
APSIPA Transactions on Signal and Information Processing, 2024, 13, e404
This is an Open Access article, distributed under the terms of the Creative Commons
Attribution licence (http:// creativecommons.org/ licenses/ by-nc/4.0/), which permits un-
restricted re-use, distribution, and reproduction in any medium, for non-commercial use,
provided the original work is properly cited.

Original Paper
End-to-End Singing Transcription
Based on CTC and HSMM Decoding
with a Refined Score Representation
Tengyu Deng1, Eita Nakamura2*, Ryo Nishikimi3 and Kazuyoshi Yoshii1

1Graduate School of Informatics, Kyoto University, Japan
2Graduate School of Information Science and Electrical Engineering, Kyushu
University, Japan
3NTT Communication Science Laboratories, Japan

ABSTRACT

This paper describes an end-to-end automatic singing transcription
(AST) method that translates a music audio signal containing a
vocal part into a symbolic musical score of sung notes. A com-
mon approach to sequence-to-sequence learning for this problem
is to use the connectionist temporal classification (CTC), where
a target score is represented as a sequence of notes with discrete
pitches and note values. However, if the note value of some note
is incorrectly estimated, the score times of the following notes are
estimated incorrectly and the metrical structure of the estimated
score collapses. To solve this problem, we propose a refined score
representation using metrical positions of note onsets. To decode
a musical score from the output of a deep neural network (DNN),
we use a hidden semi-Markov model (HSMM) that incorporates
prior knowledge about musical scores and temporal fluctuation in
human performance. We show that the proposed method achieves
the state-of-the-art performance and confirm the efficacy of the
refined score representation and the decoding method.

∗Corresponding author: nakamura@inf.kyushu-u.ac.jp

Received 08 March 2024; revised 26 June 2024; accepted 22 August 2024
ISSN 2048-7703; DOI 10.1561/116.20240016
©2024 T. Deng, E. Nakamura, R. Nishikimi and K. Yoshii

http://creativecommons.org/licenses/by-nc/4.0/

2 Deng et al.

1 Introduction

Automatic singing transcription (AST) is one of the most fundamental tasks in
the field of music information retrieval (MIR). Its ultimate goal is to estimate
a human-readable musical score of the vocal part from a music audio signal.
This technique is useful in many downstream tasks such as music search, query-
by-humming [12, 24], interpretable emotion recognition [2], and score-guided
singing voice separation [4, 5]. There are two major types of representations
in the output of AST: a piano-roll (MIDI) representation and a musical score
representation. In the piano-roll representation, the onset and offset times of
sung notes are measured in frames or seconds. In a symbolic musical score,
they are represented in score times measured in quantized time units such as
fractions of beats.

Most studies on AST have focused on audio-to-MIDI transcription [10,
11, 13, 30, 32], where each sung note is represented by a semitone-level pitch,
onset time, and offset time in seconds. Generally, a contour of fundamental
frequencies (F0s) in Hz is estimated with a deep neural network (DNN) and a
note tracking method is then used to segment the F0 contour to a series of
notes [10, 32]. One can apply rhythm transcription methods for converting
a piano roll to a musical score by quantizing the onset and offset times [18,
27]. However, such a cascading approach can suffer from the accumulation of
errors [3].

A few studies have dealt with audio-to-score singing transcription.
Nishikimi et al. [21, 22] attempted to obtain a musical score by quantiz-
ing certain framewise features by using the ground-truth or pre-estimated beat
times. These methods require time-aligned ground-truth data such as beat
times in the training process. However, creating the time-aligned annotations
requires much effort, and currently available datasets with such annotations
are limited both in size and variation. To solve this problem, it is desirable
to develop an end-to-end AST method that can be trained directly with
non-aligned pairs of audio signals and musical scores.

The connectionist temporal classification (CTC) [7] is a common technique
to deal with non-aligned pairs of sequential data. It was first introduced in the
context of end-to-end audio-to-text automatic speech recognition (ASR). It
works as a loss function between two sequences with different lengths (e.g., a
sequence of frame-level acoustic features and a sequence of words or phonemes)
by internally estimating the monotonic alignment between them. This enables
the effective use of non-aligned audio-text pairs for training a DNN.

Recently, several studies have applied CTC for audio-to-score automatic
music transcription (AMT) [1, 26, 25]. These studies typically used a score
representation where note values (NVs), i.e., score-written lengths of notes,
represent the temporal information. We call this type of score representation
an NV-based representation. However, the NV-based representation has some

End-to-End Singing Transcription Based on CTC and HSMM Decoding 3

essential problems. First, it is questionable whether the CTC-based learning
is effective for recognizing the temporal information represented by NVs.
This is because the original CTC was designed for estimating instantaneous
symbols (e.g., phonemes) associated with local acoustic features, whereas it is
necessary to aggregate acoustic features from a wide time region to estimate
NVs representing duration information. Second, the quality of the estimated
score is sensitive to minor errors of NVs [19]. If the note value of some note
is incorrectly estimated, then this affects the score times of all the following
notes and harms the metrical structure (such as the positions of barlines) of
the score, which is musically important.

To solve these problems, we propose a metrical-position-based (MP-based)
score representation for CTC-based AST. The MP of a note represents the
position of its onset time relative to a barline. The MP-based representation
is suited for capturing metrical structure and retains the information in the
NV-based representation. Our method aims to convert a sequence of acoustic
features into a sequence of sung notes, each represented by a semitone-level
pitch and an MP. Specifically, we train a convolutional recurrent neural network
(CRNN) predicting the frame-level probabilities of these symbols and their
boundaries. To improve the performance in the decoding process, we also pro-
pose a hidden semi-Markov model (HSMM) that incorporates prior knowledge
about musical scores and temporal fluctuation in human performance.

The rest of the paper is organized as follows. We formalize musical score
representations in Section 2 and review related studies in Section 3. The
proposed method is presented in Section 4 and the evaluation results are
reported in Section 5. We conclude our study in Section 6.

2 Musical Score Representations

This section explains three different representations of musical scores relevant in
this study. Musical pieces are assumed to have the time signature of 4/4. The
finest time units on the musical score are called tatums, which are in general
dependent on individual pieces. For the sake of mathematical formulation,
we assume a unified tatum unit, which is treated as a hyperparameter of
the method. If the tatums are assumed to be Q times finer than the beats,
then tatums will correspond to the 4Q-th notes. Each measure thus contains
B = 4Q tatums, and the MP of each tatum within the measure is represented
as an index between 0 and B − 1. In this paper we mainly consider the case
Q = 4 and B = 16. In this condition, triplet notes or notes shorter than 16th
notes cannot be represented, and we consider that the NVs of such notes are
rounded to the closest integer multiples of tatum intervals. This problem can
be partially addressed by using a finer-grained tatum unit, as discussed in
Section 5.2.3.

4 Deng et al.

We represent the musical score of a vocal melody as a sequence of notes
Y = (yn)

N
n=1 = (τn, ln, pn)

N
n=1, where N is the number of notes. An integer τn

represents the onset score time of the n-th note in units of tatums (we usually
assume that τ1 = 0). The NV ln is represented as a multiple of tatums. An
integer pn represents the pitch in units of semitones and we use the conventional
MIDI note number extended to include the rest: pn ∈ {0, 1, . . . , 128}, pn = 128
indicates a rest, and if pn < 128 it represents a pitch (e.g., C4 = 60).

