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ABSTRACT

Epilepsy, a prevalent neurological disorder, often leads to tonic-
clonic seizures characterized by loss of consciousness and uncon-
trolled motor activity. Prompt detection of these seizures is crucial
for effective nursing and diagnosis. This paper introduces a novel
epileptic seizure detection method leveraging low-complexity video
analysis, eliminating the need for body attachments or special
equipment like markers or specific clothing. Our approach is
straightforward: each video frame is segmented into blocks, and
the average values of these blocks are computed. We then analyze
the temporal changes in these averages using spectrograms. Our
findings indicate that during tonic-clonic seizures, dominant fre-
quency components typically range from 1 to 6 Hz and decrease
as the seizure progresses. By capitalizing on these clinical observa-
tions, we have formulated effective detection rules. Experimental
evaluations reveal that our method not only accurately detects
epileptic seizures but also operates approximately four times faster
than real-time on standard desktop computers. This efficiency and
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accuracy underscore the potential of our method as a practical tool
in epilepsy monitoring and management.

Keywords: Epilepsy, tonic-clonic seizure, video analysis, image processing, and
image feature extraction.

1 Introduction

Epilepsy, a chronic neurological disorder affecting approximately 65 million
people worldwide [30], is characterized by abnormal excessive neuronal activity
in the brain, leading to sudden epileptic seizures. These seizures, particularly
affecting motor function, necessitate continuous monitoring due to the unpre-
dictability of their occurrence. However, constant caregiver surveillance poses
significant challenges, underscoring the need for automated seizure detection
systems to improve the quality of life (QOL) for patients, caregivers, and
medical professionals.

The predominant seizure detection methods involve electroencephalogram
(EEG) analysis [1, 2, 7, 12, 21, 28], mainly because epilepsy diagnosis often relies
on long-term video-EEG monitoring in hospitals. However, EEG monitoring
requires specialized equipment and expertise, making it impractical for long-
term use outside hospital settings. Additionally, the necessary contact sensors
for EEG are often uncomfortable for patients.

To address these limitations, various non-EEG epileptic seizure detection
methods have been explored, including heart rhythm analysis [9, 23, 31],
electromyography [10, 19, 29], and accelerometers [8, 18, 24, 27]. Nevertheless,
most of these approaches still rely on contact sensors and require expert
handling.

Video surveillance offers a promising contact-free alternative. This method
can be categorized into marker-based (e.g., infrared reflectors [20], customized
color pajamas [22]) and marker-free approaches. While marker-based methods
suffer from similar drawbacks as contact sensors, marker-free methods, such as
those using optical flow [11, 14–17], offer non-invasive, non-contact solutions.
However, these methods generally incur high computational costs, limiting
their application in low-power devices.

An alternative marker-free approach [15–17] analyzes pixel variations in
video frames to detect clonic seizures in newborns. While computationally
efficient, it falls short in detection accuracy compared to optical flow-based
methods.

In response to these challenges, this paper introduces a novel, efficient
method for video-based epileptic seizure detection, specifically targeting clonic
seizures in tonic-clonic episodes. Our approach utilizes spectrogram analysis



Simple yet Effective Video-Based Epileptic Tonic-Clonic Seizure Detection 3

Figure 1: Flow of the proposed method. The top figure is a flow of the proposed method
and the bottom figures are examples of the output of each step. The patient’s face is masked
in this figure for anonymity. This is not part of the proposed method.

through short-time Fourier transform (STFT) to track body pixel value oscil-
lations during seizures. The crux of our method lies in a detection rule based
on a clinical observation: during clonic seizures, the frequency components of
body oscillations show high magnitudes within a specific range, with dominant
frequencies decreasing over time. The method’s workflow is depicted in Fig-
ure 1. We validated our approach’s detection accuracy through experiments
with videos from long-term video EEG monitoring, highlighting its potential
as a practical, efficient tool for epilepsy management.

The remainder of this paper is organized as follows. Section 2 intro-
duces related work to this paper. In Section 3, video acquisition and the
proposed method are described. Section 4 describes the experimental ver-
ification of the proposed method for detection accuracy and computation
time, and we discuss the experimental results. Finally, Section 5 concludes
this paper.

