for unseen
domain data. This paper presents a parameter efficient learning
for domain-agnostic soft prompt which is developed for few-shot
unsupervised domain adaptation. A pre-trained language model
(PLM) is frozen and utilized to extract knowledge for unseen do-
mains in various language understanding tasks. The meta learning
and optimization over a set of trainable soft tokens is performed by
minimizing the cross-entropy loss for masked language model from
support and query data in source and target domains, respectively,
where the masked tokens for text category and random masking
are predicted. The meta soft prompt is learned through a doubly-
looped optimization for individual learners and a meta learner
when implementing the unsupervised domain adaptation. The
PLM is then closely adapted to compensate the domain shift in a
target domain. The domain adaptation loss and the prompt-based
classification loss are jointly minimized through meta learning.
The experiments on multi-domain natural language understanding
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illustrate the merit of the proposed meta soft prompt in pre-trained
language modeling under few-shot setting.

Keywords: Meta learning, few-shot learning, soft prompt, domain adaptation,
language model

1 Introduction

A large-scaled language model has been trained by the supervised and self-
supervised schemes and has achieved the cutting-edge performance in a wide
range of speech and language tasks [5, 9]. The bidirectional encoder represen-
tations from transformers (BERT) [41, 15] is known as a successful pre-trained
language model (PLM) which was trained from a large corpus by using the
tricks of masked language model and next sentence prediction. However, in
real applications, the feature representation using PLM is strictly bounded
for an unseen downstream task. The previous PLM did not cope with the
issue that a specific domain of input sentences is missing and far apart from
those of training articles. The generalization issue is serious, and the resulting
performance is dropped drastically. Such a phenomenon, also called the do-
main shift [16, 42], is quite common in practice. The larger the domain shift,
the more the restriction on the system performance. In addition, collecting
a large amount of labeled data over a variety of domains is time-consuming
and sometimes intractable. Blindly predicting the unknown domain is chal-
lenging. It is practical to conduct the supervised or even unsupervised domain
adaptation [40] in few-shot setting. However, fine-tuning the large-scaled PLM
to a new domain by few-shot learning is prone to be overfitting. To cope
with this issue, the parameter efficient learning (PEL) was implemented by
incorporating the adapters in transformer layers [22] or augmenting the inputs
with the prompt templates. The PEL based on model reprogramming [43]
was also developed. With the emerging of the powerful generative pre-trained
transformer (GPT) [2] or particularly ChatGPT, it is crucial to utilize PLM
for various downstream tasks via prompt-based learning or tuning where a
large scaled PLM can be frozen. PEL is basically performed by estimating a
very limited set of parameters in model construction. Model capacity can be
boosted by using various PEL methods.

Conventionally, the learning objective in previous studies [42] was designed
by adapting PLM to a target domain which should be provided beforehand.
In addition, the performance was likely degraded by pre-training and fine-
tuning according to different learning objectives. The fine-tuned model was
also sensitive to the variations in domain knowledge [33]. To deal with the
aforementioned problems, this study presents a new prompt-based learning for
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unsupervised domain adaptation [29] where the parameter efficient adaptation
of PLM across multiple domains is developed for natural language understand-
ing (NLU). The domain-agnostic soft prompt is proposed to carry out the
generalization of adaptive prompt based on PLM over different unseen domains.
The fast adaptation in multi-domain language modeling is activated in the
low-resource few-shot setting. A few-shot or even zero-shot domain adaptation
is performed through prompt-based learning where few unlabeled samples or
even no any sample in an unseen target domain are enrolled. Particularly,
a meta learning approach to the proposed domain-agnostic soft prompt is
addressed. Model generalization for unseen domains is tackled accordingly.

In particular, this paper integrates two machine learning paradigms. The
first paradigm is the soft prompting where a number of continuous random
vectors or soft prompt tokens are learned and augmented with the input text
tokens to enrich the capacity of input representation. Different from the
discrete vectors of word tokens as the hard prompt through a trial-and-error
search procedure [38, 39, 18], the proposed continuous vectors are automatically
estimated from adaptation data as the soft prompt in accordance with an
iterative gradient descent algorithm [27, 37, 46]. Prompt optimization is
performed to calculate the data-driven soft prompt which looks more realistic
and attractive than hard prompt since both specific domain expertise and
human-engineering process can be avoided. The second paradigm is the model-
agnostic meta learning (MAML) [17, 45] which is employed to estimate the
general soft prompt from support data and then adapt the estimated soft
prompt to various unseen target domains from query data [11, 10]. The
adaptability of soft prompt for an unseen domain is enabled. The meta soft
prompt is proposed by implementing the gradient-based MAML where the
meta learner is estimated by using the gradients accumulated from individual
task-specific learners over different downstream tasks. The individual meta-
training tasks are merged in an unsupervised domain representation which
is handled by soft prompt learning from the source-domain labeled data as
support data as well as the target-domain unlabeled data as query data. The
meta learning is run across a variety of meta-training tasks where the soft
prompt is learned from a source domain and then generalized to an incoming
target domain through an auxiliary task in present of few-shot unlabeled
samples. A new type of meta learning is developed for multi-domain NLU
based on the domain-agnostic soft prompt which is learned through a doubly-
looped learning algorithm consisting of an inner loop for individual learners and
an outer loop for a meta learner. Owing to the integration of individual learners
and meta learner, the issue of sub-optimal performance in model construction
and domain adaptation which is caused by the inconsistent objectives in pre-
training stage and fine-tuning stage is tackled, respectively [33, 44]. In the
experiments, a series of analyses and evaluations are conducted to illustrate the
performance of the proposed prompt-based language model for multi-domain
sentiment classification.
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The remaining of this paper is organized as follows. First of all, the
fundamentals of prompt-based learning for unsupervised domain adaptation
are introduced in Section 2. The basics of meta learning are surveyed. The
soft prompt is estimated for multi-domain natural language understanding
(NLU). In Section 3, a new solution to learn the domain-agnostic soft prompt is
proposed by utilizing a pre-trained language model which is frozen during model
construction. The unsupervised domain adaptation based on meta learning
for soft prompt is developed. The implementation algorithm is developed and
detailed. In Section 4, a set of experiments are conducted to analyze and
evaluate the proposed meta soft prompt in multi-domain NLU. The ablation
studies on the proposed prompt through latent visualization and classification
accuracy are evaluated. Finally, the conclusions drawn from this study are
given in Section 5.