As data representation used for training DNNs, we can use some variants
of score representation Y′. As explained in the following, the definition of
each symbol and the sequential length vary according to the representation.

2.1 Tatum-Level Representation

In our previous work, we used the tatum-level representation [3]. In detail, we
consider a sequence of tatum-level score fragments Ytatum = (ytatumm)Mm=1 =
(btatumm , ptatumm , otatumm)Mm=1, where M is the number of tatums, btatumm = m mod
B ∈ {0, . . . , B − 1} is the MP of the tatum, ptatumm ∈ {0, . . . , 128} is the pitch,
and otatumm ∈ {0, 1} is the onset flag indicating the absence (0) or presence
(1) of a note/rest onset. Figure 1(b) shows an example of the tatum-level
representation. Ytatum can be obtained from Y by

ptatumm = pn, τn ≤ m < τn+1, (1)

otatumm =

{
1, ∃n, s.t. m = τn,

0, otherwise.
(2)

An issue of this representation is that the inverse process to reconstruct Y
from Ytatum requires the following condition:

btatumm+1 − btatumm ≡ 1 mod B, m = 1, . . . ,M. (3)

Since the output sequence directly obtained by a DNN may not meet this
condition in the inference step, an HSMM was used to impose the condition
[3].

2.2 Note-Level Representations

As note-level representations, we propose the NV-based and MP-based repre-
sentations, both of which can be considered as a reduced version of the original
score representation Y.

2.2.1 NV-Based Representation

We define the NV-based representation as YNV = (yNV
n)Nn=1 = (lNV

n , pNV
n)Nn=1,

where N is the number of notes, lNV
n is the NV of the n-th note measured in

End-to-End Singing Transcription Based on CTC and HSMM Decoding 5

0
62
1

1
62
0

2
64
1

3
64
0

4
64
0

5
64
0

6
128

1

7
128

0

8
64
1

9
64
0

10
59
1

11
59
0

12
62
1

13
62
0

14
64
1

15
64
0

2
62

4
64

2
128

2
59

2
62

2
64

2
64

0
62

2
64

6
128

10
59

12
62

14
64

8
64

& 4

4
j

œ œ

‰

œ
œ

œ œ

MP
Pitch
Onset

Duration

Pitch

Pitch
MP

(a)

(b)

(c)

(d)

Figure 1: Musical score representations. (a) Musical score. (b) Tatum-level representation [3].
(c) NV-based note-level representation (conventional). (d) MP-based note-level representation
(proposed).

tatums, and pNV
n ∈ {0, . . . , 128} is its pitch. Figure 1(c) shows an example of

the NV-based representation.
The NV-based representation can be simply obtained from score Y:

lNV
n = ln, n = 1, . . . , N, (4)

pNV
n = pn, n = 1, . . . , N. (5)

If we assume τn = 0, then the process to obtain Y from YNV is also straight-
forward:

τn =

{
0, n = 1,∑n−1

n′=1 l
NV
n′ , n = 2, . . . , N,

(6)

ln = lNV
n , n = 1, . . . , N, (7)

pn = pNV
n , n = 1, . . . , N. (8)

In reality, musical notes often continue over barlines via ties and their NVs
can be arbitrarily large. To define a finite vocabulary used by a DNN, we
consider an upper bound B of NVs so that lNV

n ∈ {1, . . . , B}. Notes longer
than B in the data are formally split into non-tied notes for training the
DNNs. This makes the NV-based representation contain less information
than the original musical score. Since such long notes are relatively rare in
reality, the NV-based representation is almost equivalent to the complete score
representation Y.

6 Deng et al.

2.2.2 MP-Based Representation

To capture the metrical structure, we define the MP-based representation
as YMP = (yMP

n)Nn=1 = (bMP
n , pMP

n)Nn=1, where N is the number of notes,
bMP
n ∈ {0, . . . , B−1} is the onset MP of the n-th note, and pMP

n ∈ {0, . . . , 128}
is the pitch. Figure 1(d) shows an example of the MP-based representation.
One can obtain the MP-based representation YMP from Y by

bMP
n = τn mod B, n = 1, . . . , N, (9)

pMP
n = pn, n = 1, . . . , N. (10)

The reconstruction process is slightly more complicated than that for the
NV-based representation. Similar as in Section 2.2.1, we first assume that
ln ≤ B, and we define ∆ as the NV indicated by two consecutive MPs:

∆(b, b′) =

{
B, b = b′,

(b′ − b) mod B, b ̸= b′.
(11)

Then, we can reconstruct the musical score Y from YMP by

ln = ∆(bMP
n , bMP

n+1), n = 1, . . . , N − 1 (12)

pn = pMP
n , n = 1, . . . , N, (13)

τn =

{
0, n = 1,∑n−1

n′=1 ln′ , n = 2, . . . , N.
(14)

Note that the NV of the last note lN cannot be determined, and we need some
extra information (such as the offset MP of the last note) to determine it.
Additionally, this representation fails to deal with notes longer than B as in
the NV-based representation.

As explained in the Introduction, the NV- and MP-based representations
have an important difference regarding the robustness of score times against
a slight change in the note-level symbols, which can often be contained in a
DNN’s estimation. In the NV-based representation, (6) explicitly indicates
that a slight change in the NV of a note affects the score times and MPs of all
the following notes. In the MP-based representation, however, a slight change
in the MP of the n-th note only affects the NVs of the n-th and (n + 1)-th
notes by (11), but the score times of the other notes are unaffected. Since
the metrical structure is an important factor that influences the perceptual
quality of a musical score, the MP-based representation is expected to be more
suitable for AST.

End-to-End Singing Transcription Based on CTC and HSMM Decoding 7

3 Related Work

We here review AST and AMT methods based on the cascading and end-to-end
approaches.

3.1 Cascading Approach

Some studies proposed to combine frame-level F0 estimation and note tracking
for audio-to-MIDI transcription [14, 15]. DNNs have recently been used to
improve the former task [10, 13, 32]. Nishikimi et al. [21] proposed an HSMM
to quantize an F0 contour into a sequence of musical notes. Hsu and Su [11]
attempted to directly transcribe an audio signal into note events to overcome
the error accumulation problem of the cascading approach. To improve the
performance of audio-to-MIDI transcription, the CTC loss was used in addition
to the standard framewise cross-entropy loss [30].

In the context of AST that aims to estimate musical scores, rhythm tran-
scription methods have been explored to quantize a piano-roll representation
into a musical score [18, 19, 27]. Nishikimi et al. [22], for example, proposed
a hybrid DNN-HSMM model to circumvent the dependency on the accuracy
of F0 estimation, in the same way as the DNN-HMM approach to ASR. In
general, the MPs or NVs of musical notes are used as rhythmic information.
Studies using HMMs have shown that the MP-based representation generally
performs better than the NV-based representation because metrical structure
cannot be represented in the latter [19].

3.2 End-to-End Approach

Several studies have recently investigated end-to-end AMT to address the error
accumulation problem of the cascading approach. Inspired by the success of
end-to-end ASR, the attention mechanism and/or the CTC have been used
for learning the audio-to-score mapping using non-aligned data. Some AMT
methods [1, 26] used the CTC with the NV-based note-level representation.
However, these methods have been shown to work only on music signals
synthesized from MIDI data at the proof-of-concept level. In another attempt,
an encoder-decoder model with an attention mechanism was used with the
tatum-level score representation [23], or the NV-based note-level representation
[20]. In the end-to-end training, the internal attention matrix is regularized to
have the monotonic and regular frame-to-tatum alignment. Such regularization,
however, often prevents the iterative optimization method from finding the
correct alignment because the attention matrix is not necessarily monotonic
in early epochs of non-regularized training.