2 Related Work

The field of video-based seizure detection has evolved significantly over the past
decade. Initial studies largely focused on hand-crafted features and traditional
machine learning methods to detect motor signs indicative of seizures. These
approaches included the analysis of motion strength, motion trajectory, and
differential luminance signals. While these methods achieved some success,
their performance was often limited by changing luminance conditions or
occlusions, such as a patient being covered by a blanket.
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2.1 Model-Based Approaches

Karayiannis et al. [15, 16] explored computerized motion analysis of neonatal
seizures using motion segmentation and tracking methods. These early efforts
demonstrated the feasibility of automated seizure detection but highlighted
challenges in generalizing across different settings and patient conditions.
Ntonfo et al. [25] and Pisani et al. [26] further advanced these techniques
by implementing low-complexity image processing algorithms for real-time
detection of neonatal clonic seizures, achieving varying degrees of sensitivity
and specificity.

Kalitzin et al. [14] focused on the automatic segmentation of episodes
containing epileptic clonic seizures in video sequences. This study underscored
the difficulty of maintaining performance in the presence of occlusions and
varying illumination, common in clinical settings.

2.2 Deep Learning-Based Methods

Deep learning approaches have shown promise in overcoming the limitations
of traditional methods. Ahmedt-Aristizabal et al. [4–6] and Achilles et al. [3]
utilized deep neural networks for seizure detection, leveraging the ability of
these models to learn spatio-temporal features directly from raw video data.
These studies reported significant improvements in detection accuracy and
robustness. However, deep learning methods often require large annotated
datasets and substantial computational resources, which may not be readily
available in many clinical settings.

Yang et al. [32] specifically addressed the detection of generalized tonic-
clonic seizures using a combination of CNNs and long short-term memory
(LSTM) networks. This study demonstrated that deep learning models could
achieve high sensitivity (0.88) and specificity (0.92), outperforming earlier hand-
crafted feature-based methods. Despite these promising results, the reliance
on large training datasets and computational intensity remain significant
limitations, particularly for real-time applications and environments with
limited data availability.

2.3 Current Study

In our current study, we extend the body of work on video-based seizure de-
tection by implementing a simple yet effective rule-based method for detecting
clonic seizures. Our method leverages features including clinically relevant
observations such as decreasing frequency of movement during a seizure. It
also offers advantages in terms of computational efficiency and does not require
extensive annotated datasets. As shown later, we implemented a smartphone-
based app for the real-time detection. Our results indicate that with carefully
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selected features and thresholds, our method can outperform more complex
models within, at least, a controlled hospital setting.

3 Method

3.1 Video Acquisition

This study utilized video recordings from long-term video-EEG monitoring con-
ducted at the National Center Hospital of Neurology and Psychiatry (NCNP)
in Japan. The protocol received approval from the Research Ethics Committee
of NCNP1, and written informed consent was obtained from each participant,
ensuring adherence to ethical guidelines.

For our proposed method, we strategically mounted the monitoring camera
on the ceiling to ensure a comprehensive view of the patient, as illustrated
in Figure 1. The camera setup is designed to operate under varying light
conditions. During periods of adequate room illumination, the camera uses
visible (RGB) light, complemented by an infra-red cut filter. In scenarios of
low illumination, typically at night, the infra-red cut filter is automatically
switched to a clear filter. This adjustment enhances the camera’s sensitivity,
enabling continuous monitoring of the patient in both daytime and nighttime
environments.

Significantly, our approach utilizes grayscale pixel values for seizure detec-
tion, a method equally effective under both lighting conditions. This uniformity
allows us to apply the same algorithm regardless of the time of day.

The video-EEG system employed in this study records and compresses
videos in the Windows Media Video format. The videos are captured at a
resolution of 320× 240 pixels and a frame rate of 30 frames per second (fps).
Given that our method does not necessitate direct visualization of the patient’s
body, the use of thin blankets by patients was permitted, further ensuring
their comfort without compromising the effectiveness of the seizure detection
process.

3.2 Blocking Frames

This section elaborates on the detection algorithm, focusing on the initial
preprocessing steps. First, we convert the video into grayscale using the
following formula:

It(x, y) = 0.2989 ·Rt(x, y) + 0.5870 ·Gt(x, y) + 0.1140 ·Bt(x, y). (1)

1IRB/ethics board protocol number: A2026-139, date of approval: April 21, 2017.
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Here, It(x, y) represents the grayscale value, and Rt(x, y), Gt(x, y), and Bt(x, y)
are the RGB pixel values at coordinates (x, y) in the tth frame. This trans-
formation is akin to converting RGB to the Y component in the YUV color
encoding system. For subsequent steps, we utilize only the grayscale values
It(x, y).

