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ABSTRACT

For effective guidance of agents’ opinions in social networks, it is
important to understand how messages evolve and analyze their
impact on agents’ opinions. Opinion dynamics model how agents in-
fluence each other’s opinions and how the entire network’s opinions
evolve. In the literature, many works have used opinion dynamics
to study the influence of messages on agents’ opinions. However,
most works assume static messages or independence among mes-
sages at different times. Studies in mass media theory show that
the message evolution process exhibits temporal continuity, ran-
domness, and polarization features. In this work, we first propose
the Bounded Brownian Message (BBM) model to describe the
message evolution process, jointly considering the above features.
We then combine the BBM model with the classic DeGroot opinion
dynamics model and propose the Message EvoLution and Opinion
DYnamics (MELODY) model to study the impact of message evolu-
tion on opinion dynamics. We theoretically analyze the probability
distributions and statistics of messages and opinions and study how
messages influence the agents’ steady-state opinions. Simulations
and real user tests validate our analyses. This study is critical to a
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better understanding of how messages shape agents’ opinions in
social networks and design effective mechanisms to guide agents’
opinions.

Keywords: Message evolution, opinion dynamics, social network, statistical
analysis.

1 Introduction

Social media platforms, such as newspapers and broadcasting, serve as channels
for disseminating messages and wielding substantial influence over the opinions
of agents, e.g., users, agencies, and organizations [24]. However, the dissemina-
tion of fake messages on social media platforms poses a serious threat to the
integrity and accuracy of information. These fake messages, often designed to
be persuasive, can easily influence agents’ opinions [1]. For example, during
political elections, fake messages about candidates’ policies or personal lives
can sway voters’ opinions and potentially impact the election results [11]. In
the realm of finance, fake messages related to stocks can exacerbate investors’
underreaction to legitimate messages, thereby influencing investors’ opinions
of market trends and precipitating substantial negative fluctuations in stock
prices [18]. Without proper verification and scrutiny, agents may be misled
into adopting harmful or uninformed opinions. Therefore, it is critical to
understand how messages shape agents’ opinions in social networks and design
effective mechanisms to guide agents’ opinions [10].

1.1 Literature Review

From mass media theory, message refers to specific information or content
produced by the message source, while opinion pertains to the subjective
views and attitudes of agents towards the messages [42]. The seminal work in
[33] provided a qualitative analysis that demonstrated the intricate interplay
between messages and agents’ opinions. Their findings revealed that agents’
beliefs are not solely shaped by the messages they receive but are also sig-
nificantly influenced by the opinions of their neighbors. Furthermore, this
study highlighted the dynamic nature of both messages and agents’ opinions,
indicating that they coevolve over time.

In the following, we will review related works in opinion dynamics models
and message evolution in mass media theory.
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1.1.1 Opinion dynamics

Opinion dynamics model how agents influence each other’s opinions and
how the entire network’s opinions evolve [55, 45, 61, 34, 62]. Over the past
years, numerous opinion dynamics models have been proposed. The classic
works include the DeGroot model [17], the Friedkin-Johnsen model [20], the
Bounded Confidence models [16, 26], etc. The DeGroot model assumed that
agents weigh the opinions of others based on their perceived expertise and
update their opinions in a linear manner [17]. When the network is connected,
opinion consensus can be reached where all agents hold the same opinion. To
model the social behavior of stubborn agents, the Friedkin-Johnsen model
extended the DeGroot model and introduced agents’ intrinsic beliefs [20].
The Bounded Confidence models, including the Deffuant-Weisbuch model
[16] and the Hegselmann-Krause model [26, 4], etc., described how agents
update their opinions based on the opinions of others, but only to a certain
degree of similarity, reflecting their limited willingness to accept different
opinions. This phenomenon is referred to as selective exposure [52]. Based on
the Hegselmann-Krause model, the Asynchronous Hegselmann-Krause model
in Bernardo et al. [6] further considers the scenario where agents update
their opinions one after another. Apart from the Deffuant-Weisbuch and
Hegselmann-Krause models, many other works investigated the phenomenon
of selective exposure in opinion dynamics. The Biased Opinion Formation
model in Dandekar et al. [15] introduced a biased opinion term into the DeGroot
model to model selective exposure. Building upon the Hegselmann-Krause
model, the Stochastic Bounded Confidence model in [3] employed a function
of agents’ opinion distances as the weighting factor for opinion updates. All
the above models come in the discrete-time and the continuous-time versions,
utilizing difference and differential equations to describe the update of agents’
opinions, respectively [37, 46].

