
APSIPA Transactions on Signal and Information Processing, 2024, 13, e400
This is an Open Access article, distributed under the terms of the Creative Commons
Attribution licence (http:// creativecommons.org/ licenses/ by-nc/4.0/ ), which permits un-
restricted re-use, distribution, and reproduction in any medium, for non-commercial use,
provided the original work is properly cited.

Original Paper
A Lightweight Enhancement Approach
for Real-Time Semantic Segmentation
by Distilling Rich Knowledge from
Pre-Trained Vision-Language Model
Chia-Yi Lin1, Jun-Cheng Chen2 and Ja-Ling Wu1,3*

1Department of Computer Science and Information Engineering, National
Taiwan University
2Research Center for Information Technology Innovation, Academia Sinica
3Graduate Institute of Networking and Multimedia, National Taiwan
University

ABSTRACT
In this work, we propose a lightweight approach to enhance real-
time semantic segmentation by leveraging the pre-trained vision-
language models, specifically utilizing the text encoder of Con-
trastive Language-Image Pretraining (CLIP) to generate rich se-
mantic embeddings for text labels. Then, our method distills this
textual knowledge into the segmentation model, integrating the
image and text embeddings to align visual and textual information.
Additionally, we implement learnable prompt embeddings for bet-
ter class-specific semantic comprehension. We propose a two-stage
training strategy for efficient learning: the segmentation backbone
initially learns from fixed text embeddings and subsequently opti-
mizes prompt embeddings to streamline the learning process. The
extensive evaluations and ablation studies validate our approach’s
ability to effectively improve the semantic segmentation model’s
performance over the compared methods.
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1 Introduction

Semantic segmentation is one of research hotspots in computer vision, which
seeks to assign each pixel a semantic label in an image, thus segmenting the
image into distinct and meaningful components. This task is fundamental
for machines to comprehend the details of an image, enabling differentiation
among different objects, regions, or parts in the image. It holds significant
importance for applications demanding rapid processing, such as autonomous
vehicles and augmented reality, where swift interaction and response are crucial.
Consequently, the focus on creating efficient, real-time semantic segmentation
models has recently emerged as a vital research area.

Numerous segmentation models proposed by Zhao et al. [31], Li et al. [13],
Mehta et al. [16], Yu et al. [28], Chen et al. [3], Fan et al. [7] and Peng et al.
[19] have been developed to address the need for low-latency algorithms in real-
time semantic segmentation. While these models achieve significant progress,
challenges remain, particularly in balancing the inference speed with the model
accuracy. Although an effective approach to improve the performance is to
exploit a more complex architecture, it is still an ongoing research problem to
keep the latency as low as possible at the same time.

To address these challenges, we utilize the pre-trained vision-language
foundation models developed by Radford et al. [21] and Jia et al. [10] to
improve real-time semantic segmentation. Our approach, integrating the text
encoder of the Contrastive Language-Image Pre-training (CLIP) proposed
by Radford et al. [21], aims to transfer its substantial textual knowledge to the
real-time semantic segmentation model, STDC-Seg developed by Fan et al. [7].
As shown in Figure 1, our framework aligns the information from the visual
and textual domains by consolidating image and text embeddings, using cosine
similarity to create a score map that reflects semantic correlations between
different image regions and textual labels. The score map, combined with
the image’s feature maps, facilitates the integration of visual and textual
information. Additionally, we introduce learnable prompt embeddings specific
to each class, further enhancing the semantic understanding of the model.
These learnable prompts combined with the label token embeddings are then
processed through the CLIP text encoder, producing enriched class-specific
prompt embeddings. The learnable prompts provide the model a flexible way
to effectively learn the class-specific information.

Furthermore, to guarantee efficient learning, our methodology exploits a
two-stage training process. Initially, the segmentation model’s backbone is
trained by aligning its image feature representations with the text embeddings
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Figure 1: The overview of the proposed framework: (a) lightweight segmentation module;
(b) textual guidance module; (c) prompt optimization module.

derived from the CLIP text encoder. This stage aims to distill the segmen-
tation backbone with the comprehensive textual knowledge from the CLIP
model, enriching its feature representation. In the subsequent stage, the focus
shifts to optimize the class-specific learnable prompt embeddings while the
backbone’s parameters are held constant. This enables the model to refine
the prompt embedding to capture class-specific nuances, thereby elevating the
model’s segmentation performance.

Our framework, encompassing the proposed components and training strate-
gies, significantly enhances the segmentation performance of the STDC-Seg
model while only introducing negligible additional latency at the inference
stage. This makes our solution both efficient and practical for deployment in
real-world applications.

Our primary contributions are summarized as follows:

• We present a novel approach to enhance the real-time semantic segmenta-
tion model STDC-Seg by efficiently distilling CLIP’s textual knowledge,
effectively boosting performance while maintaining low latency during
inference.

• For real-time semantic segmentation, we develop a two-stage training
methodology to effectively train both the segmentation backbone and
class-specific learnable prompts, thereby elevating the segmentation
performance.

• Through rigorous experimentation and ablation studies on two benchmark
datasets for semantic segmentation, we demonstrate the effectiveness of
our approach and offer insightful findings.
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The structure of this paper is as follows: Section 2 delves into a thorough review
of the related works, examining the current research landscape and previous
studies in the domain. Section 3 details our proposed methodology, outlining
the architecture, algorithms, and essential elements of our approach. Section 4
discusses the experimental findings, including the descriptions of the datasets
used, implementation details, performance evaluations, and visualization, along
with various ablation studies. Section 5 concludes the paper by summarizing
the main outcomes and underscoring the contributions and impacts of our
research.