2 Fundamentals of Prompting and Adaptation

This study aims to enrich the learning representation and facilitate the do-
main knowledge in text representation across multiple domains for natural
language understanding. The fundamentals of prompt engineering and domain
adaptation are first introduced.

2.1 Prompt-based language model

Prompt-based language model has been showing dramatic performance in the
era of generative artificial intelligence since GPT-3 [2] or particularly ChatGPT
[36] has achieved state-of-the-art results in a variety of NLU tasks. Such a text
representation or embedding basically considers the pre-trained language model
(PLM) as a frozen backbone model where the input sentence is augmented by
merging with an adjustable prompt. Prompt-based language model has been
recognized as a parameter efficient learning approach in low-resource setting
by utilizing a pre-trained PLM and only estimating a small set of masked
language model (MLM) head and continuous prompt tokens where a small
amount of domain-specific data are enrolled for domain adaptation. MLM head
was added on top of PLM and estimated by means of unsupervised scheme
through prediction of the randomly masked words. Basically, the performance
of PLM can be leveraged for a specific downstream task.

Figure 1 compares the fine-tuning and the prompt-based learning with
MLM heads which are illustrated for sentiment classification. PLM is seen as
an encoder to extract general features and MLM head serves as the switch to
a downstream task. The PLM parameters and MLM head, which are frozen
or adjustable, are depicted by either blue or yellow, respectively. Traditionally,
fine-tuning a large set of PLM parameters and estimating the task-specific
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Figure 1: Illustration of (a) fine-tuning, (b) hard prompt and (c) soft prompt for sentiment
classification where the pre-trained language model is utilized. The tunable parameters are
shown by yellow while the frozen parameters are shown by blue. Outputs of these methods
could be either class labels or word tokens (shown by green) via verbalizer.

head are inefficient. There was no masking scheme. The parameters are easily
overestimated especially in case of low-resource setting where only a limited
set of adaptation are available. Prompt-based learning is seen as a parameter
efficient solution which is designed to improve the fine-tuning of PLM when
the generative pre-trained transformer (GPT) has been publicly released. In
general, the strategy of prompt-based learning allows training a model with a
cloze-style input sentence which adds some textual string prompt “It was ab’ to
the original sentence that has some unfilled or masked slot ‘ab’ which is either
‘good’ or ‘bad’. Accordingly, the MLM head in prompt-based language model
is learned to predict the masked token in the augmented sentence. In addition
to this unsupervised scheme, MLM head can be further learned in a supervised
manner to predict target label of an input text. Such an unsupervised or
supervised scheme was also employed to strengthen the small-sized PLMs
in Schick and Schütze [38, 39] and Gao et al. [18] where the whole model
parameters were fine-tuned and the masked tokens were predicted.

There are two types of prompting, namely hard prompt and soft prompt, in
the implementation of prompt sentence. The hard prompt is formed in natural
language which consists of ‘discrete’ tokens from the vocabulary. However,
selecting a suitable hard prompt for specific domain or task requires the
domain-specific expertise with many trial-and-errors in a prompt engineering
procedure. When the hard prompt template is selected and fixed, both
PLM parameters and MLM head are fine-tuned for a downstream task in
a new target domain. More recently, the soft prompt was constructed in
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the continuous space with adaptability. Since the real-valued soft prompt
{v1 v2 ab} or {v1 v2 v3} is differentiable and can be easily updated by gradient
descent algorithm, the optimized prompt with the masked token ‘ab’ can be
obtained in a handcraft-free fashion. The learning objective is formulated for
optimization in accordance with an end performance criterion as well as a
prediction of masked token. A recent approach was proposed to carry out the
soft prompt which was represented in the continuous space and was optimized
in accordance with a real-valued objective function where both PLM and
MLM head are frozen. Only the soft prompt tokens are estimated. Relative
to the fine-tuning and hard prompt, the number of tunable parameters in
soft prompt is significantly reduced and the issue of overestimation can be
mitigated. Nevertheless, either fine-tuning or prompting the PLM for a specific
downstream task could not sufficiently represent the variations in different
downstream tasks. A rapid and unsupervised domain adaptation is required
in multi-domain language modeling for natural language understanding. In
what follows, this paper surveys the related works and basics for unsupervised
domain adaptation and optimization-based meta learning.

2.2 Unsupervised domain adaptation

In general, pre-trained language model has recently demonstrated convincing
results for natural language understanding through a fine-tuning or prompt-
ing stage. However, fine-tuning, hard prompt and soft prompt using PLM
only work for a specific test domain, and could not easily generalize for the
diverse input sentences which may come from a variety of domains in practical
circumstances. In the implementation, the additional task-specific layers are
configured as the MLM head for domain adaptation to a downstream task.
The learned model likely faces the diverse inputs from unseen domains. The
unsupervised domain adaptation (UDA) [8, 28, 29] has become crucial to deal
with multi-domain language modeling in recent years [12, 6]. Basically, the
goal of UDA is to compensate the issue of domain bias or shift caused by the
varying distributions in source and target documents where the class labels
of enrollment data in a new target domain are unavailable. A simple and
meaningful approach to UDA is to fine-tune PLM or provide a prompt to input
text so that the pre-training process is continued and extended by adopting
the domain-specific documents. BioBERT [26] was developed to fulfill this
strategy based on fine-tuning. In addition, the domain-specific pre-training
[19] and the task-specific pre-training [20] were jointly performed in a way
that the domain-specific pre-training was conducted by further using the task-
specific unlabeled documents to adjust the text representation to be closer to
the task distribution. In Karouzos et al. [25] and Chen and Chien [3], UDA
was implemented under the framework of language modeling where the losses
due to the masked language model and the downstream text classification
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were jointly minimized to enhance the model robustness and improve the
sample efficiency in an unsupervised learning and adaptation. However, in
the aforementioned works, there existed an inconsistency between the learning
objectives in pre-training stage and fine-tuning stage for downstream task,
which considerably constrained the utilization of domain knowledge using PLM
[33]. This study introduces a new approach to UDA where the soft prompt
is adapted across various domains through meta learning where a consistent
hybrid learning objective is implemented for both domain adaptation and
prompt learning.