1.1.2 Opinion dynamics models with static and dynamic messages

There have been many works using opinion dynamics models to study the
influence of messages on agents’ opinions. In Li and Zhu [36] and Yang et
al. [59] and the Cyber-Social Network model in Mao et al. [38, 39], an agent
maintaining a constant opinion, i.e., a stubborn agent, was introduced into
the DeGroot model or the Friedkin-Johnsen model, serving as a time-invariant
message that shapes the opinion updates of other agents. A similar approach
was used in the Deffuant-Weisbuch model in Carletti et al. [12], Gargiulo
et al. [22], Martins et al. [41], Sîrbu et al. [53, 54], and Pineda and Buendía
[49]. In Hegselmann and Krause [27] and Kurz and Rambau [32], an agent
first updates his/her opinion according to the Hegselmann-Krause model, and
then takes the average of the updated opinion and a time-invariant message
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as the modified opinion, iterating this process continuously. Additionally,
Crokidakis [14], Fotouhi and Rabbat [19], Colaiori and Castellano [13], Boudin
and Salvarani [9], and Muslim et al. [44] employed other opinion dynamics
models, such as the Sznajd model [58] and the voter model [57, 56], to analyze
the impact of the time-invariant message on opinions. Nevertheless, the above
works predominantly assumed that messages remain static and do not evolve,
and we call them opinion models with static messages.

To our knowledge, there is limited literature studying the influence of time-
varying messages on opinion dynamics. We call these models opinion models
with dynamic messages. Mirtabatabaei et al. [43] and Gündüç [25] assumed that
the message at each time step follows a predetermined probability distribution,
such as a binomial distribution or a truncated normal distribution. They
integrated the message with the Hegselmann-Krause model and the Deffuant-
Weisbuch model to study the impact of time-varying messages on opinion
dynamics, respectively. However, these models assume the independence of
message probability distributions across different time steps and fail to capture
the features of message evolution, as messages across different time steps
are correlated. Quattrociocchi et al. [50] introduced a computational model
of opinion dynamics that considers the coexistence of media as separated
mechanisms and their feedback loops. In this model, agents consider both
the messages received and the opinions of other agents as inputs for the
Deffuant-Weisbuch model. At each time step, a dominant message source
emerges based on the proximity between the message and agents’ opinions.
Subsequently, other message sources adjust their messages to align with the
dominant message source. Due to the complexity of this model, it is challenging
to theoretically analyze the impact of message evolution on opinion dynamics.

1.1.3 Message evolution in mass media theory

From mass media theory, the message evolution exhibits three features: tempo-
ral continuity [21], randomness [23], and polarization [2, 7]. When a valuable
topic is disseminated in social networks, it continues to attract agents’ at-
tention. Consequently, the messages related to this topic form a sequentially
evolving sequence over time exhibiting temporal continuity, and messages at
different times are correlated [21]. The randomness refers to the uncertainty
in the topic progression and the noise introduced by message sources when
they edit the message contents [23]. Finally, when a message source adopts
an extreme stance, it persistently emphasizes or reinforces that position in
subsequent coverage, rather than shifting towards the opposite direction, which
is referred to as polarization [2, 7]. To our knowledge, few works have quan-
titatively modeled the message evolution considering all these three features
and analyzed the impact of message evolution on opinion dynamics.
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1.2 Our Contributions