2 Related Work

In this section, we briefly describe the recent relevant research related to
real-time semantic segmenation, pre-trained vision-language model, prompt
tuning, and semantic segmentation with pre-trained vision-language models.

2.1 Real-Time Semantic Segmentation

Real-time semantic segmentation has garnered significant attention as a re-
search domain focusing on achieving precise image segmentation in real-time
contexts. Various approaches have been introduced to address this challenge:
Zhao et al. [31] proposed ICNet which introduces a multi-resolution cascaded
network architecture designed for real-time performance on high-resolution
images. Yu et al. [29] developed BiSeNetV1 which utilizes a dual-path network
architecture that efficiently processes spatial information and global context,
aiming for compactness and efficiency. Li et al. [13] proposed DFANet which
leveraged multi-scale feature propagation and aggregation to achieve a bal-
ance between computational load and accuracy. Mehta et al. [16] presented
ESPNetv2 which utilized grouped point-wise and depth-wise dilated separable
convolutions to minimize computational demands. Yu et al. [28] further pro-
posed BiSeNetV2 to enhance the original BiSeNetV1 architecture, achieving
further performance improvements. Chen et al. [3] developed FasterSeg to
apply neural architecture search (NAS) proposed by Zoph and Le [34] with
fine-grained latency regularization, targeting enhanced accuracy for low-latency
networks. Fan et al. [7] proposed STDC-Seg which introduces spatio-temporal
decomposition along with context aggregation mechanisms, improving both
accuracy and efficiency, establishing the STDC backbone as a robust, effi-
cient option. Peng et al. [19] presented PP-LiteSeg to refine the decoder of
STDC-Seg, resulting in speed and accuracy enhancements. Xu et al. [27]
proposed PIDNet which exploits a three-branch network architecture to more
effectively parse the detailed, context, and boundary information for better
segmentation performance than other two-branch approaches. This study
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specifically focuses on STDC-Seg, utilizing its innovative STDC backbone,
which has demonstrated state-of-the-art performance, as the baseline for our
research.

2.2 Pre-Trained Vision-Language Model

Vision-language pre-training models proposed by Radford et al. [21] and Jia
et al. [10], Chen et al. [4], Zhang et al. [30] have emerged as a prominent
area of research, focusing on developing models capable of learning combined
representations of images and text. Among various methodologies, CLIP and
Align proposed by Radford et al. [21] and Jia et al. [10] respectively stand out,
particularly CLIP, which has received considerable attention for its innovative
approach. CLIP employs a vision-language contrastive training mechanism
to create a unified embedding space for both images and texts, facilitating
zero-shot inference capabilities across a range of tasks. The effectiveness
of CLIP is largely due to its ability to assimilate knowledge from a broad
spectrum of data and its use of contrastive learning. This approach not
only promotes the learning of distinct representations for correlated (positive)
and uncorrelated (negative) pairs but also significantly enhances the model’s
ability for generalization. In our research, we harness the pre-trained CLIP text
encoder to infuse textual knowledge into our semantic segmentation framework,
leveraging its powerful representation.

2.3 Prompt Tuning

Prompt tuning methods proposed by Petroni et al. [20], Gao et al. [9], and Liu
et al. [14] have evolved as a key approach to adapt the pre-trained language
models to specific downstream tasks, thereby improving their performance.
This approach involves adjusting the model to better suit the task requirements
through various techniques, including the creation of hand-crafted prompt
templates as demonstrated by Petroni et al. [20] or the automatic prompt
generation as proposed by Gao et al. [9] using advanced sequence-to-sequence
large language models, such as T5 developed by Raffel et al. [22]. Additionally,
some methods focus on optimizing prompts directly within the embedding
space as presented by Liu et al. [14], rather than formulating prompt tem-
plates in textual form. In the context of vision-language integration, innovative
approaches like CoOp and CLIP-Adapter have been developed. Zhou et al.
[32] proposed CoOp to introduce the learnable contexts to the text encoder of
CLIP, aiming to boost performance in tasks like few-shot image classification.
Conversely, Gao et al. [8] developed CLIP-Adapter which employed lightweight
feature adapters that can be trained with a small amount of annotated data.
Khattak et al. [11] further proposed Multi-modal Prompt Learning (MaPLe)
for CLIP which performs joint prompt tuning upon both vision and language
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branches for improved alignment between both representations. These advance-
ments enhancing the model’s efficiency and effectiveness in interpreting and
generating descriptions for visual content. Given the relevance and efficiency
of CoOp’s prompt tuning mechanism, especially for real-time applications, our
research incorporates it into our framework.

2.4 Semantic Segmentation with Pre-Trained Vision-Language Model

The integration of pre-trained vision-language models has significantly ad-
vanced semantic segmentation, with research demonstrating their capability to
boost performance. Language-Driven Semantic Segmentation (LSeg) proposed
by Li et al. [12] and DenseCLIP by Rao et al. [23] are notable examples. LSeg
enabled zero-shot open-vocabulary semantic segmentation, as demonstrated
by Bucher et al. [2] earlier, to combine the text encoder of CLIP with Vision
Transformer-based segmentation models, which are stemmed from the base
model proposed by Dosovitskiy et al. [6], through aligning their decoder out-
put feature maps. Rao et al. [23] developed DenseCLIP to further enhance
the alignment between image and text embeddings and introduced visual
context-aware prompt tuning with an additional Transformer module pro-
posed by Vaswani et al. [26], setting new benchmarks across multiple semantic
segmentation datasets. Furthermore, Zhou et al. [33] proposed ZegCLIP
for enhanced zero-shot semantic segmentation by combining the image-level
prior into text embedding before text-patch matching upon corresponding
embeddings from CLIP.