2.3 Optimization-based meta learning

This study presents an approach to multi-domain adaptation for prompt-
based language model and text representation where the optimization-based
meta learning [23] via the model-agnostic meta learning (MAML) [17] is
implemented. Basically, MAML conducts a supervised learning to train
individual learners and a meta learner where rapid adaptation is realizable
under few-shot setting. MAML is feasible for implementation of any kinds
of model architecture with learning objective through the gradient descent
method. The underlying concept of MAML aims to learn a good initialization
for model parameters so that the model can perform well or adapt rapidly
on the new tasks or domains through a small number of enrollment data
with a few steps of gradient updating. Considering a feature representation
model θ, the learning process of a generalization to new tasks can be seen
as a construction of internal representation which is broadly suitable for a
number of tasks which are sampled from the distribution p(T ) of different
tasks T = {Ti}. From the perspective of dynamic systems, meta learning can
be implemented by maximizing the sensitivity of a learning objective to new
tasks with respect to model parameters θ. High sensitivity in task adaptation
corresponds to the condition that the performance improvement due to new
tasks is significant while only a few gradient updates are required for system
optimization. Basically, the gradient-based method to estimate a model is
performed by minimizing a loss function LTi

of a single task Ti through the
gradient descent updating

θ′ = θ − α∇θLTi
(θ) (1)

where α is the learning rate. To activate the process for meta learning, the
parameter of a meta learner is optimized to find the updated parameter θ′

where a number of tasks sampled from p(T ) are learned to achieve the minimum
of total loss across different tasks

min
θ

∑
Ti∼p(T )

LTi
(θ′) = min

θ

∑
Ti∼p(T )

LTi
(θ − α∇θLTi

(θ)). (2)



8 Chien et al.

In the implementation, the meta optimization across different tasks is per-
formed such that the meta parameter θ is updated by

θ̂ = θ − α∇θ

 ∑
Ti∼p(T )

LTi
(θ′)


= θ − α

∑
Ti∼p(T )

∇θ′LTi
(θ′)∇θ(θ − α∇θLTi

(θ)).

(3)

The training procedure for optimization-based meta learning is shown in Figure
2 where a meta learner θmeta is optimized by using the gradients of individual
tasks in the training stage and then the rapid adaptation of θmeta to a specific
task is realizable in the test stage.

 

Figure 2: Illustration of optimization-based meta learning which optimizes for a meta
representation θmeta (shown by black) that can be quickly adapted to new tasks {θ∗1 , θ∗2 , θ∗3}.
The blue arrows indicate the gradients ∇θLTi

or simply ∇Li of individual tasks Ti (i = 1, 2, 3)
and the red arrows indicate the updates of the corresponding models θ∗i .

3 Meta Soft Prompt for Few-Shot Learning

This paper presents a hybrid solution to soft prompt language model and
unsupervised domain adaptation under low-resource settings as shown in
Figure 3. The pre-trained language model (PLM) is utilized and frozen, and
the labels of target-domain data DT are waived and ignored. There are two
implementations for unsupervised domain adaptation (UDA). In the first
implementation, the zero-shot domain adaptation is performed by using the
learned prompt which is augmented with the test sample from DT . Only the
test sentence in target domain is used. There is no extra adaptation data
required in UDA. In the second implementation, two stages are planned in
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Figure 3: Soft prompt language models for two implementations of unsupervised domain
adaptation (UDA) under low-resource settings. (a) Zero-shot UDA is performed by using
the learned soft prompt combined with the test data from DT . (b) Few-shot semi-supervised
domain adaptation by using few-shot labeled data from DS and unlabeled data from DT

where the learned soft prompt (shown by yellow) is applied. The soft prompt is then adapted
(as shown by red) and employed for UDA using test data DT . The pre-trained language
model is utilized and frozen in these two realizations of UDA.

a joint scenario of prompt estimation and low-resource domain adaptation
where the frozen PLM is shared and applied. The first stage is to learn and
adapt the soft prompt where the labeled data from source domain DS and few-
shot unlabeled data from target domain DT are provided for semi-supervised
domain adaptation where meta learning is implemented. Subsequently, the
second stage is to utilize the adapted soft prompt, shown in red, and further
adjust the adapted soft prompt by using a test sentence in the target domain
DT . To cope with the downstream tasks in multiple domains, the resulting
soft prompt is estimated and adapted through the optimization-based meta
learning.

3.1 System overview

In a practical situation, the input query in a natural language processing
task is originated from a variety of domains. It is important to design a
general solution to soft prompt over different domains, and present a rapid
unsupervised adaptation to a new domain. This paper presents a new prompt-
based language model for multi-domain natural language understanding. A
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system overview is shown in Figure 4 where the pre-trained language model
(PLM) using BERT encoder and the masked language model (MLM) head are
frozen and utilized. The meta soft prompt is seen as the controllable model
parameter which is trained and adapted by using support data (shown by
purple) and query data (shown by orange) across multiple domains.

Figure 4: System overview for meta soft prompting and learning, which are developed
for multi-domain adaptation by using the labeled data from source domain DS where the
learning objectives Lsupport and Lquery are calculated from class labels by using the masked
tokens [MASK] (shown by white). The learning objectives are also accumulated from
unlabeled data in target domain DT for prediction of the randomly masked tokens [MASK]
in input sentences. The objectives Lsupport and Lquery are calculated and minimized to
clone the soft prompt tokens through the error back propagation.