8 Deng et al.

4 Proposed Method

This section describes the proposed audio-to-score AST method that uses the
CTC with the NV- or MP-based score representation.

4.1 Problem Specification

The input is a frame-level sequence of acoustic features X = (xt)
T
t=1, where T

is the number of frames. Each xt ∈ R2×D is obtained at time t by stacking
the mel-spectrum of a music signal and that of a singing voice separated with
a voice separation method (specifically we use Open-Unmix [28]), where D
is the number of mel-frequency bins. We choose the mel-spectrum as the
input feature because it can well represent the features of human voice and
thus is widely used in the field of ASR. The output is a score representation
Y = (yn)

N
n=1 as explained in Section 2.

In the training phase, we aim to train a DNN using paired data of the
acoustic features X and the ground-truth representation Y. In the test phase,
given only X as input, we aim to estimate Y = (yn)

N
n=1 and reconstruct a

musical score of sung notes. The input length must be longer than the output
length (T > N), which always holds in AST.

4.2 End-to-End Training

We train a DNN that estimates the posterior probabilities of symbols at the
frame level using the CTC loss. More specifically, we use the multi-label
CTC (MCTC) loss [31] for joint estimation of multiple attributes. In the
following subsections, we formulate two DNNs using the NV- and MP-based
score representation, respectively.

4.2.1 NV-Based Representation

We explain the CTC-based training using the acoustic features X and the
ground-truth NV-based representation Y = (L,P). Let B be the maximum
value of NV and I = 129 be the size of the pitch vocabulary. To represent a
frame-level sequence of symbols, the extra blank symbol “∗” working as a wild
card is introduced. A blank symbol represents a continuation of the previous
symbol in the frame-level sequence. Let Ȳ = (ȳt)

T
t=1 be a frame-level sequence

of symbols such that Y = M(Ȳ), where ȳt ∈ {(l, p)}B,I−1
l=1,p=0 ∪ {∗} denotes the

symbol at frame t, which can be either a pair (l, p) of NV l and pitch p or a
blank label ∗. M(Ȳ) is a reduction operator that annexes repeated symbols
and removes all blank symbols from Ȳ. For example, if

Ȳ = ((2, 61), (2, 61), ∗, ∗, (2, 66), ∗, ∗, (4, 64), ∗, ∗, ∗, ∗, ∗) , (15)

End-to-End Singing Transcription Based on CTC and HSMM Decoding 9

then

M(Ȳ) = ((2, 61), (2, 66), (4, 64)) . (16)

A DNN is trained such that the posterior probability p(Y|X) of the ground-
truth sequence Y is maximized. It is computed by accumulating the posterior
probabilities p(Ȳ|X) of all Ȳ that can be reduced to Y as follows:

p(Y|X) =
∑

Ȳ∈M−1(Y)

p(Ȳ|X), (17)

where M−1(Y) represents the set of Ȳ that can be reduced to Y. Assuming
the conditional independence over frames, we have

p(Ȳ|X) =

T∏
t=1

p(ȳt|X), (18)

where p(ȳt|X) is the local posterior probability given by

p(ȳt|X) =

{
ϕ∗
t , ȳt = ∗,

(1− ϕ∗
t)ϕ

L
tlϕ

P
tp, ȳt = (l, p).

(19)

Here ϕL
tl is the posterior probability of NV l, ϕP

tp is that of pitch p, and ϕ∗
t is

the probability of ȳt = ∗ at frame t. As shown in the left example of Figure 2,
the DNN is used for jointly estimating ϕL =

(
ϕL
tl

)T,B

t=1,l=1
, ϕP =

(
ϕP
tp

)T,I−1

t=1,p=0
,

and ϕ∗ = (ϕ∗
t)

T
t=1 from X as follows:

(ϕL,ϕP ,ϕ∗) = DNN(X). (20)

4.2.2 MP-Based Representation

The CTC-based training using the acoustic features X and the ground-truth
MP-based representation Y = (B,P) can be performed in the same way as
described in Section 4.2.1. The frame-level sequence Ȳ = (ȳt)

T
t=1 is defined as

ȳt ∈ {(b, p)}B−1,I−1
b=0,p=0 ∪ {∗}. The local posterior probability p(ȳt|X) is given by

p(ȳt|X) =

{
ϕ∗
t , ȳt = ∗,

(1− ϕ∗
t)ϕ

B
tbϕ

P
tp, ȳt = (b, p).

(21)

As shown in the right example of Figure 2, the DNN is used for jointly
estimating ϕB =

(
ϕB
tb

)T,B−1

t=1,b=0
, ϕP =

(
ϕP
tp

)T,I−1

t=1,p=0
, and ϕ∗ = (ϕ∗

t)
T
t=1 as

follows:

(ϕB ,ϕP ,ϕ∗) = DNN(X). (22)

10 Deng et al.

Figure 2: The frame-level posterior probabilities of symbols estimated by the DNN: The
NV-based representation (left) and MP-based representation (right). For readability, the
non-blank probability 1− ϕ∗

t is shown instead of ϕ∗
t .

A notable difference between the left (NV-based) and right (MP-based) columns
in Figure 2 is the middle panels where rhythmic information is estimated.
In the output of the MP-based representation, period structure of metrical
positions is visible and indicates local tempo values, where such structure is
not visible in the output of the NV-based representation.

4.3 Network Architecture

The DNN used in this study is based on an encoder-decoder architecture
(Figure 3).

EncoderL ZL

ZP

ϕL

ϕ*
ϕP

X
EncoderP

DecoderL

Decoder*

DecoderP

EncoderB ZB

ZP

ϕB

ϕ*
ϕP

X
EncoderP

DecoderB

Decoder*

DecoderP

Figure 3: Network architectures for the NV-based representation (left) and the MP-based
representation (right).

End-to-End Singing Transcription Based on CTC and HSMM Decoding 11

4.3.1 NV-Based Representation

Wide-band frequency spectral structure and long-term temporal structure
are useful clues for pitch and rhythm estimation, respectively. To estimate
the pitch at each frame, it would be sufficient to focus on the instantaneous
features of the singing voice around the frame. To estimate the NV of a note,
in contrast, it is necessary to aggregate information of periodic structure in
audio features over multiple measures from the accompaniment part of music.
We thus use two separate encoders for extracting latent NV features ZL and
latent pitch features ZP as follows:

ZL = EncoderL(X), (23)

ZP = EncoderP (X). (24)

We then compute the posterior probabilities of the NVs, pitches, and blank
symbol, ϕL, ϕP , and ϕ∗, at the frame level. As in the encoding step, ϕL and
ϕP are estimated from ZL and ZP , respectively. In contrast, ϕ∗ is estimated
from both ZL and ZP because the blank symbol is expected to be selected at
frames with small confidence about the pitch or NV. Consequently, we have

ϕL = DecoderL(ZL), (25)

ϕP = DecoderP (ZP), (26)

ϕ∗ = Decoder∗(ZL,ZP). (27)

4.3.2 MP-Based Representation

For the MP-based representation, we can use the same network architecture
as the one described in Section 4.3.1. The only difference is that instead of
the information about NV L, we here extract the information about the MP
B. The NV in the NV-based representation is an integer ranging from 1 to B,
whereas the MP in the MP-based representation ranges from 0 to B − 1.