However, these methodologies typically do not cater to real-time processing
demands due to their complex architectures. Our research is distinct in its focus
on real-time semantic segmentation, leveraging the rich textual knowledge from
the text encoder of CLIP to improve the STDC-Seg model’s accuracy without
significantly affecting inference speed. By incorporating textual knowledge, our
goal is to achieve an optimal balance between accuracy and speed, addressing
the critical need for efficiency in real-world semantic segmentation applications.

3 Methodology

This section presents a detailed description of our proposed framework for
real-time semantic segmentation. Our framework consists of three main mod-
ules: (1) the Lightweight Segmentation Module (LSM), which is designed to
ensure the segmentation process remains efficient and fast, crucial for real-time
applications. It employs a streamlined architecture that minimizes computa-
tional overhead while maintaining high accuracy in segmentation tasks, such
as STDC-Seg; (2) Textual Guidance Module (TGM), which leverages the
rich semantic knowledge embedded in the text encoders of the pretrained
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vision-language foundation models like CLIP. It aims to enrich the segmen-
tation model’s understanding by aligning its visual features with the textual
representations from the pre-trained foundation model, facilitating a deeper
semantic comprehension of the images being processed; (3) Prompt Optimiza-
tion Module (POM), which focuses on refining the interaction between the
segmentation model and the textual guidance provided by TGM. It employs
class-specific learnable prompts, which are optimized to enhance the model’s
ability to utilize textual information effectively, thereby improving its seg-
mentation performance. We aim to integrate these modules to enhance the
performance of STDC-Seg, a real-time semantic segmentation model. In the
following subsections, we provide a comprehensive elaboration of each module,
followed by our designed training procedure.

3.1 Model Architectures

3.1.1 Lightweight Segmentation Module (LSM)

Our LSM module employs an encoder-decoder architecture tailored for efficient
semantic segmentation. The encoder’s role is to extract the multi-scale image
features from the shallow to deep layers. This process generates multiple sets
of feature maps at different levels, which are crucial for understanding the
image’s content at various scales. On the other hand, the decoder is responsible
to combine these extracted features to construct the final segmentation result.
The procedure begins with the high-level, semantically rich features, which are
progressively upsampled and merged with lower-level, detail-oriented features
through pixel-wise addition. This iterative feature aggregation from the deep
to the shallow layers ensures that the resultant feature map is comprehensive
to contain all necessary details for pixel-level classification. Thus, this enables
precise segmentation as shown in Figure 1(a).

Formally, given an input image X and its corresponding ground-truth
semantic mask Y , our objective is to acquire the predicted mask Y ′ = D(E(X))
which is derived from the encoder E and decoder D to closely approximate
Y . For the purposes of this study, we have chosen STDC-Seg to serve as
the LSM, capitalizing on its efficiency and effectiveness in real-time semantic
segmentation tasks.

3.1.2 Textual Guidance Module (TGM)

Inspired by DenseCLIP [23], our TSM module aims to empower the LSM
module, the STDC backbone, by infusing it with the rich textual knowledge
from the CLIP text encoder. It processes the feature map output from the
final stage of the STDC backbone and the text embeddings for each class label
generated by the CLIP text encoder as shown in Figure 1(b).
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We denote the output feature maps from the first stage to the fourth
stage of the STDC backbone as F (1), F (2), F (3), F (4) ← E(X), where F (1) ∈
RH

4 ×
W
4 ×d

(1)

, F (2) ∈ RH
8 ×

W
8 ×d

(2)

, F (3) ∈ RH
16×

W
16×d

(3)

, F (4) ∈ RH
32×

W
32×d

(4)

, H
and W represent the height and width of the input image, and d(1) to d(4) are
the channel dimensions, respectively. The class labels (e.g., road, person, car),
L1, L2, ..., LK corresponding to K classes, are encoded into text embeddings
T1, T2, ..., TK ∈ Rd(4)

by passing them through the CLIP text encoder.
The core operation of TGM involves calculating the cosine similarity

between each pixel in F (4) and the text embeddings T1, T2, ..., TK . We choose
to calculate the similarity using F (4) instead of other encoded features due
to the efficiency consideration that it possesses the smallest resolution. As
a result, this computation yields a score map S ∈ RH

32×
W
32×K , where each

element Si,j,k represents the similarity between the feature map at location
(i, j) and the text embedding for class k. The equation is as follows:

Si,j,k =
F

(4)
i,j · Tk

∥F (4)
i,j ∥∥Tk∥

, i = 1, ...,
H

32
, j = 1, ...,

W

32
, k = 1, ...,K (1)

This score map, essentially a lower-resolution semantic prediction, is then used
as an auxiliary task to refine the segmentation output by aligning it closer to
the ground truth. Moreover, by computing cosine similarity, the image features
of STDC backbone are aligned with the text embeddings from CLIP. This not
only allows the model to integrate and utilize the rich textual knowledge from
the CLIP text encoder but also boosts its semantic representation capabilities.