Figure 5 shows an example of various meta-training tasks containing
support and query sets from two different domains. There are two stages in
implementation of meta learning in the system overview. First, the support
data Dsup

i of a domain i are used to adapt the soft prompt parameter θ of a
meta learner to an individual learner θ′i with the prompt, e.g. consisting of
three continuous-valued tokens {v1 v2 v3} (shown by yellow), via a prompt-
based learning objective from support data Lsupport (or Lprompt(Dsup

i , θ)). In
the second stage, the query data Dqry

i of a domain i are used to calculate the
gradients based on the updated prompt tokens of a learner θi = {v1 v2 v3}
(here, the learner index i is ignored in soft prompt token v) via a learning
objective from query data Lquery (or Lprompt(Dqry

i , θi)). After accumulating
the gradients from query data of individual learners, the soft prompt tokens of
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Figure 5: Meta training over different support set (shown by purple) and query set (shown
by orange). There are m individual mappings of domain adaptation across domain pairs for
sentiment classification.

the meta learner θ = {v1 v2 v3} (shown by red) are accordingly updated. In the
whole process, the frozen PLM is responsible for encoding the input sentence
and extracting the embedding or feature representation of soft prompt and
masked token [7, 30]. Next, the extracted features are used to find the output
of MLM head to calculate the likelihood over the vocabulary of language model
for classification prediction using support data and query data in the natural
language understanding tasks where the learning objectives Lsupport and Lquery
are calculated, respectively. Notably, the learning objectives are calculated
from the labeled data of source domain DS as well as the unlabeled data of
target domain DT . The masked token [MASK] is arranged for supervised
and unsupervised domain adaptation. The back propagation algorithm is run
to minimize Lsupport and Lquery to update the parameters of meta learner
θ and individual learners θi, as shown by red dashed lines. In such a meta
training procedure, support set is used to update the soft prompt of learner
θi = {v1 v2 v3}. Query set is then used to calculate the gradients for updating
the parameters of earner θi = {v1 v2 v3} followed by updating the parameters
of meta learner θ = {v1 v2 v3}. Different from the standard meta learning [17],
which learns the whole model from a large number of few-shot classification
tasks to allow the model to quickly adapt to an unseen classification task, the
proposed meta learning focuses on tackling the domain shift by introducing the
soft prompt learning conditioned on a frozen PLM. All of the meta-training
tasks are designed to simulate the scenarios which will be encountered during
test stage. Therefore, the frozen PLM is feasible to provide a seed model which
is generalized from multiple source domains DS to a target domain by only
tuning the parameters of soft prompt.
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3.2 Soft prompt language model

Soft prompt language model is implemented through the prompt-based learning
which is driven by the soft prompt template and the label word [14]. The
soft prompt template is composed of a set of k continuous trainable vectors
or tokens which are appended to the input word string as the description to
make prediction in a target task. The label word is defined as the word with
the highest probability that the prompt-based language model would like to
predict. For the example of binary sentiment classification, the training pairs
of input string of L words x = {x1, . . . , xL} and the corresponding output label
y ∈ Y = {positive, negative} are collected. Given the template function T (·),
the input string x is transformed to an embedding of prompt input xprompt as
the MLM input, i.e.

xprompt = T (x = {e(x), v1, . . . , vk, e([MASK])}) (4)

where the masked token [MASK] is merged for class prediction and e(·) denotes
the embedding function of BERT-based PLM F . For the label words, a
verbalizerM : Y 7→ V∗ is introduced to construct the label space by a set of
label words V∗ ∈ V where V is the vocabulary of F . This paper considers F as
a function of mapping the prompt input xprompt to a vocabulary distribution
given the masked token [MASK], or equivalently finding the likelihood for
predicting the output class y as

p(Vy(xprompt)) = F(xprompt) ≜ vmask. (5)

Therefore, the conditional likelihood of the predicted label word y∗ ∈ V∗ due
to a masked token [MASK] by using the proposed soft prompt language model
driven by a verbalizer M is calculated as a softmax function by

p(y∗|xprompt, θ) = p
(
V∗
y ← [MASK]|xprompt, θ

)
=

exp
(
vmask

(
V∗
y

))
∑

y′∈Y exp
(
vmask

(
V∗
y′

)) (6)

where V∗
y denotes the vocabulary of label words corresponding to the class label

y, and vmask(V∗
y ) denotes the probability of label word V∗

y in the vocabulary
distribution vmask. The learning objective of soft prompt language model is
calculated as a cross entropy error function between predicted output y∗ and
true output y in a form of

Lprompt(D, θ) = −
∑
y∈Y

y log p(y∗|xprompt, θ) (7)

where D = {x, y} denotes the training data, y is the ground truth label
corresponding to a given input x and θ = {v1, . . . , vk} denotes k trainable
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parameters for soft prompt. In this study, the soft prompt parameter θ using
soft prompt language model is estimated by minimizing Lprompt(D, θ). Notably,
the meta soft prompt is estimated across a number of domains to construct
the domain agnostic soft prompt. The prompt-based learning objectives
from support data Lsupport (or Lprompt(Dqry, θ)) and query data Lquery (or
Lprompt(Dsup, θ)) are calculated in the implementation.

3.3 Meta soft prompt learning

This study would like to enhance the generalization of soft prompt to unseen
domains based on meta learning [24, 21] which acquires domain knowledge
from various meta-training tasks. Different from traditional meta learning
[17], which trains the model from a large number of few-shot classification
tasks to allow the model to quickly adapt to an unseen few-shot classification
task, the proposed meta learning is developed to tackle the domain shift
issue by introducing soft prompt tuning, conditioned on a frozen PLM. The
meta-training tasks are executed and integrated to simulate the scenario that
an unseen test condition may encounter. Accordingly, the backbone PLM
could generalize to a new unseen domain by simply tuning the parameters
of soft prompt. The learning procedure of the proposed domain agnostic
soft prompt is implemented through a nested-loop optimization. The inner
loop of this optimization is to initialize the individual learners by using the
parameters of meta learner and then update the parameters of learners in
accordance with Equation (7) by using the support set Dsup

i in each individual
meta-training task. In the outer loop, the meta learner is trained by optimizing
the performance of individual learners which is examined by using the query set
Dqry

i in each meta-training task. The overall learning process is continuously
run until the convergence condition is met. The parameters of a learner are
optimized through the gradient-based method by