4.4 HSMM Decoding

To decode a musical score from the posterior probabilities of symbols estimated
by the DNN, we use an HSMM to incorporate prior knowledge about musical
scores and temporal fluctuation in human performance. We formulate this
model in the following.

12 Deng et al.

4.4.1 Note-Level Model Formulation

As a naive decoding method, we can estimate the frame- and tatum-level
sequences ˆ̄Y and Ŷ as follows:

ˆ̄Y = argmax
Ȳ

p(Ȳ|X), (28)

Ŷ = M(ˆ̄Y), (29)

where p(Ȳ|X) is calculated from the DNN output (see (18)). This method
can be applied to both NV- and MP-based representations. The problem with
this method is that the output sequence often violates the regularities seen in
real music data, such as those in pitch and MP sequences [22] and in tempo
changes [19]. This problem can be addressed by incorporating a model for
musical scores and a model of temporal fluctuations in musical performance,
similarly as the use of a language model in the CTC-based ASR method [8].

We propose a refined decoding method that combines a note-level musical
score model based on an HMM and a frame-level tempo model based on an
HSMM. Consider the MP-based note-level score representation Y = (B,P) as
described in Section 2.2.2. To construct the model, we represent a score with
a sequence of notes yn = (bn, sn, pn), where bn is the MP, sn is the local key,
and pn is the pitch. Here we introduced the key variables sn corresponding to
pitches pn, which are treated as hidden variables. These variables represent
the musical scale structure, which is a useful clue for determining the pitches.
For simplicity, we ignore the difference between the major and minor scales,
and consider that the C major key is identical to the A minor key. Thus, we
have sn ∈ {0, . . . , 11}, where sn represents the pitch class of the major-key
tonic. We use a formulation similar to that in Nishikimi et al. [22], and the
HMM-based language model can be formulated as

p(B,S,P) = p(b1)p(s1)p(p1|s1)
N∏

n=2

p(bn|bn−1)p(sn|sn−1)p(pn|pn−1, sn). (30)

We formulate the probabilities related to pitches so that they are symmetric
under transpositions for efficient learning of the parameters. For this purpose,
we introduce the key-relative pitch class of pitch p in key s as

deg(s, p) =

{
(p− s) mod 12, p < 128,

12, p = 128.
(31)

Then, the initial probabilities are parametrized as

p(b1 = b) = πB
b , (32)

p(s1 = s) = πS
s , (33)

p(p1 = p|s1 = s) ∝ πP
deg(s,p), (34)

End-to-End Singing Transcription Based on CTC and HSMM Decoding 13

and the transition probabilities as

p(bn = b′|bn−1 = b) = ξBbb′ , (35)

p(sn = s′|sn−1 = s) = ξS(s−s′)mod 12, (36)

p(pn = p′|pn−1 = p, sn = s) ∝ ξPdeg(s,p)deg(s,p′). (37)

The parameters πB ,πS ,πP , ξB , ξS , ξP can be learned from the ground-truth
score data of the training data. Specifically, we extract the pitches, onset score
times, and key signatures from the score data and compute the local key of
each note using a standard mapping from a key signature to the key tonic.
Using the method of maximum-likelihood estimation, we can then learn those
parameters by computing the relative frequencies of the corresponding musical
events in the data. For example, πB

b is the relative frequency of the MP b of
the first note of a song. These parameters can then be used in the frame-level
HSMM decoder explained in Section 4.4.2.

4.4.2 Frame-Level Model Formulation

To estimate the onset score times of musical notes from frame-level DNN
outputs, it is necessary to incorporate in the decoding process a tempo model
[19], which describes the temporal fluctuation in human performance. For this
purpose, we formulate a frame-level HSMM by introducing the local tempos
V = (vn)

N
n=1, where vn ∈ R>0 is defined as the ratio between the duration

(measured in time frames) and NV of the n-th note. Following the model in
Nakamura et al. [19], the tempo model is represented as a Markov model of
local tempos. In this model, we consider that the logarithm of the tempo,
instead of the tempo itself, follows a normal distribution to account for the
covariance under a scaling transformation. Introducing the logarithmic tempos
U = (un)

N
n=1 = (ln vn)

N
n=1, the tempo model is given as follows:

p(u1) = N
(
u1;µ

ini
u , (σini

u)2
)
, (38)

p(un|un−1) = N
(
un;un−1, σ

2
u∆(bn−1, bn)

2
)
. (39)

Here, ∆ is defined in (11), N (x;µ, σ2) = exp(−(x− µ)2/2σ2)/
√
2πσ2 denotes

the normal distribution with mean µ and standard deviation σ, µini
u represents

the mean initial logarithmic tempo, σini
u the standard deviation of the initial

logarithmic tempos, and σu the standard deviation of logarithmic tempo
changes in a tatum unit. The standard deviation in the right-hand side
(RHS) of (39) is multiplied by the NV ∆(bn−1, bn) to account for the larger
accumulation of tempo changes during a longer note [17]. With the tempo
variable, the expectation value of the duration dn of note n is given by
∆(bn, bn+1)vn = ∆(bn, bn+1) exp(un). The effect of the timing fluctuation

14 Deng et al.

due to motor noise and the quantization errors in signal processing can be
represented by a normal distribution

p(dn|bn, bn+1, un) ∝ N
(
dn; ∆(bn, bn+1) exp(un), σ

2
c/L

2
f

)
, (40)

where Lf = (hop size)/(sampling rate) is the length of a frame measured in
seconds, and σc represents the standard deviation for the timing fluctuation
measured in seconds. Note that each dn takes an integer value and the RHS
of (40) should be properly normalized. The last frame tn of note n can be
calculated as

tn =

{
0, n = 0,∑n

n′=1 dn′ , n = 1, . . . , N.
(41)

We then define the frame-level variables, the MP B̄ =
(
b̄t
)T
t=0

, key S̄ =

(s̄t)
T
t=1, pitch P̄ = (p̄t)

T
t=1, logarithmic tempo Ū = (ūt)

T
t=0, and counter

C̄ = (c̄t)
T
t=1 as follows: if tn−1 < t ≤ tn, then

b̄t = bn+1, (42)
s̄t = sn, (43)
p̄t = pn, (44)
ūt = un+1, (45)
c̄t = tn − t. (46)

The counter variable c̄t represents the remaining number of frames within the
current note. Note that in (42) we assign the MP of the next note because it
is needed to calculate the NV of the current note at its onset frame. Similarly
in (45), we assign the local tempo of the next note so that the probabilistic
model for the counter variable can be represented by a Markov model (see
(59)). Accordingly, to represent the onset MP and tempo of the first note, we
introduce b̄0 = b1 and ū0 = u1. Table 1 shows an example of these variables.