3.1.3 Prompt Optimization Module (POM)

The POM module, inspired from CoOp proposed by Zhou et al. [32], is de-
signed to manage class-specific learnable prompt embeddings and aims to refine
the discriminative power of the text embeddings for each class label. These
embeddings are denoted as Vij ∈ Rdt , i = 1, 2, ...,K, j = 1, 2, ...,M , where K
represents the number of classes, M represents the number of learnable embed-
dings for each class, and dt is the dimension of the CLIP token embeddings.
Additionally, the token embeddings of the class label text are represented by
Eik ∈ Rdt for i = 1, 2, ...,K classes and k = 1, 2, ..., l tokens, with l indicating
the token sequence length. The essence of incorporating class-specific learnable
prompt embeddings lies in their ability to enable trainable modifications to
the text embeddings provided by the CLIP text encoder, thereby enhancing
the specificity and discriminative capabilities of the embeddings for each class
label as shown in Figure 1(c).

To achieve this, for each class i, we concatenate the learnable prompt
embeddings Vi1, Vi2, ..., ViM with the token embeddings Ei1, Ei2, ..., Eil for
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each class i. This concatenated vector is then processed by the CLIP text
encoder to produce the output text embedding Ti ∈ Rd, which is formulated
as follows:

Ti = POM([Vi1 Vi2 ... ViM Ei1 Ei2 ... Eil]) (2)

During the training phase, while the parameters of the CLIP text encoder
remain fixed, the learnable text embeddings Ti are optimized within the
pre-trained domain of CLIP. This ensures that the enriched text embeddings
continue to benefit from the rich textual knowledge inherent in the CLIP model,
thus effectively improving our model’s performance through the enhanced
textual guidance.

3.2 Two-Stage Training Procedure

In our framework, we exploit a meticulously designed two-stage training
procedure, which aims at efficiently transferring the rich textual knowledge
encoded within the CLIP text encoder to the lightweight STDC backbone.
This approach ensures that the semantic segmentation model not only benefits
from the advanced capabilities of vision-language pre-training models but also
maintains the required efficiency for real-time applications. The subsequent
sections will outline the specific loss functions utilized throughout the training
phases, followed by a detailed elaboration of each training stage.

3.2.1 Loss Functions

The LSM module, at the heart of our real-time semantic segmentation frame-
work, generates the predicted semantic mask, with optimization achieved
through the implementation of cross-entropy loss augmented through online
hard example mining (OHEM) developed by Shrivastava et al. [25]. The
cross-entropy loss (CE), a standard measure in segmentation tasks, is defined
as:

CE(x, y) =
1

N

N∑
n=1

− log

(
exp(xn,yn)∑K
k=1 exp(xn,yk

)

)
, (3)

where x represents the logits from the model, y is the ground-truth label, N
is the total number of pixels, and K is the number of classes. OHEM strate-
gically focuses the training effort on more difficult examples that contribute
significantly to the loss, thus enhancing the learning efficiency.

In our framework, the loss for the segmentation task, referred to as Lseg,
is based on the cross-entropy loss as defined in Equation (3). Additionally, the
TGM module produces a score map acting as a low-resolution semantic mask.
This output is first upscaled to the same dimensions as the ground-truth mask
using bilinear upsampling. Then, we employ the same cross-entropy loss to
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them, denoted as Ltext, for auxiliary training. We use bilinear upsampling
here to follow the convention of the previous works, especially Long et al.
[15], which bilinearly upsampled the low-resolution feature maps to match
the resolution of the ground truth labels before calculating the cross-entropy
loss. The incorporation of Ltext facilitates the utilization of the rich semantic
information from the pre-trained CLIP model. The alignment with the textual
space of the CLIP model offers a form of regularization that aids in developing
a more effective segmentation model. Moreover, in line with the STDC-Seg
methodology, a detail loss (Ldetail) is incorporated to further refine our training
process. Specifically, we adopt the combined loss function using binary cross-
entropy loss (Lbce) and dice loss (Ldice) to jointly optimize detail learning,
enhancing the overall segmentation performance. The detail loss is formulated
as follows:

Ldetail(pe, ge) = Ldice(pe, ge) + Lbce(pe, ge)

where pe denotes the predicted edge map and ge denotes the corresponding
ground-truth edge map generated with Laplacian convolution, more informa-
tion could be found in Fan et al. [7]. The dice loss Ldice is defined as:

Ldice(pe, ge) = 1−
2
∑

i p
i
eg

i
e + ϵ∑

i(p
i
e)

2 +
∑

i(g
i
e)

2 + ϵ

Here, i denotes the i-th pixel and ϵ is a smoothing term to avoid division by
zero, with ϵ set to 1. The overall loss function, L, combines these components
as follows:

L = λ1 ∗ Lseg + λ2 ∗ Ltext + λ3 ∗ Ldetail, (4)

where the weighting coefficients λ1, λ2, and λ3 are all set to 1, balancing the
contribution of each loss component to the total loss.

3.2.2 First Training Stage

The initial stage of our training procedure focuses on establishing the alignment
between the STDC backbone and the fixed text embeddings provided by
the CLIP text encoder where during this phase, learnable prompts are not
utilized as illustrated in Figure 2. In addition, this alignment allows the
STDC backbone to leverage the rich textual knowledge of CLIP as additional
information for semantic segmentation.