θi = θ − α∇θLprompt(Dsup
i , θ), 1 ≤ i ≤ m (8)

using support data Dsup
i . The parameters of meta learner are then trained by

pursuing the goodness of each individual learner θ′i, which is learned over a
lot of meta-training tasks T = {Ti} from the distribution of tasks p(T ) using
query data Dqry

i as

J(θ) = min
θ

∑
Ti

Lprompt(Dqry
i , θ − α∇θLprompt(Dsup

i , θ)). (9)

Algorithm 1 illustrates the entire training for domain-agnostic soft prompt
across m domain pairs or meta-training tasks. This solution is implemented
for multi-domain supervised domain adaptation by using the prompt-based
learning objective Lprompt where the prompt samples {xprompt, y} with input
string x and its class label y from source domains are required.
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Algorithm 1: Training meta soft prompt over various pairs of source
domains DS

Required: DS : multiple source domains, α: learning rate
Dtrain = {Ti}mi=1: a set of training tasks from p(T )
Initialize: soft prompt parameter θ
repeat

for each meta-training task Ti ∈ Dtrain do
sample domain D̂S ∼ DS from support set
sample D̄S ∼ {DS − D̂S} from query set
sample support set Dsup

i = {xsup
j , ysup

j }
ks
j=1 ∈ D̂S

sample query set Dqry
i = {xqry

j , yqry
j }

kq

j=1 ∈ D̄S

adapt θ to each domain θi by θi ← θ − α∇θLprompt(Dsup
i , θ)

calculate gradient of θi using query set
gi ← ∇θiLprompt(Dqry

i , θi)
end
update soft prompt θ ← θ − α

∑m
i=1 gi

until training converged

3.4 Unsupervised domain adaptation and learning

To activate the unsupervised domain adaptation (UDA) by using the target-
domain data without labels, the domain agnostic soft prompt based on su-
pervised learning via Lprompt in Figure 4 is accordingly modified to that via
semi-supervised domain adaptation in Figure 6 by using source-domain data
with labels and target-domain data without labels in accordance with [13]

Luda = Lprompt + λLmlm (10)

with a hyperparameter λ which tunes two learning objectives. In a nested-loop
optimization, firstly, the learners are initialized by sharing the parameters from
meta learner in the inner loop. Then, the parameters of individual learners
are updated by using support set in each meta-training task based on Luda.
The support set Dsup

i consists of ks labeled samples from source domains
{xj

S , y
j
S}

ks
j=1 and kt unlabeled samples from target domains {xj

T }
kt
j=1 which are

used to calculate the prompt-based objective Lprompt in Equation (7) and the
masked language model (MLM) objective Lmlm, respectively, and the query
set Dqry

i consisting of kq unlabeled samples from target domain {xj
T }

kq

j=1 are
used to calculate the MLM objective Lmlm. Both MLM losses are calculated
in a form of cross-entropy error function. Different from the cross-entropy
loss Lprompt calculated for predicting the class words from labeled data DS ,
the MLM loss Lmlm is measured for predicting those randomly-masked word
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Figure 6: Unsupervised domain adaptation for multi-domain language modeling. Domain
agnostic soft prompt is learned by using support data Dsup (shown by purple) and query
data Dqry (shown by orange) from various source domains DS and target domains DT where
few-shot unlabeled data in target domain DT are enrolled. Calculation flow of UDA and
MLM losses is shown. Error backpropagation over losses Luda and Lmlm in inner and outer
optimizations is shown by red dash lines, respectively.

tokens from unlabeled text strings in target domains. Next, in the outer loop,
the meta learner is optimized according to the performance of those learners
which is evaluated on the query set in each meta-training task by using the
unlabeled data in target domain DT . The overall learning process is repeated
until reaching convergence. Meta learner θ̂ is estimated by minimizing the
prompt-based and MLM losses over individual learners θi and the MLM loss
over meta learning across various meta-training tasks Ti sampled from p(T )
without class labels

θ̂ = argmin
θ

∑
Ti

Lmlm(Dqry
i , θ − α∇θLuda(Dsup

i , θ)) (11)

where α can be implemented via the popular optimizer using AdamW. The
overall meta soft prompt learning and adaptation is shown in Algorithm 2. A
kind multi-task learning over various domains is implemented. A combination of
soft prompt learning and masked language modeling is fulfilled for unsupervised



16 Chien et al.

Algorithm 2: Unsupervised domain adaptation over various source
DS and target domains DT

Require: D: multiple source and target domains
Dtrain = {Ti}mi=1 ∼ p(T ), α: learning rate

Initialize: soft prompt parameter θ
repeat

for each meta-training task Ti ∈ Dtrain do
sample DS ∼ D as source domain
sample DT ∼ {D −DS} as target domain
sample support set
Dsup

i = {xj
S , y

j
S}

ks
j=1 ∪ {x

j
T }

kt
j=1

sample query set Dqry
i = {xj

T }
kq

j=1

adapt θ to each domain θi using support set
θi ← θ − α∇θLuda(Dsup

i , θ)
calculate gradient of Lmlm using query set
gi ← ∇θiLmlm(Dqry

i , θi)
end
update soft prompt θ ← θ − α

∑m
i=1 gi

until training converged

domain adaptation. The adapted soft prompt is able to simultaneously capture
the target domain information from MLM objective and the task language
knowledge from prompt objective. The domain adaptation loss and prompt-
based classification loss are jointly optimized in the proposed meta soft prompt.

4 Experiments

The proposed meta soft prompt learning was evaluated by two multi-domain
text classification benchmarks which were Amazon review dataset [1] and
FDU-MTL dataset [31].

