
APSIPA Transactions on Signal and Information Processing, 2024, 13, e17
This is an Open Access article, distributed under the terms of the Creative Commons
Attribution licence (http:// creativecommons.org/ licenses/by-nc/ 4.0/), which permits
unrestricted re-use, distribution, and reproduction in any medium, for non-commercial use,
provided the original work is properly cited.

Original Paper
Detection of Arbitrary Wake Words by
Coupling a Phoneme Predictor and a
Phoneme Sequence Detector
Ryota Nishimura1*, Takaaki Uno2, Taiki Yamamoto1, Kengo Ohta3 and
Norihide Kitaoka2

1Tokushima University, Tokushima 770-8506, Japan
2Toyohashi University of Technology, Toyohashi 441-8122, Japan
3National Institute of Technology, Anan College, Anan 774-0017, Japan

ABSTRACT

Most wake word (WW) detection systems used in smartphones
and smart speakers only detect specific, predefined WWs such as
“Hey, Siri” or “OK, Google”. To build such a system, a large speech
corpus consisting of many examples of the selected WWs must be
collected to train the model. If we want the device to detect a
different WW, collection of a new speech corpus and re-training of
the model are required.

In this study, we propose a system which is capable of detecting
any chosen WW without additional model training or a corpus of
WW utterances, allowing users to select and use their preferred
WW. Our system consists of a phoneme predictor (PP) and a
phoneme sequence detector (PSD). The PP predicts phoneme
sequences using acoustic features of the input speech, and outputs
phoneme probability distributions. The acoustic models in the PP
are trained using the Connectionist Temporal Classification (CTC)
loss criterion. The PSD takes the output of the PP as input, and
predicts the probability of whether or not the WW has been input.
In our evaluation experiments, we performed six-phoneme WW

∗Corresponding author: Ryota Nishimura, nishimura@is.tokushima-u.ac.jp

Received 29 February 2024; revised 11 June 2024; accepted 11 June 2024
ISSN 2048-7703; DOI 10.1561/116.20240014
©2024 R. Nishimura, T. Uno, T. Yamamoto, K. Ohta and N. Kitaoka

http://creativecommons.org/licenses/by-nc/4.0/

2 Nishimura et al.

detection. Our results showed that the proposed method achieved
90% WW detection accuracy.

Keywords: wake word, CTC, end-to-end modeling, phoneme sequence detec-
tor

1 Introduction

Smartphones and smart speakers are equipped with voice assistants that can
be controlled using speech. Apple’s “Siri”1 [2], Google’s “Google Assistant”2

[21], and Amazon’s “Alexa”3 [30] are examples of these voice assistants, which
give users the ability to perform hands-free operations, even at a distance,
by vocalizing specific instructions to the device. The term “Wake Word”
(WW) refers to the words spoken by users to activate these voice assistant
applications.

Most current speech recognition systems employ a large vocabulary contin-
uous speech recognition (LVCSR) model [12]. These models require massive
computational resources however, so it is difficult to run them constantly on
small devices such as smartphones and smart speakers, which have limited
computational resources and battery power. Therefore, a lightweight WW
detection system that only detects specific, predefined WWs, such as “Hey,
Siri,” “OK, Google,” or “Alexa”, is always running on the smart device in order
to activate the speech recognition system only when the voice assistant is
needed.

Training a WW detection system requires a large amount of speech data for
the target WW, and the system can only detect the learned WW. To change
a WW, a large amount of speech data for the new WW must be collected and
the model retrained. The purpose of this study is to construct a system that
can detect any WW without requiring an additional corpus of WW speech or
retraining of the model.

This paper consists of five sections. Section 2 provides an overview of
related research. In Section 3, we describe our proposed wake word detection
system. In Section 4, we explain our evaluation experiments and provide the
results of these experiments when using the proposed method. In Section 5,
we discuss the performance of our proposed method. Finally, in Section 6 we
present the conclusions of this study.

1https://www.apple.com/siri/
2https://assistant.google.com/
3https://developer.amazon.com/alexa

https://www.apple.com/siri/
https://assistant.google.com/
https://developer.amazon.com/alexa

Detection of Arbitrary Wake Words 3

2 Related Work

2.1 Wake Word Detection

WW Detection has also been called Magic Word Detection (MWD) or Keyword
Spotting (KWS) in previous studies. The main task of WW Detection is
to detect only specific words at a small computational cost, which trigger
activation of speech recognition or other systems.

MWD systems using LVCSRs have long been studied [20, 26, 17, 23].
In recent years, systems based on neural networks (NN) have also become
mainstream [2, 21, 30, 6, 1, 16]. Models that can (or aim to) perform sequential
processing in real-time, on devices such as smartphones and smart speakers,
have also been developed [27, 4, 19, 5, 11]. MWD systems can be divided into
two types; closed systems that can detect only specific words such as “Hey,
Siri” or “OK, Google”, for example, and open systems that allows users to
freely set their own wake words. In previous studies on closed MWD systems,
spectrograms have been used as the system input, and detection methods have
generally been based on convolutional neural networks (CNNs) combined with
recurrent neural networks (RNNs) [14]. However, the features propagated to
the RNN are one-dimensional vectors, thus the time-frequency relationship is
lost, so RNNs tend to lose temporal history information. Therefore, the use of
Long Short-Term Memory (LSTM), to propagate temporal history information
efficiently and selectively, is becoming more popular.

In contrast, open MWD systems use speech as the system input to a speech
recognition system, and use the output, such as text or phoneme sequences,
and their related probability distributions, to detect the WW. This allows any
word to be set and detected as a WW without the need for a WW corpus or
additional model training. However, most previously proposed open MWD
systems are less accurate than closed systems, because they use large-scale
speech recognition systems which can encounter problems such as recognition
errors or unknown words.