3.2.3 Second Training Stage

In the second stage, as depicted in Figure 3, we introduce the class-specific
learnable prompt embeddings in the POM while the parameters of the STDC
backbone are held fixed. This choice is based on the understanding that in
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Figure 2: The illustration of our first training stage.

Figure 3: The illustration of our second training stage.

the first stage, the STDC backbone already assimilated textual knowledge
from the CLIP text encoder, allowing it to adapt to changing text prompt
embeddings. Consequently, the POM focuses on optimizing the prompts
to provide precise descriptions for each class label, thereby augmenting the
discriminative characteristics of the optimized text prompt embeddings for the
STDC backbone.

The entire training procedure is summarized in Algorithm 1. Our frame-
work achieves significant improvements after applying the two-stage training
compared to the original model. The LSM can simultaneously handle semantic
segmentation tasks with visual and textual knowledge. The POM provides
optimized class-specific prompt embeddings with more discriminative informa-
tion. The TGM connects these two modules and aligns the two embedding
spaces, successfully transferring textual knowledge from the CLIP text encoder
to the STDC backbone.
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3.3 Inference

After applying the two-stage training procedure, the proposed model can
still achieve real-time inference speed with introducing a minimal amount of
additional computation time compared to the original STDC-Seg model during
the inference phase. This achievement is accomplished by retaining only the
final trained text embeddings, discarding the learnable prompt embeddings,
and the CLIP text encoder, as illustrated in Figure 4. By adopting this
approach, the additional computational cost is limited to that of calculating
cosine similarity in the TGM and including a few additional channels to the
encoded feature maps. Consequently, the overall increase in Floating Point
Operations (FLOPs) is negligible, enabling efficient real-time inference while
preserving the accuracy and performance gains of our training methodology.

Figure 4: The colored area indicates the inference process of our framework.

4 Experiments

In this section, we present a comprehensive evaluation results and ablation
studies of the proposed approach on the semantic segmentation datasets.

4.1 Experimental Settings

4.1.1 Datasets

To evaluate the performance of our proposed methods, we conduct experiments
on two standard semantic segmentation datasets, including the Cityscapes
dataset [5] and the CamVid dataset [1]. The Cityscapes dataset is a large-
scale dataset for urban scene understanding with pixel-level annotations of 30
different classes, where 19 of them are generally used for semantic segmentation
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Algorithm 1 The Proposed Two-Stage Training Process.
Input: Training data with image-class pairs (X, Y )
Input: Label texts L1, L2, ..., LK

First Training Stage:
1: Initialize STDC backbone and CLIP text encoder with pretrained weights
2: Freeze CLIP text encoder parameters
3: for each i in K do
4: Ei1, Ei2, ..., Eil ← CLIPTokenEmbedder(CLIPTokenizer(Li)) ▷ l denotes the

sequence length of the token embeddings
5: Ti ← CLIPTextEncoder([Ei1 Ei2 ... Eil])
6: end for
7: for each training iteration do
8: F (1), F (2), F (3), F (4) ← STDCBackbone(X)

9: for each i in the height of F (4), j in the width of F (4), k in K do

10: Si,j,k ←
F

(4)
i,j

·Tk

∥F (4)
i,j

∥∥Tk∥

11: end for
12: F (4)′ ← [F (4) S]

13: Y ′ ← STDCDecoder(F (1), F (2), F (3), F (4)′ )
14: Loss← CrossEntropyOHEM(Y ′, Y ) ▷ Loss of the main task only. Losses of auxiliary

tasks are omitted here for simplicity.
15: Backpropagate and update parameters
16: end for
17: Return: Trained model of the first training stage
Second Training Stage:
1: Initialize STDC backbone and decoder with trained weights from the first training stage
2: Initialize CLIP text encoder with pretrained weights
3: Freeze STDC backbone and CLIP text encoder parameters
4: for each i in K do
5: Ei1, Ei2, ..., Eil ← CLIPTokenEmbedder(CLIPTokenizer(Li))
6: end for
7: for each training iteration do
8: for each i in K do
9: Ti ← CLIPTextEncoder([Vi1 ... ViM Ei1 ... Eil]) ▷ M denotes the number of

learnable prompt embeddings
10: end for
11: F (1), F (2), F (3), F (4) ← STDCBackbone(X)

12: for each i in the height of F (4), j in the width of F (4), k in K do

13: Si,j,k ←
F

(4)
i,j

·Tk

∥F (4)
i,j

∥∥Tk∥

14: end for
15: F (4)′ ← [F (4) S]

16: Y ′ ← STDCDecoder(F (1), F (2), F (3), F (4)′ )
17: Loss← CrossEntropyOHEM(Y ′, Y ) ▷ Loss of the main task only. Losses of auxiliary

tasks are omitted here for simplicity.
18: Backpropagate and update parameters
19: end for
20: Return: Trained model of the second training stage
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tasks. There are 5,000 carefully annotated images with 2,048 × 1,024 pixels
in size, split into three subsets: training, validation, and testing sets, with
2,975, 500, and 1,525 images, respectively. Besides, the CamVid dataset,
collected from vehicle-mounted cameras, has 11 semantic classes. It comprises
701 annotated images with 960 × 720 pixels in size, also split into three
subsets: training, validation, and testing sets, with 367, 101, and 233 images,
respectively. We train our models with a training set and evaluate them on a
validation set of each dataset separately.