4.1 Experimental setup

Amazon review dataset contained text documents from Amazon.com consisting
of four domains including books, DVD, electronics and kitchen (or precisely
kitchen and housewares). Each domain contained 1000 positive reviews and
1000 negative reviews. All reviews had the ratings from 1 to 5 stars which
were converted into binary labels as the positive review and negative review.
Each domain also contained additional unlabeled data which were collected
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for evaluation of unsupervised domain adaptation and text categorization
as shown in Table 1 where the sizes of labeled and unlabeled data, and the
document length are provided. FDU-MTL was a relatively challenging dataset
consisting of up to 16 domains, which were broadly categorized into Amazon
product reviews and movie reviews, where the statistics of experimental data
are shown in Table 2. In the experimental setting for domain adaptation,
one of the domains was selected as the target domain, and the remaining
domains were viewed as the source domains. For meta learning over various
source domains, the supervised domain adaptation was performed and the test
data in a target domain were evaluated. Zero-shot domain adaptation was
then implemented. For the setting of unsupervised domain adaptation, the
classification labels in target-domain data were missing. Meta soft prompt
was learned from labeled source data and few-shot unlabeled target data, and
was evaluated by the rest of test data in target domain. Few-shot domain
adaptation was implemented accordingly. Classification accuracy was reported
in different sets of evaluation over various domains.

Table 1: Statistics of individual domains in Amazon review dataset.

Domain labeled data size unlabeled data size avg. len.
Books 2000 2000 159
DVD 2000 2000 173
Electronics 1998 2000 101
Kitchen 2000 2000 89

Table 2: Statistics of individual domains in FDU-MTL dataset.

Domain labeled data size unlabeled data size avg. len.
Books 2000 2000 159
DVD 2000 2000 173
Electronics 1998 2000 101
Kitchen 2000 2000 89
Apparel 2000 2000 57
Camera 2000 2000 130
Health 1998 2000 81
Music 2000 2000 136
Toys 2000 2000 90
Video 2000 2000 156
Baby 1998 2000 104
Magazine 2000 2000 117
Software 2000 2000 129
Sports 2000 2000 94
IMDB 1998 2000 269
MR 2000 2000 21
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In the implementation, the stochastic gradient descent algorithm based on
AdamW optimizer [34] was used. The mini-batch size was 256 tokens, and the
number of meta-training tasks in one batch was eight. BERT [15] was used as
the pre-trained language model (PLM). In meta learning, the learning rates
in inner-loop optimization and outer-loop optimization were set differently.
The outer-loop learning rate was fixed as 10−3 for different lengths of soft
prompt, and the inner-loop learning rate was set as 10−2 and 5× 10−3 for the
length of soft prompt as 2 and 10, respectively. The dimension of the input to
the task-specific layer was 768. The parameters of task-specific layer and soft
prompt tokens were trained with the same dimension 768 with two layers and
two soft tokens, respectively. In the evaluation, two-dimensional (2D) latent
visualization based on t-distributed stochastic neighbor embedding (SNE) [35]
was analyzed.

4.2 Experimental analyses

In the experiments, the ablation study on the effect with and without the
learned meta soft prompt was first conducted by showing the comparison of
two-dimensional visualization samples from original 768 dimensional samples
of the masked tokens for the positive and negative reviews from four individual
domains in Amazon review dataset. The results of those review samples
without and with meta soft prompt are displayed for comparison in Figure 7
where blue and red samples correspond to the positive and negative emotions
for test reviews in unseen domains for sentiment classification, respectively. As
we can see, without considering the meta soft prompt, the frozen PLM using
BERT could not properly separate different classes of Amazon review samples.
However, the samples from positive and negative reviews are clearly separated
by introducing the proposed meta soft prompt which could correctly guides
the frozen BERT to extract the distinguishable features for two sentiment
classes.

Next, the usefulness of meta soft prompt language model is further examined
by comparing two-dimensional latent visualization over positive versus negative
as well as source domain versus target domain as illustrated in Figure 8 where
the perspectives of classes and domains are analyzed, respectively. In this
comparison, the samples of the masked tokens in the product reviews of ‘Books’
by using the prompt sentences based on meta soft prompt are shown. The
test samples in unseen domains are evaluated. From the perspective of classes,
it is found that the learned meta soft prompt language model does extract
useful feature representations for masked tokens where the latent variables look
separately for two individual classes. More interestingly, 2D latent samples
of the masked tokens of two classes in source domain and target domain are
close together. This finding reveals that the proposed meta soft prompt does
pursue the domain-matching property for multi-domain adaptation. In the
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Figure 7: Two-dimensional latent visualization for the positive reviews and negative reviews
in Amazon review dataset shown by blue and red, respectively, for four individual domains
where the results of (a) without meta soft prompt and (b) with meta soft prompt are
compared.
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Figure 8: Two-dimensional latent visualization for the product reviews of ‘Books’ in target
domain in Amazon review dataset by using the learned meta soft prompt. The results of (a)
positive reviews (blue) versus negative reviews (red), and (b) the reviews in source domain
(orange) versus target domain (green) are compared.
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above evaluation of latent visualization, the soft prompt length was fixed as 5
and λ = 0.8 was used.

Subsequently, the effect of the length of meta soft prompt is investigated
[27]. The experiments on classification accuracy are carried out by considering
various prompt lengths. Figure 9 displays the classification accuracy when
the length of meta soft prompt was varied from 2 to 20. The four domains
in Amazon review dataset are individually analyzed in the comparison. It is
found that domain ‘kitchen’ receives the highest accuracy while domain ‘DVD’
obtains the worst accuracy. The accuracy was increased when the length of
soft tokens in meta learning was increased, but was saturated with the length
around 10.

Figure 9: Comparison of classification accuracy for four individual domains in Amazon
review dataset where the length of meta soft prompt was varied for evaluation.