In our proposed method, which is an open MWD system, the input speech
is first converted into a phoneme probability distribution using a phoneme
predictor, then the probability values of the phonemes included in the WW
are extracted from the phoneme probability distribution. These probability
values are then input, in a time series, to a phoneme sequence detector, which
is a neural network (NN) used to detect the WW. This method allows us
to construct a Wake Word detection system without a speech corpus for a
specific wake word. In addition, changing a Wake Word is easy because the
user only needs to supply the phonemes of the new wake word. Moreover, the
proposed system can be used at low computational cost because it does not
use an LVCSR model.

4 Nishimura et al.

2.2 Connectionist Temporal Classification (CTC)

Connectionist Temporal Classification (CTC) [8] is a loss function that es-
timates phoneme sequences without using a Hidden Markov Model (HMM)
[18] or labels. The advantage of using CTC is that the temporal alignment
between the speech and labels is automatically estimated, therefore, there is no
need to assign detailed temporal labels to the training data. CTC models are
End-to-End (E2E) models with Recurrent Neural Network structures, allowing
them to directly obtain the output from the input without the multi-stage
processing required by conventional machine learning models.

The CTC outputs phonemes and <blank> tokens. The model takes acous-
tic features as input and outputs a phoneme posterior probability distribution.
In the time series of phonemes estimated for each speech frame, these con-
tinuous phonemes are combined into a single phoneme, and the <blank>
tokens are removed to obtain the final output of the phoneme sequence. For
the word “cat”, when the acoustic features are input to the model and “-
- c - a a - t - -” is output as the phoneme prediction. After combining
identical consecutive phonemes in the sequence into a single phoneme, we
obtain the results “- c - a - t -”. Then, by removing the <blank> tokens,
the sequence “cat” is obtained.

CTC learns to maximize the posterior probability of the correct phoneme
sequence by minimizing the CTC loss.

2.3 End-to-End Speech Processing Toolkit (ESPnet)

In this study, we used the End-to-End Speech Processing Toolkit (ESPnet) [29]
to build our phoneme prediction model. ESPnet is an open source toolkit that
supports various spoken language processing tasks, such as speech recognition
and speech synthesis. It consists of a Python library of end-to-end models
and recipes written in shell script. The End-to-End model is created using
PyTorch, which allows flexible model extension. The recipes are in a format
that is based on the one used by the Kaldi speech processing toolkit, and allow
batch execution during experiments. These recipes include all of the steps
necessary to reproduce experiments, such as data download, pre-processing,
feature extraction, model construction, and model evaluation. The recipes
are written in script format, which makes it easy to reproduce experiments.
In this study, we ran an automatic speech recognition recipe on ESPnet to
build a phoneme predictor. However, since the experiments in this study do
not involve language models, the recipe skips the stages related to language
model construction, so only the commands and programs corresponding to the
processes necessary for model construction and the recognition experiments
are executed.

Detection of Arbitrary Wake Words 5

3 Wake Word Detection Method

In this study, we propose a WW detection system which predicts phoneme
sequences in order to detect the WW selected by the user. Figure 1 shows
a schematic diagram of the proposed system. The system consists of two
stages; a phoneme predictor and a phoneme sequence detector. First, the input
WW speech is converted into acoustic features, such as Mel-frequency cepstral
coefficients (MFCCs), which are then input into the phoneme predictor. The
phoneme predictor calculates the phoneme probability distribution for the
input acoustic features over time, and outputs a time series of the phoneme
probability distribution. Next, the probabilities of the phonemes in the target
WW and of <blank> are extracted from the input time series of the phoneme
probability distribution. A vector of the time series of these probabilities is
then input to the phoneme sequence detector, and the probability that the
target frame is at the end of the WW is output as a probability value. When
the output probability value is greater than a pre-determined threshold value,
the user’s WW is detected.

Phoneme Predictor

Acoustic
features

Phoneme Sequence
Detector

Phoneme
Probability
Distribution
(only for WW)
<blank>

a
i
s
u

Wake Word
Probability

Figure 1: Proposed wake word detection method.

Our model has been released as open source software (MIT license) on
GitHub.4

3.1 Phoneme Predictor

Figure 2 shows the structure of the phoneme prediction model. The phoneme
predictor (PP) uses a general acoustic model trained using the CTC loss crite-
rion. The model’s input consists of the acoustic features of the user’s WW, and
the output consists of 49 different phoneme probability distributions, consisting
of phonemes, unknown phoneme tokens <unk> and <blank> tokens. Nor-
mally, CTC outputs a phoneme sequence that combines continuously repeated
phonemes excluding blanks, but our proposed system uses the probability
distribution itself.

4https://github.com/kitaoka-lab/WakeWord_uno

https://github.com/kitaoka-lab/WakeWord_uno

6 Nishimura et al.

Acoustic
features

Model

Phoneme
probability
distribution

Figure 2: Phoneme prediction model.

Instead of determining a single phoneme for recognition by the phoneme
predictor, the latter stage of the phoneme sequence detector looks at the
temporal distribution of probability, which enables WW recognition that is
robust to phoneme recognition errors. Initially, the PP consists of a large speech
recognition model, but once the WW is determined knowledge distillation is
automatically performed, and the model is reconfigured into a smaller, phoneme
sequence detector-based model, which can operate at a lower computational
cost.

The proposed method requires a fairly generic phoneme predictor that
has been trained on a large amount of data, so we used CTC since it can be
trained without the need for detailed labels.