4.1.2 Implementation Details

In our experiments, we utilize stochastic gradient descent (SGD) as shown
in Ruder [24] as our optimizer with a momentum of 0.9 and weight decay of
0.0005. For the Cityscapes dataset, the initial learning rate is set to 0.005
for the backbone and learnable prompts and 0.05 for other parameters. The
batch size is set to 24, and we employ the “poly” learning rate policy, where
the initial rate is multiplied by (1− current_iteration

max_iterations )γ with a total of 160,000
iterations and γ equals 0.9. Additionally, we use a linear warm-up strategy for
the first 1,000 steps.

For the CamVid dataset, the initial learning rate is set to 0.01 for the
backbone and learnable prompts and 0.1 for other parameters. The batch
size is set to 16, and we also use the “poly” learning rate policy with the
same parameters as before but with a total of 10,000 iterations. The warm-up
strategy is applied for the first 200 steps.

We apply data augmentation techniques in both datasets, including color
jittering, random horizontal flipping, random cropping, and random resizing,
to enhance the training data. For the Cityscapes dataset, we train the model
using a scale range of [0.125, 1.5] stepping by 0.125, and the cropped resolution
is set to 1024 × 512, following the same settings as STDC1-Seg50. On the
other hand, for the CamVid dataset, the scale range is [0.5, 2.5] stepping by
0.25, and the cropped resolution is set to 960 × 720, the same as STDC1-Seg.

During the training and evaluation stages, we use the MMSegmentation
[17] library version 0.30.0 along with PyTorch 1.12.1 [18]. The training is
performed on a system equipped with two NVIDIA GTX 3090 GPUs, utilizing
CUDA 11.3 and cuDNN 8.2. For testing the inference speed, we conduct
experiments on a different setup. We modify the code provided by STDC-Seg
[7] and use PyTorch 1.2.0, CUDA 10.0, and cuDNN 7.5. Additionally, we
employ TensorRT 5.1.5.0 to optimize the inference process as STDC-Seg did.
These experiments are further carried out on an NVIDIA GTX 1080Ti GPU
to benchmark the inference speed of our method.
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4.2 Main Results

In our evaluation, we compare the performance of our proposed methods
with the baseline STDC-Seg model on both the Cityscapes and the CamVid
datasets. By doing so, we aim to demonstrate the effectiveness of our approach
in improving the performance of STDC-Seg using textual knowledge.

4.2.1 Evaluation Results on Cityscapes

In Table 1, we present the segmentation accuracy and inference speed of the
proposed method on the Cityscapes validation set. Notably, compared to the
baseline STDC-Seg50 model, which achieves a mean Intersection over Union
(mIoU) of 72.2% for the validation set, our proposed methods incorporating
textual knowledge through a two-stage training procedure can enhance the
performance to 72.9%. This improvement comes with only a slight sacrifice
in inference speed. Additionally, we compared our model with other state-of-
the-art methods, as shown in Figure 5. Methods further to the right indicate
higher inference speed, while methods higher up indicate higher mIoU. Figure
5 demonstrates that our method strikes an excellent balance between quality
and efficiency.

Figure 5: Speed-accuracy trade-off comparisons on the Cityscapes validation set. The green
dot indicates our method, red dot indicates the STDC1-Seg50 method, and blue dots mean
other methods.
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Table 1: Quantitative comparisons of the baseline and our model with the proposed two-stage
training on the Cityscapes validation set.

Model #Params ↓ FLOPs ↓ mIoU (%) ↑ Inference Speed (FPS) ↑

STDC1-Seg50 (baseline) 8.57M 16.95G 72.2 250.4

Ours (stage 1) 8.60M 16.96G 72.7 245.3

Ours (stage 2) 8.60M 16.96G 72.9 245.3

4.2.2 Evaluation Results on CamVid

Table 2 presents the comparison results of our method and STDC-Seg on
the CamVid dataset. We train the STDC-Seg model on the training set and
evaluate its performance on the validation set. By applying our two-stage
training procedure with text knowledge guidance, we are able to increase
the mIoU of STDC-Seg from 75.3% to 78.0%. This significant performance
improvement further demonstrates the effectiveness of our method in enhancing
segmentation accuracy by leveraging textual knowledge.

Table 2: Quantitative comparisons of the baseline and our model with the proposed two-stage
training on the CamVid validation set.

Model #Params ↓ FLOPs ↓ mIoU (%) ↑ Inference Speed (FPS) ↑

STDC1-Seg (baseline) 8.57M 22.42G 75.3 197.6

Ours (stage 1) 8.59M 22.43G 76.6 196.8

Ours (stage 2) 8.59M 22.43G 78.0 196.8

4.2.3 Qualitative Results

Furthermore, we present qualitative results on the Cityscapes validation set,
as depicted in Figure 6. Specifically, our method achieves more accurate
segmentation of poles (colored in gray) compared to STDC-Seg. Poles are
challenging to segment accurately due to their thin shape, which can often
be overlooked by the model. However, our results demonstrate that the
transfer of textual knowledge effectively enhances performance. In Figure 6(a),
(b), and (c), the segmentation masks of our approach for the poles exhibit
improved accuracy, addressing the issue of missing or incomplete segmentation
in STDC-Seg. Furthermore, we observe similar improvements in segmenting
fences (colored in Tuscan) as well. Fences are challenging to segment as they
frequently overlap with other objects, such as buildings or walls. Our method
demonstrates better results, suggesting that the transmitted textual knowledge
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Figure 6: Comparisons of qualitative results between the proposed method and the SOTA
(i.e., the STDC-Seg). Note that the region colored in black is marked as “ignore” in the
standard evaluation. Best viewed in color and zoom in.

aids in discriminating the fence from other objects. In Figure 6(c) and (d),
we can observe substantial improvements in fence segmentation compared to
STDC-Seg.