Consider the frame-level input and output features X and Ȳ described in
Section 4.2.2. We formulate the generative process of B̄, S̄, P̄, Ū, C̄, Ȳ, and X
as

p(X, B̄, S̄, P̄, Ū, C̄, Ȳ) = p(X|Ȳ)p(B̄, S̄, P̄, Ū, C̄, Ȳ). (47)

Here, p(B̄, S̄, P̄, Ū, C̄, Ȳ) represents the language model for the frame-level
variables, which is given as

End-to-End Singing Transcription Based on CTC and HSMM Decoding 15

Table 1: An example of the frame-level variables for the MP-based representation. Instead of
ūt, we show the values of tempos v̄t = exp(ūt). The bold fonts indicate that ȳt is determined
by b̄t−1, p̄t, and c̄t−1.

t 0 1 2 3 4 5 6 7 8 9 10 11 ...
b̄t 0 2 2 2 2 2 2 2 3 3 3 3 ...
s̄t 1 1 1 1 1 1 1 1 1 1 1 ...
p̄t 62 62 62 62 62 62 62 59 59 59 59 ...

exp(ūt) 3.5 4 4 4 4 4 4 4 4.1 4.1 4.1 4.1 ...
c̄t 0 6 5 4 3 2 1 0 3 2 1 0 ...
ȳt (0, 62) ∗ ∗ ∗ ∗ ∗ ∗ (2, 59) ∗ ∗ ∗ ...

p(B̄, S̄, P̄, Ū, C̄, Ȳ) = p(b̄0, b̄1)p(s̄1)p(p̄1|s̄1)p(ū0, ū1|b̄0, b̄1)p(c̄0|b̄0, b̄1, ū0)

·
T∏

t=2

p(b̄t|b̄t−1, c̄t−1)p(s̄t|s̄t−1, c̄t−1)

·
T∏

t=2

p(p̄t|p̄t−1, s̄t, c̄t−1)p(ūt|b̄t−1, b̄t, ūt−1, c̄t−1)

·
T∏

t=1

p(c̄t|b̄t−1, b̄t, ūt−1, c̄t−1)p(ȳt|b̄t−1, p̄t, c̄t−1). (48)

The initial and transition probabilities of the MPs are

p(b̄0, b̄1) = p(b̄0)p(b̄1|b̄0) = πB
b̄0
ξBb̄0b̄1 , (49)

p(b̄t|b̄t−1, c̄t−1) =

{
δ(b̄t−1, b̄t), c̄t−1 > 0,

ξB
b̄t−1b̄t

, c̄t−1 = 0,
(50)

where δ stands for the Kronecker delta:

δ(x, y) =

{
1, x = y,

0, x ̸= y.
(51)

The initial and transition probabilities of the keys are

p(s̄1) = πS
s̄1 , (52)

p(s̄t|s̄t−1, c̄t−1) =

{
δ(s̄t−1, s̄t), c̄t−1 > 0,

ξS(s̄t−1−s̄t)mod 12, c̄t−1 = 0.
(53)

The initial and transition probabilities of the pitches given the current keys
are

p(p̄1|s̄1) ∝ πP
deg(s̄1,p̄1)

, (54)

p(p̄t|p̄t−1, s̄t, c̄t−1) ∝

{
δ(p̄t−1, p̄t), c̄t−1 > 0,

ξPdeg(s̄t,p̄t−1)deg(s̄t,p̄t)
, c̄t−1 = 0.

(55)

16 Deng et al.

The initial and transition probabilities of the logarithmic tempos are

p(ū0, ū1|b̄0, b̄1) = p(ū0)p(ū1|ū0, b̄0, b̄1)

= N
(
ū0;µ

ini
u , (σini

u)2
)
N

(
ū1; ū0, σ

2
u∆(b̄0, b̄1)

2
)
, (56)

p(ūt|b̄t−1, b̄t, ūt−1, c̄t−1) =

{
δ(ūt − ūt−1), c̄t−1 > 0,

N
(
ūt; ūt−1, σ

2
u∆(b̄t−1, b̄t)

2
)
, c̄t−1 = 0,

(57)

where δ(x) denotes the Dirac delta function for a continuous variable. The
initial and transition probabilities of the counters are

p(c̄0|b̄0, b̄1, ū0) = Uniform[0,∆(b̄0, b̄1)exp(ū0)− 1 + σini
c /Lf], (58)

p(c̄t|b̄t−1, b̄t, ūt−1, c̄t−1)

∝

{
δ(c̄t−1 − 1, c̄t), c̄t−1 > 0,

N
(
c̄t; ∆(b̄t−1, b̄t) exp(ūt−1)− 1, σ2

c/L
2
f

)
, c̄t−1 = 0.

(59)

In the initial probability, we allow that the audio signal can start in the
middle of the first note and that the note’s maximum duration is given as its
expectation value added by some amount of deviation represented by σini

c /Lf .
Last, the emission probabilities of framewise output labels given the hidden
variables are

p(ȳt|b̄t−1, p̄t, c̄t−1) =

{
δ(ȳt, ∗), c̄t−1 > 0,

δ(ȳt, (b̄t−1, p̄t)), c̄t−1 = 0.
(60)

In (47), p(X|Ȳ) represents the emission probabilities of the observed
spectrograms given Ȳ, which is given as

p(X|Ȳ) =

T∏
t=1

p(xt|ȳt), (61)

According to Bayes’ theorem, the framewise emission probability can be written
as

p(xt|ȳt) =
p(ȳt|xt)p(xt)

p(ȳt)
∝ p(ȳt|xt)

p(ȳt)
. (62)

We assume that

p(ȳt) =

{
µ∗, ȳt = ∗,
(1− µ∗)π

B
b πP

p , ȳt = (b, p),
(63)

where µ∗ is the prior probability of the blank label. p(ȳt|xt) can be estimated
with the DNN described in Section 4.2.2 as

p(ȳt|xt) =

{
ϕ∗
t , ȳt = ∗,

(1− ϕ∗
t)ϕ

B
tbϕ

P
tp, ȳt = (b, p).

(64)

End-to-End Singing Transcription Based on CTC and HSMM Decoding 17

4.4.3 Viterbi Algorithm

With the probabilistic model described above, we can estimate the output
sequence Ŷ by first estimating

ˆ̄B, ˆ̄S, ˆ̄P, ˆ̄U, ˆ̄C, ˆ̄Y = argmax p(X, B̄, S̄, P̄, Ū, C̄, Ȳ), (65)

which can be solved efficiently with the Viterbi algorithm.
Since the Viterbi algorithm cannot deal with continuous variables, we

discretize the logarithmic tempo ūt into Nu equally spaced values in the range
[ln vmin, ln vmax], where vmin and vmax are the minimal and maximal tempos.
The initial and transition probabilities of ūt are accordingly changed to the
discrete version in the Viterbi algorithm. Additionally, we also limit the
possible values of pitches to {pmin, pmin+1, . . . , pmax, 128} in order to decrease
the computational cost, where pmin and pmax are the minimal and maximal
pitches used in vocal melodies.