Details of our phoneme predictor model are provided in Section 4.2.1.

3.2 Phoneme Sequence Detector

3.2.1 Picking out Phoneme Probability Distribution for User’s WW

To prepare the input for the phoneme sequence detector, our proposed system
picks out the probabilities for the phonemes of the user’s chosen WW from
among all of the phoneme probabilities computed by the phoneme predictor.
As shown in Figure 3, the probabilities of the component phonemes of the
example WW “aisu” and the probability of <blank> are extracted from the
phoneme probability distribution (the 49-dimensional output of the phoneme
predictor). When a series of phonemes is detected with the same phonemes
that appear in the target WW, the probability of each phoneme is entered in
the order in which they are encountered. The WW detection model is trained
to judge whether the phonemes in the WW appear in order from beginning
to end, as shown in Figure 4. Therefore, the operation of the detector is
independent of the content of the WW. The probabilities of phonemes are
arranged in the order in which the phonemes occur in user’s WW, in order

Detection of Arbitrary Wake Words 7

<blank>
<unk>

a
e
i
o
u

a
i
s

Pick out “a i s u”
and <blank>

…

<blank>

u

t
k …

Figure 3: Picking out probabilities of
phonemes for user’s wake word “aisu”.

<blank>
a
i
s
u

Figure 4: Phoneme probability distri-
bution for user’s wake word “aisu” (4
phonemes + blank).

Wake word
probability

Neural
network
model

WW
phoneme
probabilities

Figure 5: Phoneme Sequence Detection model.

to detect the target WW. Note that although the phoneme sequence detector
(PSD) is independent of phonemes in the WW, its architecture is based on
the number of phonemes in the WW, therefore it is necessary to construct a
PSD model that corresponds to the length of the user’s WW.

3.2.2 Phoneme Sequence Detection Model

Figure 5 shows the structure of the phoneme sequence detector model. The
model is constructed using an LSTM [9] and a fully connected layer (FC). As
described above, the probabilities of the component phonemes of the WW
and the probability of <blank> are extracted from the phoneme probability
distribution, arranged in order, and converted into a vector that is input to
the model. The output of the model is the probability that the input frame is
the end of the WW. The three frames from the end of the targeted speech (i.e.,
the WWs) are then assigned the label “1”, while the other frames are assigned
the label “0”.

Our model utilizes LSTM instead of the more recent Transformer or
Conformer architectures because our goal is to create a model that can more
efficiently process sequential data, a task at which both Transformer and

8 Nishimura et al.

Conformer are less effective. Additional details of the PSD model are provided
in Section 4.2.2.

4 Experiment

4.1 Experimental Conditions

The training data used to train the phoneme predictor and phoneme sequence
detector was obtained from the Corpus of Spontaneous Japanese (CSJ)5 [13],
a database for spoken language research that contains a large amount of
spontaneous Japanese speech, as well as additional information useful for
speech research. The CSJ corpus is available to the public for a fee, and can be
licensed commercially, but when used for research the cost is nominal. The CSJ
is one of the world’s best speech research databases in terms of both quality
and quantity. For this study, only core data whose phonemes are transcribed
into eXtensible Markup Language (XML) were used. Details of the data set
used in our experiments are shown in Table 1. A total of about 129 hours of
audio data, consisting of 10,865 sentences, was used. This data was divided
into a training dataset containing 6,826 sentences, and an evaluation dataset
containing 4,039 sentences. In addition to the original speech selected from
the CSJ corpus, the same audio data was expanded by converting it to 0.9
times and 1.1 times its original speed.

Table 1: Speech dataset

Duration 129 h 12 m 2 s
Total sentences 10,865
Training data 6,826
Test data 4,039

4.2 Model Training

4.2.1 Phoneme Prediction Model

ESPnet2 was used as the training framework for the phoneme predictor, and the
model was built by running automatic speech recognition (ASR) recipes. The
CSJ data described above was used as training data, and the PhonemeEntity
attributes were extracted from CSJ BaseXML to generate the correct phoneme
sequences for the training data.

5https://clrd.ninjal.ac.jp/csj/en/

https://clrd.ninjal.ac.jp/csj/en/

Detection of Arbitrary Wake Words 9

Mel-Frequency Cepstral Coefficients (MFCCs), which are acoustic features,
were used as the input to the model, and were computed using the following
settings:

1. Short-time Fourier Transform

(a) Sampling rate = 16 kHz
(b) Window function = Hanning window, Window of 32 ms
(c) Frame shift = 8 ms (overlap = 24 ms)

2. Mel filter bank = 80
3. Discrete Cosine Transform
4. Cepstral Mean Normalization (CMN)

(a) For each frame value, subtract the mean value of the cepstral time
series until the target frame.

Thus, 80-dimensional MFCCs were obtained and used as input to the phoneme
prediction model.

Regarding the Convolutional Neural Network (CNN), VGGnet [25], which is
often used for object/image recognition, was used. The VGGnet was configured
as follows:

1. Input dimensions = 80
2. Output dimensions = 2,560
3. Frame length = 32 ms (because there are two layers of MaxPooling with

a size of 2× 2)

The encoder was an LSTM model with 2,560 input dimensions, 4 layers,
and a hidden layer with 1,024 dimensions. The output also contains 1,024
dimensions. The CTC decoder had 1,024 input dimensions and 49 output
dimensions.

The AdaDelta [31] optimization algorithm was used for model training,
with a batch size of 24.

4.2.2 Phoneme Sequence Detection Model

Tensorflow was used as the framework for the phoneme sequence detector (PSD).
Training data for the PSD model was generated using phoneme probability
distributions, which are the output of the phoneme predictor. The PSD model
operates as follows:

1. Picking out the phoneme probability distribution for the WW

(a) Input: Phoneme probability distribution in 49 dimensions.