Given that the grayscale image It may include noise due to camera spec-
ifications, lighting conditions, or compression artifacts, we employ a noise
reduction strategy. To mitigate these effects, we partition It into smaller
blocks of a predetermined size. We then calculate the average pixel values
within these blocks. This not only helps in alleviating noise but also reduces
computational complexity.

For the block sizes, let M and N denote the dimensions. The average pixel
value in each block Zt(a, b) is computed as follows:

Zt(a, b) =
1

MN

Nb∑
x=N(b−1)+1

Ma∑
y=M(a−1)+1

It(x, y). (2)

In this formula, (a, b) represent the block coordinates. In our study, we
determined through experimentation that the optimal number of blocks per
frame is 40× 40, which corresponds to M = 6 and N = 8.

3.3 Calculating Temporal Differences

As part of the detection algorithm, we first preprocess the video by transform-
ing it into grayscale and then dividing it into blocks. The average of each
block, denoted as Zt(a, b), tends to exhibit high energy in low-frequency com-
ponents. To accentuate the oscillatory behavior relevant for seizure detection,
we compute the temporal difference between neighboring frames as follows:

st(a, b) = Zt(a, b)− Zt−1(a, b). (3)

This formula yields a set of time-series signals, {s(a, b)}a,b, reflecting the
patient’s body movement.

3.4 Frequency Analysis

To analyze these time-series signals, we apply the Short-Time Fourier Transform
(STFT) to convert s(a, b) into its amplitude spectrum. The amplitude spectrum
at time t is given by:

Ft(a, b, µ) = |FFTw(ŝt(a, b), µ)|, (4)

where FFTw represents the fast Fourier transform with a window length of
w, µ is the frequency (Hz), and ŝt(a, b) := [st−w+1(a, b), . . . , st(a, b)]. In our
study, we chose w = 300 frames (10 seconds) with an overlap of 299 frames.
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3.5 Seizure Detection

An illustrative spectrogram for a video sequence containing a tonic-clonic
seizure is presented in Figure 2. This spectrogram, from a single block,
effectively captures the clonic seizure. Two notable features can be observed:

1. Amplitudes in the 1–6 Hz frequency range are significantly larger during
the seizure compared to other frequencies.

2. The dominant frequency decreases over time.

To quantify the first feature, we compute a contrast measure C(a, b, t) as
follows:

C(a, b, t) =
L2(a, b, t)− L1(a, b, t)− L3(a, b, t)

L2(a, b, t) + L1(a, b, t) + L3(a, b, t)
, (5)

where Lk(a, b, t) (k ∈ {1, 2, 3}) are expressed as

L1(a, b, t) = max
0<µ<1

Ft(a, b, µ), (6)

L2(a, b, t) = max
1≤µ<6

Ft(a, b, µ), (7)

L3(a, b, t) = max
6≤µ<10

Ft(a, b, µ). (8)

C(a, b, t) is a modification of the spectral contrast [14]. This measure falls
between −1 ≤ C(a, b, t) ≤ 1, indicating the likelihood of clonic seizures by
comparing the amplitude in the 1–6 Hz range against other frequencies. Note
that C(a, b, t) > 0 if L2(a, b, t) > L1(a, b, t) + L3(a, b, t).

For the second feature, recognized by epileptologists, we calculate the
average dominant frequencies over two halves of a specified period, verifying if
there is a decrease over time.

µ1(a, b, t) =
1

l/2

∑
i

arg max
µ

Fi(a, b, µ)

s.t. t− l < i ≤ t− l/2, (9)

µ2(a, b, t) =
1

l/2

∑
i

arg max
µ

Fi(a, b, µ)

s.t. t− l/2 < i ≤ t, (10)

where l is a temporal period. In (9), µ1 is the average dominant frequency in
the first half of the identifying period, whereas µ2 is that in the second half.
When µ1(a, b, t) > µ2(a, b, t) is satisfied, we consider the dominant frequency
to be decreasing. In this paper, l = 30 (1 s) is used.