Denote qt = (b̄t, s̄t, p̄t, ūt, c̄t, ȳt). We calculate the Viterbi variables in the
forward process as

ω1(q0, q1) = p(b̄0, b̄1)
γbp(s̄1)

γpp(p̄1|s̄1)γpp(ū0, ū1|b̄0, b̄1)
· p(c̄0|b̄0, b̄1, ū0)p(c̄1|b̄0, b̄1, ū0, c̄0)

· p(ȳ1|b̄0, p̄1, c̄0)p(x1|ȳ1), (66)

ωt(qt) = max
qt−1

[
ωt−1(qt−1)p(b̄t|b̄t−1, c̄t−1)

γb

· p(s̄t|s̄t−1, c̄t−1)
γpp(p̄t|p̄t−1, s̄t, c̄t−1)

γp

· p(ūt|b̄t−1, b̄t, ūt−1, c̄t−1)p(c̄t|b̄t−1, b̄t, ūt−1, c̄t−1)

· p(ȳt|b̄t−1, p̄t, c̄t−1)p(xt|ȳt)
]
, (67)

pret(qt) = argmax
qt−1

[
ωt−1(qt−1)p(b̄t|b̄t−1, c̄t−1)

γb

· p(s̄t|s̄t−1, c̄t−1)
γpp(p̄t|p̄t−1, s̄t, c̄t−1)

γp

· p(ūt|b̄t−1, b̄t, ūt−1, c̄t−1)p(c̄t|b̄t−1, b̄t, ūt−1, c̄t−1)

· p(ȳt|b̄t−1, p̄t, c̄t−1)p(xt|ȳt)
]
, (68)

where weights γb and γp have been introduced to balance the influence of
the language model. These parameters can in principle be optimized using
validation data and in this study, due to the lack of large data, we conduct
a rough grid search on the test data and examine how the transcription
performance changes by changing their values (see Section 5.2.1). The optimal
path can then be obtained by the backward process

q̂T = argmax
qT

ωT (qT), (69)

q̂t = pret+1(q̂t+1). (70)

18 Deng et al.

We also apply a postprocessing method to suppress unexpected extra notes
in the output. In a song, there are parts where no singing voice exists, such as
the intro, interlude, and outro. These parts are usually represented as long
rests on a musical score, but it is difficult for the present decoder to output
such long rests. We assume that high probabilities of the blank symbol indicate
these rests, and substitute the rest for the original decoded pitch if a frame
has a high blank probability, that is,

p̄′t =

{
p̄t, ϕ∗

t ≤ θ∗,

128, ϕ∗
t > θ∗,

(71)

ȳ′t =

{
∗, c̄t−1 > 0,

(b̄t−1, p̄
′
t), c̄t−1 = 0,

(72)

where the threshold θ∗ is a hyperparameter. We obtain the final decoding
result Ŷ by annexing the repeated symbols and deleting the blank labels from
the sequence (ȳ′t).

5 Evaluation

This section reports comparative experiments using real popular music songs.

5.1 Experimental Conditions

We explain the training and test data, network configuration, compared
methods, and evaluation measures.

5.1.1 Dataset

To evaluate the methods in a practical setup, we made an in-house dataset
consisting of 343 Japanese popular (JPOP) songs, which was randomly split
into a training set of 308 songs and a test set of 35 songs. The musical scores
of those songs were transcribed in the MusicXML format by experts and the
audio recordings were obtained from the original CDs. We also used in the
test phase a publicly available dataset named “RWC Music Database: Popular
Music” [6]. Following a previous study [22], we used 12 songs (Nos. 7, 8, 13, 18,
20, 47, 63, 79, 80, 84, 90, and 100) with the time signature of 4/4. The musical
scores of these songs were also transcribed by experts. Note that datasets (e.g.,
MIR-ST500 [29]) commonly used for audio-to-MIDI AST cannot be used in
this study due to the lack of ground-truth musical scores.

To reduce the computational cost, the music signal of each song was
resampled at 22050 Hz and split into segments of 8 seconds. The corresponding

End-to-End Singing Transcription Based on CTC and HSMM Decoding 19

ground-truth score was also split accordingly by performing audio-to-MIDI
alignment based on dynamic time warping. Note that this procedure was
just for preparing the training data used for end-to-end learning, where the
audio signal (input) and score (output) of each segment were given in a non-
aligned manner in the training phase. The magnitude spectrogram of each
song was obtained with short-time Fourier transform (STFT) with a window
of 2048 samples and a hop length of 256 samples (Lf = 0.01161 s). The mel
spectrogram was then obtained with 128 mel filter banks.

5.1.2 Network Configuration

Our method is based on a CRNN, a combination of a CNN-based encoder and
an RNN-based decoder, with the NV- or MP-based representation (Figure 3).
EncoderL, EncoderB , and EncoderP were implemented with a CNN consisting
of five layers with 64, 32, 32, 32, and 32 channels and a kernel sizes of 5, 5, 3,
3, and 3, followed by a fully-connected layer that outputs a 256-dimensional
latent vector at each frame. DecoderL, DecoderB, DecoderP , and Decoder∗

were implemented with an RNN consisting of two bidirectional long short-term
memory (LSTM) layers that had 256 channels in the hidden spaces. The
CRNN was trained by an Adam optimizer with a learning rate of 1× 10−4.

For the HSMM used for decoding, the initial and transition probabilities
πB ,πS ,πP , ξB , ξS , and ξP were learned from the ground-truth scores in the
training data. The note pitches were limited between pmin = 43 (G2) and
pmax = 79 (G5), the tempos were between vmin = 5.38 (240 bpm) and vmax =
25.84 (50 bpm), and the number of discretized logarithmic tempos was Nu = 35.
The mean value of the initial logarithmic tempo was µini

u = ln[(vmin+ vmax)/2],
the standard deviations of the tempo transition model were σu = 0.0033 and
σc = 0.03, the initial standard deviations were σini

u = 3σv, σini
c = 3σc, the prior

probability of the blank label was µ∗ = 0.9, the balancing weights were γb = 0.6
and γp = 0.2, and the threshold of the postprocessing method (introduced in
(71)) was θ∗ = 0.5.

5.1.3 Compared Methods

We tested two variants of the proposed method trained on the JPOP dataset;
one with the NV-based representation and the other with the MP-based
representation. For the NV-based representation, we used the naive decoding.
For the MP-based representation, we tested both the naive decoding and
the HSMM decoding (default). As a baseline, we tested a cascading method
that sequentially uses an audio-to-MIDI singing transcription method [11]
and a rhythm transcription method [27]. We also tested the state-of-the-art
audio-to-score AST method based on a CRNN-HSMM hybrid model trained

20 Deng et al.

on the RWC dataset [22]. Additionally, we compared the CTC-based AST
method with the tatum-based representation proposed in our previous work [3].

5.1.4 Evaluation Measures

We evaluated the estimated scores with the edit-distance-based metrics called
MUSTER [9, 16], which is similar to the word error rate (WER) used for ASR.
The metrics count five exclusive types of errors: pitch error rate Ep, missing
note rate Em, extra note rate Ee, onset time error rate Eon, and offset time
error rate Eoff . The Ep, Em, and Ee are similar to the substitution, deletion,
and insertion error rates in the WER metric.

5.2 Experimental Results

We report the performances of the compared methods and discuss the efficacy
of the refined representation.

5.2.1 Performance Comparison

Table 2 shows that the proposed MP-based model had a lower mean error rate
than the NV-based model and the tatum-level model [3] for both datasets.
The MP-based method outperformed the CRNN-HSMM hybrid model [22] on
the JPOP dataset, but had a higher mean error rate on the RWC test. This
may have been caused by the difference of the training data. The training
data of the CRNN-HSMM hybrid model was part of the RWC dataset, while
the MP-based model used part of the JPOP dataset for training. The models
may have adapted to their own training data and performed better on the
test data with similar characteristics to the training data. These results show
that the proposed model was no worse than the CRNN-HSMM hybrid model.
Compared to the CRNN-HSMM hybrid model, which requires the time-aligned
beat times as the ground-truth data for training, our proposed method can be
trained in an end-to-end manner and potentially utilize large non-aligned data.
The cascading method had the highest mean error rate on both test datasets.