10 Nishimura et al.

(b) Target: Probability distribution of phonemes in the WW (six
phonemes in this experiment).

(c) The extracted probability distributions for the WW are ranked,
and transformed into vectors that are input to the model.

The number of phonemes in the WWs used in our experiment was set to 6,
since the average length of a Japanese word is approximately 3 or 4 syllables,
which corresponds to about 6 phonemes. (Note that Figures 3 and 4 show
examples of WWs with 4 phonemes.)

We picked several 6 phoneme words and used their phoneme probability
distributions as training data for the PSD model. As described in Section 3.2.1,
the probabilities of the component phonemes of the WW and the probability
of <blank> are extracted from the phoneme probability distribution.

2. Assigning model output labels

(a) The three frames from the end of the targeted speech (i.e., the
WWs) are then assigned the label “1”, while the other frames are
assigned the label “0”.

The PSD model was constructed using LSTM and FC layers, as shown in
Figure 5 (Section 3.2.2). Details of the LSTMs and FCs that make up the
PSD model are as follows:

1. LSTM:

(a) Input dimensions = 7 (6 phonemes + <blank>)
(b) Output dimensions = 128
(c) Number of layers = 1

2. FC:

(a) Input dimensions = 128
(b) Output dimensions = 64

3. Output:

(a) Input dimensions = 64
(b) Output dimensions = 2

The activation function for the FC layer is ReLU [15], and Adam [10] was
used as the optimization algorithm, with an initial learning rate of 0.001 and
a batch size of 4. The learning rate was reduced by a factor of 0.2 if there
was no improvement after three epochs. Sparse Categorical Cross entropy was
used as the loss function.

Detection of Arbitrary Wake Words 11

4.3 Results

4.3.1 Phoneme Predictor

In our proposed system, the time series of phoneme probability vectors is
transformed into a series of phonemes with the largest probability value at
each time frame, and continuous identical phonemes are combined into one
representation, as described in Section 2.2, in order to evaluate the phoneme
prediction results after removing the <blank> tokens. Phoneme Error Rate
(PER) is used as the evaluation method, which is calculated as shown in
Equation (1).

PER =
Substitution+Deletion+ Insertion

Number of Correct Phonemes
(1)

Inference results for the evaluation data are shown in Table 2. The PER
for the evaluated data was averaged 7.8%.

Table 2: Phoneme Error Rate (PER) for Test Data

Data set Correct Substitution Deletion Insertion PER
eval1 93.3% 3.7% 3.1% 1.4% 8.2%
eval2 93.8% 3.7% 2.5% 1.2% 7.4%
eval3 93.6% 3.8% 2.6% 1.5% 7.9%

4.3.2 Phoneme Sequence Detector

A Detection Error Tradeoff (DET) curve was used as a method of evaluating
the accuracy of Wake Word detection. The DET curve for the evaluation data
is shown in Figure 6. The horizontal axis represents the False Rejection Rate
(FRR) and the vertical axis represents the False Alarm Rate (FAR). The FRR
represents how often the WW went undetected, while the FAR represents how
often the a word that was not the WW was flagged as the WW. The FRR and
FAR can be adjusted by changing the threshold for determining the end of
the WW, based on the probability value used to determine whether or not it
is the end of the Wake Word when output by the phoneme sequence detector.
The formulas for calculating FRR and FAR are shown in Eqs. (2) and (3),
respectively.

False Rejection Rate (FRR) =
Number of 1 labels wrongly set to 0

Number of 1 labels
(2)

False Alarm Rate (FAR) =
Number of 0 labels wrongly set to 1

Number of 0 labels
(3)

12 Nishimura et al.

Fa
ls

e
Al

ar
m

 R
at

e

False Rejection Rate

Figure 6: DET curve for test data

Table 3: Comparison of the prediction accuracy of the proposed model with that of models
proposed in previous studies. The ‘FS’ column shows ‘frame shift’.

Model FAR FRR Acc. FA/hr FS
(%) (%) (%) (ms)

Amazon [11] 0.0 2.8 - 0 -
[19] 0.002 1.7 - 1 100
KWT-1 [4, 22] 2.5 - 94.9 9,000 10
LF-MMI [27] - 0.1 - 0.04 -
[5] 0.2 5.2 94.8 30 240
Ours 0.064 11.6 93.4 288 8

A comparison of the prediction accuracy of the proposed model with those
of models proposed in previous studies are shown in Table 3, and detailed for
each model are shown in Table 4. The proposed model generated 288 false
alarms per hour when using CSJ speech data, with a FAR of 0.064% and FRR
of 11.6%. FA/hr for the proposed model is higher than for the other models
because the number of outputs per hour6 is higher. The number of model
runs (frame shift) for the proposed model falls when it is matched with the
output rates of some of the other models, e.g., to 1/30th of the reported value
when compared to method [5], which means that the FA/hr of the proposed
model in this case is equivalent to 9.6 FA/hr. Compared to other models, the
proposed model has a higher FRR (11.6%), but its FAR and Accuracy are
comparable to those of the other models, indicating that the proposed method
has potential for use.

660min× 60sec× 1, 000ms÷ 8fs = 450, 000 outputs

Detection of Arbitrary Wake Words 13

Table 4: Number of parameters, training dataset and language for each model.