Based on these observations, we define the following detection rule: De-
tection Rule A
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Figure 2: Spectrogram during epileptic seizure. This spectrogram is generated by (4). The
horizontal axis represents time (s) and the vertical axis represents frequency. This includes
focal seizure evolving to tonic-clonic seizure. The epileptic seizure begins at about 20 s The
epileptic clonic seizure is at about 50–80 s.

A1 C(a, b, t) > zc persists for over 1 second.

A2 The average dominant frequency decreases during A1, i.e., µ1(a, b, t) >
µ2(a, b, t).

A3 The number of blocks satisfying A2 exceeds a threshold zb.

These rules encapsulate the duration, frequency change, and widespread body
oscillation characteristic of clonic seizures. The parameters zb and zc are
optimized through cross-validation.

For comparison, we also explore Detection Rule B, which omits the fre-
quency decrease criterion (A2). The efficacy of both detection rules (SDEC-A
and SDEC-B) is assessed in an ablation study.

Note that Geertsema et al. [13] and Kalitzin et al. [14] only use the dominant
frequency information as the “spectral footprint” of seizures. In contrast, our
method uses the facts on the decrease of the dominant frequency.

4 Results and Discussion

This section outlines the experimental results of our proposed clonic seizure
detection method.
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Table 1: Video information. For seizure type, “F” and “TC” refer to focal seizure and
tonic-clonic seizure, respectively.

Video Patient Sex Age Video length Seizure type Group

001 001 female 38 31 min 13 s F, F → TC A
002 002 female 30 39 min 45 s F → TC C
003_1 003 female 21 33 min 46 s F → TC A
003_2 003 female 21 15 min 11 s F → TC A
004 004 male 65 13 min 38 s F → TC C
005 005 female 43 30 min 1 s F → TC A
006 006 female 43 26 min 25 s F → TC C
007 007 male 47 44 min 57 s F → TC A
008 008 female 19 16 min 4 s F → TC B
009 009 female 24 48 min 32 s F → TC B
010_1 010 male 16 22 min 0 s F → TC B
010_2 010 male 16 9 min 41 s F → TC B
011_1 011 female 46 33 min 36 s F → TC C
011_2 011 female 46 42 min 36 s F → TC C
012 012 female 52 56 min 0 s F → TC B

4.1 Experimental Dataset

We used a dataset recorded at NCNP, comprising 15 tonic-clonic seizures from
12 epilepsy patients. Board-certified epileptologists performed the diagnosis
and video segmentation. The total video length was 7 hours and 44 minutes,
with specifications detailed in Section 3.1.

Table 1 summarizes the video and patient information, including cross-
validation groupings. Notably, one video featured a focal seizure not evolving
into a tonic-clonic seizure, treated as a non-seizure event for this study’s
purposes.

4.2 Detection Accuracy Measures

We assessed performance using sensitivity and False Positive Length (FPL:
seconds per 24 hours). Sensitivity is defined as

Sensitivity =
nTP

nTP + nFN
, (11)

where nTP is the number of seizures detected during the seizure, and nFN is
the number of non-detected seizures. It is the ratio of detected seizures to the
total number of seizures in the dataset.
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Table 2: Detection Accuracy of Test Set.

SDEC-A
Test set Training set zb zc Sensitivity FPL (sec./24h)

A B, C 60 0.06 0.8 0.0
B A, C 50 0.06 1.0 0.0
C A, B 40 0.10 1.0 0.0

Average - 0.93 0.0
SDEC-B

Test set Training set zb zc Sensitivity FPL (sec./24h)
A B, C 120 0.16 0.8 110.0
B A, C 220 0.02 1.0 0.0
C A, B 240 0.00 0.8 0.0

Average - 0.87 36.7

FPL is defined as

FPL (s/24h) =
ℓFP

ℓFP + ℓTN
× 86400 (s/24h), (12)

where ℓFP (s) is the total video length of false positives and ℓTN (s) is that of true
negatives. It is calculated as the total length of false positives over the length
of true negatives and non-seizure periods in the dataset. A 10-second blackout
period was set post-seizure to accommodate the STFT’s 10-second window.