Furthermore, the prediction of masked tokens based on the hard prompt
and the meta soft prompt is compared. Table 3 shows the examples of the
templates of prompt sentences based on hard prompt and meta soft prompt
where the input text and masked token [MASK] are included. A popular
hard prompt is designed as “This {domain} is [MASK]” by introducing the
domain name for input representation in a sentiment classification task. In
this study, the soft tokens {v1, v2, v3} with prompt length 3 are estimated via
meta learning to simulate and act as the hand-crafted hard tokens. As a result,
Table 4 compares the top five predicted words of two examples in the domains
of product reviews of ‘Music’ and ‘Magazine’ in FDU-MTL dataset by using
hard prompt and meta soft prompt. It is found that using hard prompt could
not correctly guide the BERT backbone model to seek right classification. The
prediction is prone to be irrelevant or wrong. In contrast, using the proposed
meta soft prompt likely finds the right sentiment class in different applied
domains.
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Table 3: Comparison of prompt templates based on hard prompt and soft prompt where
input text and masked token are included to construct the prompt sentences. A standard
hard prompt for sentiment classification is designed by applying different domains listed in
Tables 1 and 2.

prompt sentence
hard prompt input text This {domain} is [MASK].
soft prompt input text v1, v2, v3 [MASK].

Table 4: Top five predicted words based on the probability for the masked token where text
representations using hard prompt and meta soft prompt are compared. The examples of
product reviews of the domains (a) Music and (b) Magazine in FDU-MTL dataset are shown.
Red shows that the predicted word is seen as an irrelevant or wrong sentiment for the given
product review. Blue shows that the predicted word is viewed as a correct sentiment.

input text: This album contains only rap and no rock songs. This was
very disappointing to say the least. → negative review
hard prompt meta soft prompt
1. positive 1. bad
2. worth 2. unacceptable
3. negative 3. disappointing
4. lacking 4. terrible
5. good 5. wrong

(a) Music product review

input text: I still have not received this magazine, what is taking so
long! → negative review
hard prompt meta soft prompt
1. interesting 1. terrible
2. good 2. difficult
3. great 3. unacceptable
4. excellent 4. frightening
5. boring 5. complicated

(b) Magazine product review

4.3 Evaluation on multi-domain adaptation

For comparative study, the sentiment classification accuracy of review data
by using fine-tuning (FT) method, standard soft prompt (SP) [27] and the
proposed meta soft prompt (MSP) is illustrated in Table 5 where four individual
domains in Amazon review dataset are evaluated. The experiments were setup
by choosing one domain as the target for testing and the remaining domains
as the sources for meta training. Meta training over various pairs of source
domains was performed in a supervised manner. Notably, the testing is
performed over an unseen target domain without any adaptation data. Zero-
shot adaptation is examined. To conduct a fair evaluation, the number of
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Table 5: Comparison of classification accuracy (%) on various domains in Amazon review
dataset by using fine-tuning (FT), soft prompt (SP) [27] and the proposed meta soft prompt
(MSP) where the length of soft prompt is set to be 2 (denoted by SP† and MSP†) and 5
(denoted by SP‡ and MSP‡). The highest number among different methods is shown by
bold.

Domain FT SP† MSP† SP‡ MSP‡

Books 80.8 85.2 83.6 86.8 88.0
DVD 79.3 83.2 83.4 84.4 85.6
Electronics 79.4 82.1 82.6 84.8 85.1
Kitchen 79.5 84.5 86.2 86.1 87.6

parameters in different methods was controlled to be comparable. For fine-
tuning, the number of trainable parameters in task-specific layer was 768× 2.
The length of 768 dimensional soft tokens in SP and MSP was therefore fixed
as 2. In this set of experiments, the proposed meta soft prompt achieves the
highest accuracy when compared with fine-tuning and standard soft prompt in
most of domains. In addition, the experimental setting on review or document
classification is extended to the case of SP and MSP where the length of soft
prompt is increased and fixed as 5. For this case, the accuracy using MSP is
consistently higher than that using SP for various domains. Meta soft prompt
does learn different cross-domain knowledge from multiple domains which is
helpful for a better domain adaptation than that using standard soft prompt
where multi-domain information is simply integrated without the pairwise
cross-domain learning.

Next, the proposed MSP language model is compared with the previous
multi-task learning methods over individual 16 domains of FDU-MTL dataset.
The adapted meta soft prompt is collaborated with the frozen PLM to conduct
the evaluation on target domain. Similar to the experimental setting in Table
5, different learning methods were performed over various source domains in a
supervised way, but the testing was run on an unseen target domain without
additional adaptation data. The classification result is shown in Table 6. The
result using the proposed meta soft prompt (MSP) is compared with strong
baselines including the multi-task deep neural network (MT-DNN) [32], the
adversarial multi-task learning (ASP-MTL) [31], the multinomial adversarial
network with the least square loss (MAN-L2), the negative log-likelihood loss
(MAN-NLL) [4], and the BERT model [15] which is fine-tuned (FT) on each
domain. ASP-MTL [31] used the additional abundant unlabeled samples from
the target domain. This set of experiments shows that MSP performs better
than the other methods in most of domains. In average, MSP obtains the
classification accuracy of 89.5% over 16 domains which is the highest in this
set of comparison.
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Table 6: Comparison of classification accuracy (%) on 16 domains in FDU-MTL dataset
where the previous methods (MT-DNN, ASP-MTL, MAN-L2, MAN-NLL, FT) and the
proposed MSP are evaluated. Length of soft prompt is set as 5.

Domain MT-DNN ASP-MTL MAN-L2 MAN-NLL FT MSP
Books 82.2 84.0 87.6 86.8 87.0 89.0
DVD 84.2 85.5 88.1 88.6 85.6 88.1
Electronics 81.7 86.8 87.4 88.8 88.3 90.3
Kitchen 80.7 86.2 89.8 89.9 91.0 90.7
Apparel 85.0 87.0 87.6 87.6 90.0 92.0
Camera 86.2 89.2 91.4 90.7 90.0 90.8
Health 85.7 88.2 89.8 89.4 88.3 91.3
Music 84.7 82.5 85.9 85.5 86.8 87.8
Toys 87.7 88.0 90.0 90.4 90.3 90.8
Video 85.0 84.5 89.5 89.6 88.0 88.4
Baby 88.0 88.2 90.0 90.2 91.5 91.3
Magazine 89.5 92.2 92.5 92.9 89.8 90.2
Software 85.7 87.2 90.4 90.9 89.3 90.9
Sports 83.2 85.7 89.0 89.0 90.8 91.8
IMDB 83.2 85.5 86.6 87.0 85.8 88.3
MR 75.5 76.7 76.1 76.7 74.0 80.4
AVG 84.3 86.1 88.2 88.4 87.9 89.5