Model #Parameters Dataset Language
Amazon [11] 76M+3K+3K SLURP(TTS) [3] English
[19] 63.5M Common Voice, SNIPS [7] Multilingual
KWT-1 [4, 22] 551K GSC English
LF-MMI [27] 150K SNIPS English
[5] 93K GSC [28] English
Ours 103M+78K CSJ Japanese

[DATA ID] S00M0117
Japanese Text :えー朝の 7 時えー9 分えー我孫⼦という駅始発の千代⽥線の⼀両⽬に
English Translation :Uh... 7 oʼclock in the morning uh... 9 minutes uh...
 Abiko station is on the first car of the first train of Chiyoda line...

Correct Phonemes : e H a s a n o sj i cj i zj i e H ky u H F u N e H h a b i Q k o H t o y u H
 e kj i sj i h a c u n o cy o H d a s e N n o i cj i zy o H m e nj i

Recognition Result : e H a s a n o hj i cj i zj i e ky u H F u N e H a b i k o t o y u H
 e kj i sj i h a c u n o cj i y o d a s e N n o i cj i ry o H m e nj i

Figure 7: Examples of phoneme recognition errors.

5 Discussion

5.1 Phoneme Predictor

Examples of phoneme recognition errors are shown in Figure 7. Comparing the
correct phonemes and the recognition results in this example, we can see that
“sj” changed to “hj”, “cy” to “cj i y”, “zy” to “ry”, and some phonemes were
missed, such as “H” and “Q”. However, since the input to the phoneme predictor
only contains the probability of the phonemes that make up the WW and
<blank> , these errors are not a problem as long as relatively high probability
values are assigned to the targeted phonemes. We checked the phoneme
probability distributions of the incorrectly recognized phonemes such as “hj”,
“cj i y”, and “H”, then assigned probability values to the correct phonemes, so
these recognition errors can generally be ignored without problems. However,
it was often observed that when a <blank> token appeared in a word, the
probability of a correct phoneme was also applied to the <blank> token,
which had a major negative impact on WW recognition. Therefore, removing
<blank> tokens from the CTC output will allow the model to more accurately
detect correct phonemes.

The proposed system was trained to recognize 46 phonemes and 3 tokens
(i.e., unknown <unk>, start/end of sequence <sos/eos>, and <blank>) that
represent phonemes not present in the training data. However, some of these
phonemes and tokens are unnecessary for WW detection, because the system

14 Nishimura et al.

only detects phoneme sequences of the WW. Removing these unnecessary
phonemes from the training data, e.g., the start/end of sequence symbols and
CSJ phoneme auxiliary labels (such as vowel indeterminate “FV” and consonant
indeterminate “?”), may improve the performance of the phoneme predictor.
We can also combine similar phonemes, such as “t”, “cj”, and “c” into a single
phoneme, which may also improve detection accuracy. These techniques will be
tested in future research. Furthermore, the proposed phoneme predictor has a
large number of parameters, since it has the same architecture as a CTC-based
speech recognizer. However, our WW detection method only requires the
use of a small number of phoneme probabilities (those related to the WW),
therefore it would be possible to construct a much smaller phoneme predictor
through knowledge distillation. This is also a task for future work.

5.2 Phoneme Sequence Detector

In the example shown in Figure 7, the sequence “sj i cj i zj i (7
o’clock)” is set as the WW. The target sequence and their corresponding
phoneme sequences are underlined. If the label “1” is output at the position
of the final “i” phoneme, then detection of the WW is successful. When the
output of the PSD model was checked, the recognition result was “hj i cj
i zj i” as shown in the figure, but “1” was still output as the ‘end of WW’
label, indicating that the WW was still recognized. The output probability of
this “1” label was only 0.57 however, which is fairly low. This low probability
may increase the FRR, which is the percentage of failures to detect the Wake
Word. However, since we set a low probability threshold for the PSD model,
the WW was still detected despite the recognition error.

When labeling the dataset, the label “1” was only placed on the last three
frames of the WW, therefore only three frames in each set of WW phonemes
are positive examples. Thus, when we compare the number of positive and
negative examples in each WW occurrence, the number of negative examples
is relatively larger, resulting in unbalanced data. This results in most of the
negative cases being recognized as negative cases, but the positive cases are
also sometimes recognized as negative cases. Since the negative cases can be
correctly recognized, the model’s accuracy seems to be higher, however the
WW cannot be reliably detected. This ‘unbalanced WW data’ problem can be
avoided by changing the weight of the loss function or by changing the type of
loss function.

5.3 Advantages of Proposed Model

In this section, the advantages of the proposed model are described.

Detection of Arbitrary Wake Words 15

5.3.1 WakeWord can be Customized by Users

In most WW detection systems, the WW is fixed and cannot be reset by the
user. Although companies would like use the names of their products in their
WWs, this is not always possible because it requires retraining of the model
and a large amount of relevant data. It is also not currently possible for users
to name each of their own devices. If multiple devices are present, each must
have a different name, or else they will all respond to the same WW. When
changing the WW of a conventional system, it is necessary to prepare at least
tens of thousands of speech samples for training data, which is not feasible for
individual users. Our proposed model allows WWs to be set freely, without
retraining the model.

5.3.2 Real-time Wake Word Detection

In the PP, acoustic features are fed into the LSTM framewise using a CNN
(VGGnet), as shown in Figure 2. In the PSD, the input values are also
processed frame-wise in the LSTM. Therefore, the maximum delay before
starting the computation is only one frame (window shift width of 128/16,000
Hz = 8ms). In addition, although the proposed model uses a large ASR model
in its first stage (i.e., the PP stage), we plan to make it smaller through the
appropriate use of knowledge distillation. The second part of the model (i.e.,
PSD) is very simple, consisting only of an LSTM. These features allow the
proposed model to achieve less detection latency than other models, and our
experimental results confirm that there is no latency problem.