4.3 Detection Accuracy

We conducted three-fold cross-validation, dividing the dataset into groups with
equal lengths and seizure counts. Parameters zb and zc were optimized from
the training set, focusing on minimizing FPL while maintaining high sensitivity.
Table 2 presents the experimental results, showing SDEC-A’s superior accuracy
over SDEC-B, highlighting the importance of dominant frequency changes in
seizure detection.

The robustness of the algorithm was also evaluated. Figures 3 and 4
compare parameter combinations for zb and zc, with the optimal combination
indicated by a red “x”. The area surrounded by green lines shows the parameter
combination of the sensitivity of 1 and FPL of 0, which validates the robustness
of the proposed algorithm according to the parameter setting.

SDEC-A consistently achieved Sensitivity = 1 and FPL = 0 across all
training sets, unlike SDEC-B. This variability in SDEC-B’s performance
suggests a dataset sensitivity, further validating the robustness of SDEC-A’s
approach. Note that some patients used blankets: This does not affect the
overall performance.
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Figure 3: Detection accuracy according to parameter combination of zb and zc. We used
SDEC-A and the accuracy for the training set is shown. (a) Sensitivity of B and C. (b) FPL
of B and C. (c) Sensitivity of A and C. (d) FPL of A and C. (e) Sensitivity of A and B. (f)
FPL of A and B.

We also determined the best parameter combination using the entire
dataset, as shown in Table 3. Consistent with cross-validation findings, SDEC-
A outperformed SDEC-B, achieving 100% detection accuracy.

While the dataset is not the same, the state-of-the-art deep learning-based
method Yang et al. [32] presents the sensitivity 0.88. This implies the detection
accuracy of our algorithm could be comparable to deep learning-based method
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Figure 4: Detection accuracy according to parameter combination of zb and zc. We used
SDEC-B and the accuracy for the training set is shown. (a) Sensitivity of B and C. (b) FPL
of B and C. (c) Sensitivity of A and C. (d) FPL of A and C. (e) Sensitivity of A and B. (f)
FPL of A and B.

with significantly fewer parameters. It is beneficial for real-time detection that
is highly demanding for hospitals, homes, and many other places.

For SDEC-A, the latency after presumed clinical seizure onset is less than
12 seconds for all patients. This is significantly shorter than the result reported
in the state-of-the-art deep learning-based method [32].
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Table 3: Parameter Combination by Using All Data as Test Set.

zb zc Sensitivity FPL (sec./24h)
SDEC-A 50 0.04 1.0 0.0
SDEC-B 220 0.02 1.0 26.6

Figure 5: Prototype for a smatphone app.

4.4 Computation Time

Our experiments, conducted on MATLAB R2016b with a 3.6 GHz Intel Core
i7-6950X processor and 32 GB RAM, assessed both offline and online processing
times.

4.4.1 Offline Processing

For offline video processing, SDEC-A and SDEC-B averaged 109 and 110 fps,
respectively. This indicates that the dominant frequency change condition does
not significantly impact computation time, suggesting the method’s feasibility
for rapid video-EEG analysis.

4.4.2 Online Processing

We implemented a GUI for real-time processing from webcams at 320× 240
resolution and 30 fps. The experiment confirmed real-time processing capability
at 30 fps for both SDEC-A and -B. Given the method’s focus on 0–10 Hz
frequency components, a camera frame rate of 20 fps would suffice, further
reducing computational requirements.

Additionally, we developed a prototype utilizing a Google Pixel 6 Pro
smartphone and a standard surveillance web camera (ELP USBFHD05MT-
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DL36), as depicted in Figure 5. This prototype is capable of functioning in
real-time during both daytime and nighttime conditions.

5 Conclusion and Future Research

This paper introduces a simple yet effective method for video-based epileptic
seizure detection. Our approach, requiring only a ceiling-mounted video
camera, focuses on analyzing temporal pixel value changes and detecting
dominant frequencies in the 1–6 Hz range. The method also leverages the
clinical observation of decreasing dominant frequencies during clonic seizures.
Experiments with 15 tonic-clonic seizures from 12 patients demonstrated high
detection accuracy and real-time processing capability on standard computers.
Future research will aim to develop an efficient method for selecting optimal
parameter combinations. Because the video-EEG monitoring system we used
only recorded the data (including videos) during seizures, we do not have any
videos without seizures. Future work also includes the extensive studies for
longer monitoring periods and experiments beyond video-EEG monitoring
using our prototype.
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