These qualitative results demonstrate the effectiveness of our approach in
enhancing the segmentation of challenging objects such as poles and fences.
By leveraging the textual knowledge transmitted to the model, we address
the limitations of the base STDC-Seg method and achieve more accurate and
detailed segmentation results.

4.3 Ablation Studies

In this section, we conduct detailed studies to further demonstrate the contri-
bution of each component to the final segmentation performance.

4.3.1 Effectiveness of Two-Stage Training Procedure

In the early stages of our experiments, we encountered challenges in directly
transfer textual knowledge from the CLIP text encoder to the STDC back-
bone with learnable prompts. Training the learnable prompts and the STDC
backbone at the same time results in worse performance than our two-stage
settings. We believe this is because the STDC backbone lacks textual knowl-
edge before our training since it is not pre-trained with a vision-language
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training procedure. Consequently, when trained simultaneously with learnable
prompts, the text embeddings from the CLIP text encoder constantly change,
making it difficult for the STDC backbone to keep up and leading to unstable
performance.

To address this issue, we adopt a two-stage training procedure. In the first
stage, we fix the text embeddings and allow the STDC backbone to align itself
with the textual knowledge. In the second stage, we fix the STDC backbone
and adjust the learnable prompts to optimize the “prompt sentence” from the
embedding space.

As shown in Table 3, on the Cityscapes dataset, training the model without
the two-stage procedure yield an mIoU of 72.7%, whereas, with the two-stage
training, the mIoU is improved to 72.9%. Similarly, as shown in Table 4, on
the CamVid dataset, training without the two-stage procedure results in an
mIoU of 76.4%, while training with the two-stage procedure achieves an mIoU
of 78.0%. These results indicate a significant improvement in adopting of the
two-stage training procedure.

Table 3: Accuracy comparisons between training Procedures without and with multiple
stages (Cityscapes validation set).

Procedure mIoU (%) ↑

end-to-end 1 stage 72.7

2 stages (1st stage) 72.7

2 stages (2nd stage) 72.9

Table 4: Accuracy comparisons between training procedures without and with multiple
stages (CamVid validation set).

Procedure mIoU (%) ↑

end-to-end 1 stage 76.4

2 stages (1st stage) 76.6

2 stages (2nd stage) 78.0

Based on these findings, we strongly suggest that the two-stage training
procedure is crucial for effectively transmitting textual knowledge from the
CLIP text encoder to the STDC backbone. It allows for better alignment and
optimization, ultimately improving the segmentation performance on both the
Cityscapes and CamVid datasets.
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4.3.2 Number of Learnable Prompt Embeddings

During the second stage of training, we conduct experiments to determine the
optimal number of learnable prompt embeddings, denoted as M . We explore
different values of M , specifically M = 8, 11, 14, and 17, and analyze their
impact on performance. As shown in Table 5, we observe that the performance
gain reaches a saturation point around M = 11. This suggests that increasing
the number of embeddings beyond a certain threshold does not yield significant
improvements in performance.

We conjecture that there is a limitation to the number of embeddings
because excessively long prompts may contain unrelated or extraneous infor-
mation for the task of classifying between labels in segmentation. Therefore,
there is a balance to be struck between having enough prompt embeddings to
capture relevant information and avoiding an excessive number that includes
noise or irrelevant details.

Table 5: Comparisons of the effects of different Numbers of learnable prompt embeddings
on the CamVid validation set.

M mIoU (%) ↑

8 76.3

11 76.4

14 75.3

17 76.0

4.3.3 Regularization of Prompt Embedding Space

We make an interesting observation regarding the regularization of the learnable
prompt embeddings and their impact on performance. Specifically, in the
CamVid dataset, we notice that applying an L2 weight decay regularization of
0.0005 to the prompt embeddings results in a significant drop in performance,
with the mIoU decreasing from 76.3% to 75.9%, as shown in Table 6. This
trend is consistent across most of our experiments.

We believe the reason behind this phenomenon lies within the embedding
space. If we imagine the embeddings space of all tokens as a normal distribution,
with the centers representing frequently occurring words and the outer regions
containing less frequent words, applying L2 weight decay regularization to the
learnable prompt embeddings tends to push these embeddings towards the
zero vector, which corresponds to the center of the distribution. Consequently,
the prompts would predominantly consist of frequent words.
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Table 6: Comparisons of the effects of using weight decay in learnable prompt embeddings
on the CamVid validation set.

Weight decay (M=8) mIoU (%) ↑

0.0005 75.9

No weight decay 76.3

However, we argue that a powerful prompt should incorporate specific
words that help the model distinguish between different labels. Relying solely
on frequent words may not provide the necessary discriminative power. From
a higher-level perspective, let’s consider the well-known prompt “A photo of
a [CLASS].” In this example, words like “a” and “of” are likely close to the
distribution’s center, representing frequent words. On the other hand, the
word “photo” is more specific and likely to be further away from the center.
Restricting the prompt embeddings to only frequent words might hinder the
ability of the prompts to convey specific meanings.

Based on these observations, we suggest that: to equip the learnable
prompts with the ability to capture the specific meanings from the embedding
space, one has better not to apply L2 weight decay regularization on them.
By doing so, we provide the prompts with the opportunity to reach beyond
frequent words and incorporate more specific and contextually relevant terms,
ultimately improving the performance of the segmentation model.