Another feature of the proposed model is that its configuration makes it
suitable for processing streaming data. Current mainstream deep learning
models such as Transformer and Conformer require the entire history of the
speech segment being processed to be input each time. In other words, if the
model is to return a result for every frame, it must input audio that includes
the entire speech segment possibly containing the WW target (about 2 seconds
in this paper), and every frame (8ms in this case). This computation process
must be applied to all of the data. In contrast, our proposed model only
requires the input of the last frame of data for each output (historical data is
stored in the model). This makes the proposed model suitable for real-time
and streaming processing. However, even when Transformer or Conformer are
used there seems to be no problem in terms of operating speed, so further
investigation from the standpoint of improving accuracy is warranted.

Our investigation of the proposed model confirms that “arbitrary phoneme
sequences can be recognized in combination with the phoneme predictor”, and
in this respect the effectiveness of the proposed method has been demonstrated.
It should also be possible to further modify and improve the PSD in the future.

16 Nishimura et al.

5.3.3 Computational Complexity

Current mainstream Transformer-based models require the input of information
about the length of a word for each frame, as well as the computation of all
networks, while the proposed model uses a recurrent network (LSTM), which
requires only the input and computation of the newly targeted frames, thus
reducing computational complexity and making it suitable for processing
real-time, streaming audio data.

The number of parameters for each model are also listed in Table 4. Systems
based on an ASR model have a vocabulary of several tens of millions of words.
However, in the case of models that only recognize WWs, the vocabulary
ranges from several hundred thousand to several tens of thousands of words.
Since keyword spotting requires only a limited number of phonemes, such
models are small, so we wanted our proposed model to be similar. However,
the model proposed in this paper uses a configuration similar to LVCSR, and
thus its vocabulary is large in size, but the size can be reduced through the use
of ‘knowledge distillation’. This is an issue we will address in future research.
In actual operation, the scope of the ASR model will be automatically reduced
through knowledge distillation once the WW is determined by the user.

5.4 Limitations of Proposed Method

The arbitrary wake word detection system proposed in this paper has some
issues and limitations which will be addressed in future research. They include
the following:

Future issues to be addressed include the following:

1. Low detection performance: It is necessary to investigate exactly
how streamlining the model using knowledge distillation affects WW
recognition performance.

2. Efficiency: After streamlining the model, the relationship between FAR
and FRR, as well as optimal frame shift, should be investigated.

3. Latency: Since the size of the model is still fairly large, it is necessary
to verify the computational efficiency of the streamlined model after
completion of knowledge distillation.

4. Comparison with previous studies: Experiments should be per-
formed using other corpora in order to allow direct comparisons with
the results of previous studies. These corpora include the Google speech
commands data sets V2,7 [28] LibriPhrase hard dataset,8 [24] SNIPS.9
[7]

7https://storage.googleapis.com/download.tensorflow.org/data/speech_commands_v
0.02.tar.gz

8https://github.com/gusrud1103/LibriPhrase
9https://github.com/sonos/keyword-spotting-research-datasets

https://storage.googleapis.com/download.tensorflow.org/data/speech_commands_v0.02.tar.gz
https://storage.googleapis.com/download.tensorflow.org/data/speech_commands_v0.02.tar.gz
https://github.com/gusrud1103/LibriPhrase
https://github.com/sonos/keyword-spotting-research-datasets

Detection of Arbitrary Wake Words 17

6 Conclusion

In this study, we have proposed an arbitrary Wake Word detection system that
can detect user-selected WWs using phoneme sequences. The proposed WW
detector was constructed by connecting a phoneme predictor and a phoneme
sequence detector. The system is characterized by its ability to accept an
arbitrary WW without model retraining, use of an extremely lightweight
phoneme sequence detection model in the latter stages of the model, and
frame-wise sequential computation, allowing real-time operation. Based on
our evaluation experiments, the proposed WW detection system can detect
approximately 90% of WW utterances when the phoneme error rate (PER) of
the phoneme predictor is 7.899%.

In future work, we will first investigate the proposed system’s limitations,
which are described in Section 5.4 , and then try to make the model lighter,
more accurate, and more efficient, while also reducing latency.

Financial Support

This work was supported by JSPS KAKENHI Grant Numbers 22K19793,
JP23H00493.

Biographies

Ryota Nishimura received his B.S., M.S. and Ph.D. degrees from the Toy-
ohashi University of Technology (TUT), Japan, and joined TUT as a researcher
in 2011. He was also a researcher at Nagoya University, Japan, from 2011 to
2012. He was an assistant professor at the Nagoya Institute of Technology,
Japan, from 2012 to 2015, and then an assistant professor at Keio University,
Japan, from 2015 to 2017. He was a researcher at Tokushima University,
Japan, from 2017 to 2018, and became an associate professor there in 2018.
His research interests include spoken dialog systems and spoken language
information processing. He is a senior member of IEEE, and a member of
International Speech Communication Association (ISCA), Asia Pacific Signal
and Information Processing Association (APSIPA), the Information Processing
Society of Japan (IPSJ), the Acoustical Society of Japan (ASJ), the Japanese
Society for Artificial Intelligence (JSAI), the Institute of Electronics, Infor-
mation and Communication Engineers (IEICE), the Association for Natural
Language Processing (NLP), and the Institute of Electrical Engineers of Japan
(IEEJ).