4.4 Evaluation on few-shot unsupervised domain adaptation

In addition, the comparison of classification accuracy is extended to a recent
work called MoE-Tr [42]. MoE-Tr is a transformer-based multi-source domain
adaptation method, which introduced a mixture of experts (MoE) technique
where multiple PLMs were involved in adaptation. This method required
additional unlabeled target domain data for domain adversarial training. MoE-
Tr performed the domain adversarial learning [40] where many shots were
used. Different from MoE-Tr, the proposed MSP only involves one single PLM
which is frozen and used to train soft prompt via meta learning. The length of
soft prompt is now extended to 10 for both SP and MSP. Table 7 shows that
MSP performs better than SP. This likely happens because MSP is learned
from the pairwise cross-domain information which is richer than the integrated
domain information in SP without pairwise domain adaptation. Meanwhile,
the performance of MSP without additional unlabeled adaptation data is not
as good as that of MoE-Tr where the unlabeled adaptation data are required.
But, the number of trainable parameters using MSP is only 7.68K which is
extremely smaller than 264M by using MoE-Tr. MoE-Tr requires 33.6K times
of trainable parameters relative to MSP. MoE-Tr suffers from high parameter
size and computational cost.
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Table 7: Comparison of classification accuracy (%) and number of trainable parameters
(N) for the methods without and with additional few-shot unsupervised domain adaptation
(UDA) where number of shots is set as 4 and 8. Length of soft prompt is fixed as 10. MoE-Tr
[42] is included in the comparison. Notably, MoE-Tr requires a large-scaled trainable model
and needs multiple PLMs. MSP is parameter efficient and involves only one PLM. Various
domains in Amazon review dataset are evaluated.

Domain MoE-Tr SP MSP SP (4) MSP (4) MSP (8)
Books 90.0 87.5 88.6 87.9 88.7 89.0
DVD 89.3 86.2 86.9 87.0 88.5 88.1
Electronics 90.6 87.4 88.4 87.9 89.2 90.3
Kitchen 90.8 88.5 89.8 89.2 90.5 90.7
UDA yes no no yes yes yes
N 264M 7.68K 7.68K 7.68K 7.68K 7.68K

Table 8: Comparison of classification accuracy (%) for the methods without and with
additional few-shot unsupervised domain adaptation (UDA) where number of shots is set as
4 and 8. Length of soft prompt is fixed as 10. The randomly-selected domains in FDU-MTL
dataset are evaluated.

Domain FT SP MSP SP (4) MSP (4) SP (8) MSP (8)
Health 88.3 90.5 91.3 90.8 91.8 90.7 92.2
Music 86.8 86.2 87.8 86.0 88.4 86.4 89.2
Toys 90.3 90.0 90.8 90.7 91.9 90.5 91.8
Magazine 89.8 88.9 90.2 88.7 91.0 88.9 92.1
UDA no no no yes yes yes yes

To conduct a fair comparison, the set of experiments in Table 7 also include
the results of SP and MSP where additional few-shot unlabeled samples are
provided for unsupervised domain adaptation. The results of classification
accuracy show that MSP considerably works better than SP. This is likely
because MSP is learned from different pairs of domain adaptation which result
in an optimized model for a better adaptation than SP where the learning to
learn for cross-domain adaptation is ignored. In addition, relative to MoE-Tr
which involved multiple PLMs and utilized abundant adaptation data in target
domain, SP and MSP are implemented by only using 4 or 8 shots of unlabeled
adaptation samples. When eight shots of adaptation data are employed for
unsupervised meta soft prompt learning, the resulting classification accuracy
is close to that using MoE-Tr where a large-scaled controllable model and
multiple PLMs were required and a large number of adaptation samples were
enrolled. On the other hand, the additional few-shot unsupervised domain
adaptation (either 4 or 8 shots) is further evaluated by using the FDU-MTL
dataset as shown in Table 8. In this set of experiments, the ablation study
without and with unsupervised domain adaptation (UDA) is also shown. The
length of soft tokens in SP and MSP is fixed as 10. There are some findings.
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First, similar to Table 7 for Amazon review dataset, the classification accuracy
using FDU-MTL dataset is consistently improved from SP to MSP in a setting
of unsupervised domain adaptation. Using SP, UDA is not working as well
as that in MSP. This is possibly because MSP learns a better foundation of
soft prompt than SP. Also, increasing number of shots in MSP elevates the
classification accuracy in most of target domains. In general, the improvements
by increasing shot number and soft prompt length are obtained through the
proposed meta soft prompting and learning.

5 Conclusions

This paper has presented a meta learning for domain-agnostic soft prompt
for multi-domain text representation and language understanding. This soft
prompt was augmented with the observed and the masked word tokens as the
prompt sentence to enrich input representation. Based on the doubly-looped
optimization, the learned meta learner was able to extract useful features
from the frozen pre-trained language model where the fine-tuning process was
avoided. On the other hand, an additional unsupervised domain adaptation
was developed in presence of very limited trainable parameters without the need
of labeled data in target domain. Such an unsupervised domain adaptation
was proposed to pursue the extra benefit from learning with unlabeled data in
target domain. The experiments on multi-domain representation showed that
this method was able to obtain latent spaces with obvious class separation. The
results have shown that the meta soft prompt could successfully boost a frozen
pre-trained model to capture domain-specific information and achieve desirable
classification performance by only training a few parameters. This method1

has obtained higher accuracy than the other methods in most of domains over
two text datasets. For future work, the proposed method could be integrated
with other unsupervised domain adaptation in the inner optimization for meta
learning. The proposed method is feasible to collaborate with not only masked
language model but also sequence-to-sequence model or autoregressive model
for different applications.
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