5.2.2 Efficacy of the HSMM Decoder

To evaluate the effectiveness of the HSMM decoder, we also tested a method
using the naive decoder in (28) and (29). The result in Table 3 shows that
without the HSMM decoder, the mean error rate was higher on both datasets.
We found that the accuracy of recognizing the onset times was significantly
improved by the HSMM. This clearly shows the efficacy of the decoder.

End-to-End Singing Transcription Based on CTC and HSMM Decoding 21

Table 2: Comparison of edit-distance-based error rates (%) of different methods.

Test data Method Ep Em Ee Eon Eoff Mean

JPOP

Cascade ([11]+[27]) 9.0 47.8 14.2 47.4 31.2 29.9
CRNN-HSMM [22] 9.2 21.0 11.5 31.2 24.5 19.5

Tatum-level [3] 8.8 23.4 14.1 35.1 26.4 21.6
NV-based 6.9 24.6 7.5 37.3 27.3 20.7
MP-based 10.3 14.1 11.0 24.7 23.7 16.8

RWC

Cascade ([11]+[27]) 12.7 16.5 15.6 40.6 29.5 23.0
CRNN-HSMM [22] 7.9 9.6 14.5 22.5 21.6 15.2

Tatum-level [3] 9.4 13.3 18.9 32.3 26.9 20.2
NV-based 9.1 12.1 11.7 35.5 24.0 18.5
MP-based 10.6 8.8 15.9 24.5 27.1 17.4

Table 3: Comparison of edit-distance-based error rates (%) of the proposed method (MP-
based representation) with and without the HSMM decoder.

Test data Method Ep Em Ee Eon Eoff Mean

JPOP Naive decoder 9.9 16.7 13.6 37.5 24.2 20.4
HSMM decoder 10.2 14.2 11.0 24.6 23.5 16.7

RWC Naive decoder 10.6 9.2 15.6 36.2 26.5 19.6
HSMM decoder 10.6 8.5 15.6 24.8 27.1 17.3

We also explored the influence of the note-level language model by changing
the values of weights γb and γp. Figure 4 shows that even though a slight
decrease of error rate was found when the weights were not too high, the
difference in the error rate was relatively small. A possible reason for this
result is that the treatment of rest notes included in the pitch language model
was inappropriate, suggesting a refinement of the musical language model can
further improve the result.

Figure 4: Dependence of the mean error rate on γb (left) and γp (right). We fix that γp = 0
in the left figure and γb = 0.6 in the right figure.

22 Deng et al.

5.2.3 Influence of Tatum Unit

To examine the potential of the MP-based model to adapt to finer-grained
tatum units, we also trained and tested the models with the 48th note tatum.
By choosing this tatum unit, we expect that the model can recognize triplets,
which is impossible to represent in the 16th note tatum. In a preliminary
experiment, we observed that the CTC-based model with the tatum-level
representation [3] failed to learn with the 48th note tatum. The reason is
that the finer-grained tatum unit increased the number of symbols, and the
temporal segment for each symbol became too short for the model to recognize.
Therefore, it is important to see whether the proposed model still works with
the finer-grained tatum unit.

Table 4 shows the results. We found that the model with the 48th note
tatum had similar performance to the model with 16th note tatum in terms of
MUSTER metrics. In an example shown in Figure 5, the former model indeed
recognized triplet notes. However, the method incorrectly recognized triplet
notes for a tied dotted rhythm in the first measure. To correctly discriminate
these rhythms is a challenging problem in principle, particularly because of the
significant temporal fluctuation of singing voice. These results indicated the
potential of the MP-based representation for dealing with fine-grained rhythms
and call for a more elaborated method for inferring rhythms, for example by
utilizing the repetitive structure of music [18].

Table 4: Comparison of edit-distance-based error rates (%) of the proposed method with
different tatum units. We only show the result on the JPOP test set because the RWC
dataset contained no triplet notes.

Tatum unit Ep Em Ee Eon Eoff Mean
16th note 10.3 14.1 11.0 24.7 23.7 16.8
48th note 9.6 14.0 12.8 25.1 23.7 17.1

6 Conclusion and Discussion

We have proposed an end-to-end singing transcription method based on CTC.
We developed the MP-based score representation, which is suited for represent-
ing the metrical structure of musical scores, and the HSMM decoder to improve
the result of inference. The proposed method only requires non-aligned pairs of
audio signals and musical scores for training, making it possible to potentially
utilize larger datasets. The experimental results showed that the proposed
method can achieve relatively high accuracy on real-world data.

Several issues are left for future work. First, we treated the rest note
equivalently to pitched notes, but the result suggested that this is inappropriate.

End-to-End Singing Transcription Based on CTC and HSMM Decoding 23

& 4

4
‰

œ œ œ .œ œ œ œ
.œ œ œ

œ œ
œ .œ

‰

œ œ œ œ œ œ œ œ œ

3
Œ

œ
œ

œ œ
œ œ

& 4

4
‰

œ œ œ .œ œ

‰ j

œ œ œ œ œ
œ# œ

œ .œ

‰

œ œ œ œ œ œ
œ œ

Œ

œ

œ
œ œ

œ œ

& 4

4
‰

œ œ œ œ

j

œ

‰ j

œ

3

œ œ œ œ
œ œ#

œ
.œ

‰

œ œ œ œ œ œ œ
œ œ

3
Œ

œ
œ

œ œ
œ œ

(a)

(b)

(c)

Figure 5: Estimated results with different tatum units. (a) Ground-truth score. (b)
Estimated result with the 16th note tatum model. (c) Estimated result with the 48th note
tatum model. Notable rhythmic errors are highlighted with boxes.

In fact, rest notes are used as special symbols to represent the parts without
singing voice and they cannot be easily discriminated from the blank symbol.
Thus, a proper way of dealing with rest notes should be carefully developed
in the proposed framework. Second, as explained in Section 2, the proposed
score representation cannot deal with notes longer than a measure. Although
this problem can partly be solved by considering a wider range of note values
or a longer period of metrical positions, a larger vocabulary may significantly
increase the computational cost. A refined method for tying multiple notes
in the postprocessing step may be necessary to deal with very long notes and
rests. Finally, we found that our method often fails to detect repeated notes
with the same pitch and can incorrectly split a single note into multiple notes.
In fact, the difference between these two cases is ambiguous because the onsets
of notes in singing voices are not always clear, especially when the same pitch
is repeated.

Acknowledgment

We thank Daichi Kamakura for useful discussions. This study was partially sup-
ported by JSPS KAKENHI Nos. 21K12187, 21K02846, 22H03661, 20H00602,
and 21H03572, JST PRESTO No. JPMJPR20CB, and JST FOREST No. JP-
MJPR226X.

24 Deng et al.

References

[1] V. Arroyo, J. J. Valero-Mas, J. Calvo-Zaragoza, and A. Pertusa, “Neural
Audio-to-Score Music Transcription for Unconstrained Polyphony Using
Compact Output Representations”, in ICASSP, 2022, 4603–7.

[2] S. Chowdhury, A. V. Portabella, V. Haunschmid, and G. Widmer,
“Towards Explainable Music Emotion Recognition: The Route via Mid-
Level Features”, in ISMIR, 2019, 237–43.

[3] T. Deng, E. Nakamura, and K. Yoshii, “Audio-to-Score Singing Tran-
scription Based on Joint Estimation of Pitches, Onsets, and Metrical
Positions with Tatum-Level CTC Loss”, in APSIPA ASC, 2023, 583–90.