18 Nishimura et al.

Kengo Ohta received his B.S., M.S., and Ph.D. degrees from the Toyohashi
University of Technology (TUT), Japan. From 2011 to 2013, he was a Re-
search Fellow of the Japan Society for the Promotion of Science (JSPS Fellow,
DC2). He joined the National Institute of Technology, Anan College, as an
assistant professor in 2013, and was a lecturer there from 2018 to 2020. He
was also a lecturer at TUT from 2020 to 2021. He has been an associate
professor at the National Institute of Technology, Anan College since 2021.
His research interests include spoken language processing, speech recognition,
speech synthesis, and spoken dialog systems. He is a member of the Institute
of Electronics, Information and Communication Engineers (IEICE), the Infor-
mation Processing Society of Japan (IPSJ), the Acoustical Society of Japan
(ASJ), and the Japanese Society for Artificial Intelligence (JSAI).

Norihide Kitaoka received his B.S. and M.S. degrees from Kyoto University,
Japan. In 1994, he joined DENSO CORPORATION. In 2000, he received his
Ph.D. degree from the Toyohashi University of Technology (TUT), Japan. He
joined TUT as a research associate in 2001 and was a lecturer from 2003 to
2006. He was an associate professor at Nagoya University, Japan, from 2006
to 2014, and joined Tokushima University, Japan, as a professor in 2014. He
has been a professor at TUT since 2018. His research interests include speech
processing, speech recognition, and spoken dialog systems. He is a member
of the IEEE, the International Speech Communication Association (ISCA),
the Asia Pacific Signal and Information Processing Association (APSIPA),
the Information Processing Society of Japan (IPSJ), the Acoustical Society of
Japan (ASJ), the Japanese Society for Artificial Intelligence (JSAI), and the
Association for Natural Language Processing.

References

[1] S. Ö. Arık, M. Kliegl, R. Child, J. Hestness, A. Gibiansky, C. Fougner, R.
Prenger, and A. Coates, “Convolutional Recurrent Neural Networks for
Small-Footprint Keyword Spotting”, in Interspeech 2017, 2017, 1606–10,
doi: 10.21437/Interspeech.2017-1737.

[2] Arnav Kundu and Mohammad Samragh Razlighi and Minsik Cho and
Priyanka Padmanabhan and Devang Naik, “HEiMDaL: Highly Efficient
Method for Detection and Localization of wake-words”, in ICASSP 2023,
2023.

[3] E. Bastianelli, A. Vanzo, P. Swietojanski, and V. Rieser, “SLURP: A
Spoken Language Understanding Resource Package”, in EMNLP 2020,
2020, 7252–62, doi: 10.18653/v1/2020.emnlp-main.588.

https://doi.org/10.21437/Interspeech.2017-1737
https://doi.org/10.18653/v1/2020.emnlp-main.588

Detection of Arbitrary Wake Words 19

[4] A. Berg, M. O’Connor, and M. T. Cruz, “Keyword Transformer: A Self-
Attention Model for Keyword Spotting”, in INTERSPEECH 2021, 2021,
4249–53, doi: 10.21437/Interspeech.2021-1286.

[5] A. Bittar, P. Dixon, M. Samragh, K. Nishu, and D. Naik, “Improving
Vision-inspired Keyword Spotting Using a Streaming Conformer Encoder
With Input-dependent Dynamic Depth”, in ICASSP 2024, 2024.

[6] G. Chen, C. Parada, and G. Heigold, “Small-footprint keyword spotting
using deep neural networks”, in ICASSP 2014, Vol. 14, Citeseer, 2014,
4087–91.

[7] A. Coucke, M. Chlieh, T. Gisselbrecht, D. Leroy, M. Poumeyrol, and
T. Lavril, “Efficient keyword spotting using dilated convolutions and
gating”, in ICASSP 2019, 2019, 6351–5.

[8] A. Graves, S. Fernández, F. Gomez, and J. Schmidhuber, “Connectionist
Temporal Classification: Labelling Unsegmented Sequence Data with
Recurrent Neural Networks”, in International Conference on Machine
Learning (ICML 2006), Association for Computing Machinery, 2006,
369–76, doi: 10.1145/1143844.1143891.

[9] S. Hochreiter and J. Schmidhuber, “Long short-term memory”, Neural
Computation, 9(8), 1997, 1735–80.

[10] D. P. Kingma and J. Ba, “Adam: A Method for Stochastic Optimization”,
2017, arXiv: 1412.6980 [cs.LG].

[11] P.-J. Ku, I.-F. Chen, H. Yang, A. Raju, P. Dheram, P. Ghahremani,
B. King, J. Liu, R. Ren, and P. Nidadavolu, “Hot-fixing wake word
recognition for end-to-end ASR via neural model reprogramming”, in
ICASSP 2024, 2024.

[12] A. Lee and T. Kawahara, “Recent development of open-source speech
recognition engine Julius”, in APSIPA ASC 2009, 2009, 131–7.

[13] K. Maekawa, “Corpus of Spontaneous Japanese: Its design and evalu-
ation”, in ISCA & IEEE Workshop on Spontaneous Speech Processing
and Recognition (SSPR 2003), 2003.

[14] T. Mikolov, M. Karafiát, L. Burget, J. Černocký, and S. Khudanpur,
“Recurrent neural network based language model”, in INTERSPEECH
2010, 2010, 1045–8, doi: 10.21437/Interspeech.2010-343.

[15] V. Nair and G. E. Hinton, “Rectified linear units improve restricted
Boltzmann machines”, in International Conference on Machine Learning
(ICML 2010), 2010.