4.4 Discussions

To gain a deeper understanding of our model’s capabilities, we conducted a
detailed analysis of the segmentation performance on the Cityscapes validation
set, focusing on specific classes. The results, presented in Table 7, reveal
significant improvements for key urban elements, including sidewalks, poles,
and terrains. For example, sidewalks show a notable 2.48% improvement, poles
exhibit a 2.38% gain, and terrains achieve a 2.15% increase in IoU. These
enhancements underscore the efficacy of integrating textual knowledge through
our two-stage training approach.

However, it is crucial to acknowledge certain performance variations in
specific classes, particularly in the case of buses and trucks, which experience
notable drops of 4.70% and 8.75%, respectively. Similarly, trains exhibit a
decline with a performance drop of 4.42%. These variations highlight potential
challenges in certain vehicle-related classes.

To further investigate these class-specific challenges, we examined our
model’s performance at a broader category level, as detailed in Table 8. Despite
the limitations observed in specific vehicle classes, our method demonstrates
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Table 7: Quantitative comparisons of different classes on the Cityscapes validation set. Best
viewed in color.

Label Number of Pixels Portion of Pixels (%) STDC1-Seg50 IoU (%) Ours IoU (%) Performance Gain (%)

road 345,221,953 37.66 97.6 97.8 +0.20

building 200,894,857 21.92 90.4 91.0 +0.66

vegetation 158,682,635 17.31 90.2 90.8 +0.67

car 59,759,316 6.52 93.1 93.6 +0.54

sidewalk 49,558,716 5.41 80.7 82.7 +2.48

sky 30,708,059 3.35 93.0 93.3 +0.32

pole 13,565,290 1.48 50.4 51.6 +2.38

person 11,890,232 1.30 73.7 74.1 +0.54

terrain 7,625,891 0.83 60.5 61.8 +2.15

fence 7,527,053 0.82 51.8 55.3 +6.76

wall 6,720,672 0.73 53.3 55.1 +3.38

bicycle 6,500,853 0.71 69.9 71.5 +2.29

traffic sign 6,110,650 0.67 69.9 71.4 +2.15

bus 3,564,222 0.39 82.9 79.0 -4.70

truck 2,760,469 0.30 77.7 70.9 -8.75

rider 1,970,537 0.21 53.8 55.5 +3.16

traffic light 1,813,814 0.20 56.7 60.3 +6.35

train 1,032,099 0.11 74.7 71.4 -4.42

motorcycle 728,923 0.08 51.9 57.9 +11.56

Table 8: Quantitative comparisons of different categories on the Cityscapes validation set.
Best viewed in color.

Category STDC1-Seg50 IoU (%) Ours IoU (%) Performance Gain (%)

construction 90.8 91.3 +0.57

flat 98.2 98.4 +0.14

human 75.1 75.7 +0.88

nature 90.6 91.0 +0.49

object 58.6 60.2 +2.74

sky 93.0 93.3 +0.33

vehicle 91.4 91.8 +0.43

superior performance in the overall vehicles category, with an overall positive
performance gain of 0.43%. This suggests that although certain specific vehicle
classes show a decline, the overall prediction for the vehicle category is improved
with our method. Moreover, our model showcases superior performance across
all categories, emphasizing its capability to outperform the baseline in capturing
diverse urban scene characteristics.

Qualitative results in Figure 7 provide visual illustrationswhere our model
encountered challenges, especially in distinguishing between buses, trains, and
trucks. Figure 7(a) and (b) show buses in the center of the images, where our



22 Lin et al.

Figure 7: Illustrations of the limitations of the proposed method. Best viewed in color and
zoom in.

model misclassifies part of the buses as trains. In Figure 7(c), a truck on the
left of the image is not fully recognized, with part of it predicted as a train.
Similarly, in Figure 7(d), a bus in the center of the input image is misclassified
as part of a truck. These observations highlight the potential for confusion
between similar-shaped vehicles, indicating a need for further refinement in
capturing distinctive features.

Figure 8 reinforces our method’s strength in handling challenging scenarios,
such as occlusions. Figure 8(a), (b), (c), and (d) depict buses overlapping
with cars, a situation where our model accurately segments buses even in the
presence of occlusions. This capability is attributed to the leverage of textual
knowledge, providing rich semantic information that aids in distinguishing
between different classes, even under the challenging conditions.

In summary, while our model exhibits challenges in specific vehicle classes,
the overall performance showcases the effectiveness of our approach in enhanc-
ing semantic segmentation in diverse urban scenes.

5 Conclusion

In conclusion, this research has contributed to the field of real-time semantic
segmentation by leveraging the pre-trained vision-language model CLIP. The
proposed framework enhances the STDC-Seg model by effectively incorporat-
ing textual knowledge from the CLIP text encoder. This integration enables
the fusion of visual and textual information, leading to substantial perfor-
mance improvements while maintaining minimal additional latency during
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Figure 8: More comparison results on the category of vehicles between the proposed method
and the the STDC-Seg. Best viewed in color and zoom in.

inference. To further improve the model’s semantic understanding and capture
class-specific details, learnable prompt embeddings are introduced. The two-
stage training procedure effectively trains both the lightweight segmentation
backbone and the learnable prompts, optimizing the model‘s performance in
real-time semantic segmentation tasks.
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