[4] Z. Duan and B. Pardo, “Soundprism: An Online System for Score-
Informed Source Separation of Music Audio”, IEEE Journal of Selected
Topics in Signal Processing, 5(6), 2011, 1205–15.

[5] S. Ewert, B. Pardo, M. Muller, and M. D. Plumbley, “Score-Informed
Source Separation for Musical Audio Recordings: An Overview”, IEEE
Signal Processing Magazine, 31(3), 2014, 116–24.

[6] M. Goto, H. Hashiguchi, T. Nishimura, and R. Oka, “RWC Music
Database: Popular, Classical and Jazz Music Databases”, in ISMIR,
2002, 287–8.

[7] A. Graves, S. Fernández, F. Gomez, and J. Schmidhuber, “Connectionist
Temporal Classification: Labelling Unsegmented Sequence Data with
Recurrent Neural Networks”, in ICML, 2006, 369–76.

[8] A. Graves and N. Jaitly, “Towards End-to-End Speech Recognition with
Recurrent Neural Networks”, in ICML, 2014, 1764–72.

[9] Y. Hiramatsu, E. Nakamura, and K. Yoshii, “Joint Estimation of Note
Values and Voices for Audio-to-Score Piano Transcription”, in ISMIR,
2021, 278–84.

[10] T.-H. Hsieh, L. Su, and Y.-H. Yang, “A Streamlined Encoder/Decoder
Architecture for Melody Extraction”, in ICASSP, 2019, 156–60.

[11] J.-Y. Hsu and L. Su, “VOCANO: A Note Transcription Framework for
Singing Voice in Polyphonic Music”, in ISMIR, 2021, 293–300.

[12] A. Ito, Y. Kosugi, S. Makino, and M. Ito, “A Query-by-Humming Mu-
sic Information Retrieval from Audio Signals Based on Multiple F0
Candidates”, in ICALIP, 2010, 1–5.

[13] J. W. Kim, J. Salamon, P. Li, and J. P. Bello, “CREPE: A Convolutional
Representation for Pitch Estimation”, in ICASSP, 2018, 161–5.

[14] M. Mauch, C. Cannam, R. Bittner, G. Fazekas, J. Salamon, J. Dai, J.
Bello, and S. Dixon, “Computer-Aided Melody Note Transcription Using
the Tony Software: Accuracy and Efficiency”, in TENOR, 2015, 23–31.

[15] M. Mauch and S. Dixon, “PYIN: A Fundamental Frequency Estimator
Using Probabilistic Threshold Distributions”, in ICASSP, 2014, 659–63.

End-to-End Singing Transcription Based on CTC and HSMM Decoding 25

[16] E. Nakamura, E. Benetos, K. Yoshii, and S. Dixon, “Towards Complete
Polyphonic Music Transcription: Integrating Multi-Pitch Detection and
Rhythm Quantization”, in ICASSP, 2018, 101–5.

[17] E. Nakamura, N. Ono, S. Sagayama, and K. Watanabe, “A Stochastic
Temporal Model of Polyphonic MIDI Performance with Ornaments”,
Journal of New Music Research, 44(4), 2015, 287–304.

[18] E. Nakamura and K. Yoshii, “Musical Rhythm Transcription Based on
Bayesian Piece-Specific Score Models Capturing Repetitions”, Informa-
tion Sciences, 572, 2021, 482–500.

[19] E. Nakamura, K. Yoshii, and S. Sagayama, “Rhythm Transcription of
Polyphonic Piano Music Based on Merged-Output HMM for Multiple
Voices”, TASLP, 25(4), 2017, 794–806.

[20] R. Nishikimi, E. Nakamura, S. Fukayama, M. Goto, and K. Yoshii,
“Automatic Singing Transcription Based on Encoder-Decoder Recurrent
Neural Networks with a Weakly-Supervised Attention Mechanism”, in
ICASSP, 2019, 161–5.

[21] R. Nishikimi, E. Nakamura, M. Goto, K. Itoyama, and K. Yoshii, “Scale-
and Rhythm-Aware Musical Note Estimation for Vocal F0 Trajectories
Based on a Semi-Tatum-Synchronous Hierarchical Hidden Semi-Markov
Model”, in ISMIR, 2017, 376–82.

[22] R. Nishikimi, E. Nakamura, M. Goto, and K. Yoshii, “Audio-to-Score
Singing Transcription Based on a CRNN-HSMM Hybrid Model”, AP-
SIPA, 10(e7), 2021, 1–13.

[23] R. Nishikimi, E. Nakamura, M. Goto, and K. Yoshii, “End-to-End Melody
Note Transcription Based on a Beat-Synchronous Attention Mechanism”,
in WASPAA, 2019, 26–30.

[24] M. Rocamora, P. Cancela, and A. Pardo, “Query by Humming: Au-
tomatically Building the Database from Music Recordings”, Pattern
Recognition Letters, 36, 2014, 272–80.

[25] M. A. Román, A. Pertusa, and J. Calvo-Zaragoza, “A Holistic Approach
to Polyphonic Music Transcription with Neural Networks”, in ISMIR,
2019, 731–7.

[26] M. A. Román, A. Pertusa, and J. Calvo-Zaragoza, “An End-to-End
Framework for Audio-to-Score Music Transcription on Monophonic Ex-
cerpts”, in ISMIR, 2018, 34–41.

[27] K. Shibata, E. Nakamura, and K. Yoshii, “Non-Local Musical Statistics
as Guides for Audio-to-Score Piano Transcription”, Information Sciences,
566, 2021, 262–80.

[28] F.-R. Stöter, S. Uhlich, A. Liutkus, and Y. Mitsufuji, “Open-Unmix —
A Reference Implementation for Music Source Separation”, Journal of
Open Source Software, 4(41), 2019, 1667–72.

[29] J.-Y. Wang and J.-S. R. Jang, “On the Preparation and Validation of a
Large-Scale Dataset of Singing Transcription”, in ICASSP, 2021, 276–80.

26 Deng et al.

[30] J.-Y. Wang and J.-S. R. Jang, “Training a Singing Transcription Model
Using Connectionist Temporal Classification Loss and Cross-Entropy
Loss”, IEEE/ACM TASLP, 31, 2023, 383–96.

[31] C. Wigington, B. Price, and S. Cohen, “Multi-Label Connectionist Tem-
poral Classification”, in ICDAR, 2019, 979–86.

[32] S. Yu, X. Sun, Y. Yu, and W. Li, “Frequency-Temporal Attention Network
for Singing Melody Extraction”, in ICASSP, 2021, 251–5.

	Introduction
	Musical Score Representations
	Tatum-Level Representation
	Note-Level Representations
	NV-Based Representation
	MP-Based Representation

	Related Work
	Cascading Approach
	End-to-End Approach

	Proposed Method
	Problem Specification
	End-to-End Training
	NV-Based Representation
	MP-Based Representation

	Network Architecture
	NV-Based Representation
	MP-Based Representation

	HSMM Decoding
	Note-Level Model Formulation
	Frame-Level Model Formulation
	Viterbi Algorithm

	Evaluation
	Experimental Conditions
	Dataset
	Network Configuration
	Compared Methods
	Evaluation Measures

	Experimental Results
	Performance Comparison
	Efficacy of the HSMM Decoder
	Influence of Tatum Unit

	Conclusion and Discussion