[16] D. Ng, Y. Xiao, J. Q. Yip, Z. Yang, B. Tian, Q. Fu, E. S. Chng, and B.
Ma, “Small Footprint Multi-channel Network for Keyword Spotting with
Centroid Based Awareness”, in INTERSPEECH 2023, 2023, 296–300,
doi: 10.21437/Interspeech.2023-1210.

https://doi.org/10.21437/Interspeech.2021-1286
https://doi.org/10.1145/1143844.1143891
https://arxiv.org/abs/1412.6980
https://doi.org/10.21437/Interspeech.2010-343
https://doi.org/10.21437/Interspeech.2023-1210

20 Nishimura et al.

[17] T. Nitta, S. Iseji, T. Fukuda, H. Yamada, and K. Katsurada, “Key-word
spotting using phonetic distinctive features extracted from output of
an LVCSR engine”, in ISCA & IEEE Workshop on Spontaneous Speech
Processing and Recognition (SSPR 2003), 2003.

[18] L. Rabiner, “A tutorial on hidden Markov models and selected appli-
cations in speech recognition”, Proceedings of the IEEE, 77(2), 1989,
257–86, doi: 10.1109/5.18626.

[19] P. M. Reuter, C. Rollwage, and B. T. Meyer, “Multilingual query-
by-example keyword spotting with metric learning and phoneme-to-
embedding mapping”, in ICASSP 2023-2023 IEEE International Confer-
ence on Acoustics, Speech and Signal Processing (ICASSP), IEEE, 2023,
1–5.

[20] R. C. Rose and D. B. Paul, “A hidden Markov model based keyword
recognition system”, in ICASSP 1990, IEEE, 1990, 129–32.

[21] O. Rybakov, N. Kononenko, N. Subrahmanya, M. Visontai, and S. M.
Laurenzo, “Streaming keyword spotting on mobile devices”, in INTER-
SPEECH 2020, 2020, 2277–81, doi: 10.21437/Interspeech.2020-1003.

[22] Y. M. Saidutta, R. S. Srinivasa, C.-H. Lee, C. Yang, Y. Shen, and H. Jin,
“To Wake-Up or Not to Wake-Up: Reducing Keyword False Alarm by
Successive Refinement”, in ICASSP 2023, 2023.

[23] L. Sarı, B. Gündoğdu, and M. Saraçlar, “Fusion of LVCSR and
posteriorgram-based keyword search”, in INTERSPEECH 2015, 2015,
824–8, doi: 10.21437/Interspeech.2015-259.

[24] H.-K. Shin, H. Han, D. Kim, S.-W. Chung, and H.-G. Kang, “Learning
Audio-Text Agreement for Open-vocabulary Keyword Spotting”, in IN-
TERSPEECH 2022, 2022, 1871–5, doi: 10.21437/Interspeech.2022-580.

[25] K. Simonyan and A. Zisserman, “Very deep convolutional networks
for large-scale image recognition”, in 3rd International Conference on
Learning Representations (ICLR 2015), Computational and Biological
Learning Society, 2015.

[26] R. A. Sukkar and J. G. Wilpon, “A two-pass classifier for utterance
rejection in keyword spotting”, in ICASSP 1993, Vol. 2, IEEE, 1993,
451–4.

[27] Y. Wang, H. Lv, D. Povey, L. Xie, and S. Khudanpur, “Wake Word
Detection with Alignment-Free Lattice-Free MMI”, in INTERSPEECH
2020, 2020, 4258–62, doi: 10.21437/Interspeech.2020-1811.

[28] P. Warden, “Speech Commands: A Dataset for Limited-Vocabulary
Speech Recognition”, 2018, arXiv: 1804.03209 [cs.CL].

[29] S. Watanabe, T. Hori, S. Karita, T. Hayashi, J. Nishitoba, Y. Unno, N.
Enrique Yalta Soplin, J. Heymann, M. Wiesner, N. Chen, A. Renduchin-
tala, and T. Ochiai, “ESPnet: End-to-End Speech Processing Toolkit”,
in INTERSPEECH 2018, 2018, 2207–11, doi: 10.21437/Interspeech.201
8-1456.

https://doi.org/10.1109/5.18626
https://doi.org/10.21437/Interspeech.2020-1003
https://doi.org/10.21437/Interspeech.2015-259
https://doi.org/10.21437/Interspeech.2022-580
https://doi.org/10.21437/Interspeech.2020-1811
https://arxiv.org/abs/1804.03209
https://doi.org/10.21437/Interspeech.2018-1456
https://doi.org/10.21437/Interspeech.2018-1456

Detection of Arbitrary Wake Words 21

[30] G.-P. Yang, Y. Gu, S. Macha, Q. Tang, and Y. Liu, “On-device con-
strained self-supervised learning for keyword spotting via quantization
aware pre-training and fine-tuning”, in ICASSP 2024, 2024.

[31] M. D. Zeiler, “ADADELTA: An Adaptive Learning Rate Method”, 2012,
arXiv: 1212.5701 [cs.LG].

https://arxiv.org/abs/1212.5701

	Introduction
	Related Work
	Wake Word Detection
	Connectionist Temporal Classification (CTC)
	End-to-End Speech Processing Toolkit (ESPnet)

	Wake Word Detection Method
	Phoneme Predictor
	Phoneme Sequence Detector
	Picking out Phoneme Probability Distribution for User’s WW
	Phoneme Sequence Detection Model

	Experiment
	Experimental Conditions
	Model Training
	Phoneme Prediction Model
	Phoneme Sequence Detection Model

	Results
	Phoneme Predictor
	Phoneme Sequence Detector

	Discussion
	Phoneme Predictor
	Phoneme Sequence Detector
	Advantages of Proposed Model
	WakeWord can be Customized by Users
	Real-time Wake Word Detection
	Computational Complexity

	Limitations of Proposed Method

	Conclusion