Taking into account the above features of message evolution, in this paper,
we quantitatively model the message evolution and incorporate it into the
opinion dynamics model to study the impact of messages on agents’ opinions.
As an example, we study the impact of messages about stock prices on agents’
opinions regarding the trend in the financial market. From the work in Osborne
[47], the temporal continuity and randomness features of stock prices align
with those of messages. Additionally, the circuit breaker, the mechanism that
ensures the stock price remains stationary after hitting the upper or lower
limits, is akin to polarization [30]. In finance theory, Brownian motion has
been extensively used to model the dynamic changes in stock prices and has
been validated using real-world data [51]. Following these prior works, we use
the Brownian motion to model the evolution of messages about stock prices.
However, they did not consider the polarization feature. In this work, we
introduce two absorbing bounds into the Brownian motion model to describe
the polarization, which we call the Bounded Brownian Message (BBM ) model.
Following the works by Mao et al. [38, 39], we model the messages and agents’
opinions in social networks as a dynamic linear system, where agents’ opinions
are the state variables, and messages are the input variables. We incorporate
the BBM model into the classic DeGroot opinion dynamics model [17] and
propose the Message EvoLution and Opinion DYnamics (MELODY ) model
to analyze the message and opinion coevolution and study the impact of
messages on agents’ opinions.

Our contributions can be summarized as follows.

• We propose the BBM model to model the message evolution process,
which jointly considers the temporal continuity, randomness, and polar-
ization features, and we quantitatively analyze the statistics of messages.

• We propose the MELODY model to model the opinion dynamics with
consideration of message evolution and study the impact of message
evolution on opinion dynamics.

• We run simulations over synthetic and real networks and conduct a real
user test to validate the correctness of our analyses and our proposed
MELODY model.

The rest of this paper is organized as follows. In Section 2, we propose
the BBM model and analyze the statistics of the messages. In Section 3, we
propose the MELODY model and analyze the statistics of the opinions and
the impact of message evolution on opinion dynamics. The simulation and real
user test results are shown in Section 4 and Section 5, respectively. Finally,
the conclusion is drawn in Section 6.
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2 The BBM Model

In this section, we first introduce the BBM model and then analyze the
statistical properties of the message, including its probability distribution and
statistics.

2.1 Model Definition

Assume that there are a total of M message sources. We use M := {1, . . . ,M}
to represent the index set of the message sources. Following the works by
Mirtabatabaei et al. [43] and Mao et al. [38, 39], we model the messages
at time t using a random vector st ∈ [0, 1]M . Let 0 and 1 represent two
messages supporting opposite and extreme views on a topic, which we call the
two absorbing bounds. In the BBM model, the message evolves following a
stochastic process, and once it reaches one of the absorbing bounds, it remains
unchanged. Let si,0 denote the initial message of the i-th message source.
We assume that it follows a uniform distribution on [ξ, ξ] ⊂ (0, 1), and all
initial messages are independent. The two bounds ξ and ξ prevent si,0 from
approaching values of 0 or 1 quickly, avoiding an immediate convergence to
the absorbing bounds.

To model the continuous-time message evolution, we assume that each
message {si,t}t⩾0 follows a Brownian motion. Let (Ω,F , {Ft}t⩾0,P) be a
complete filtered probability space on which an M -dimensional standard
Brownian motion {zt}t⩾0 is defined. The i-th component {zi,t}t⩾0 represents
the standard Brownian motion for the i-th message source, and we assume
that all components are independent. Let c > 0 denote the changing rate
of messages, which quantifies the level of randomness, and to simplify the
analysis, we assume that c is identical for all messages in this work. Without
considering the absorbing bounds, the message of the i-th message source at
time t is

yi,t = si,0 + czi,t. (1)

When we consider the absorbing bounds, i.e., the message of the i-th message
source stops changing once it reaches 0 or 1, the message at time t can be
expressed as

si,t = yi,u, (2)

where u := t ∧ Ti,0 ∧ Ti,1. Here, we define Ti,0 as the first time yi,t hits 0,
i.e., Ti,0 := inf{t : t > 0, yi,t = 0}, and Ti,1 is defined similarly. The operator
∧ returns the infimum of two variables. Equation (1) and (2) are called the
BBM model.

In the BBM model, the message is a continuous-time stochastic process,
which reflects the time continuity feature of the message. We use the Brownian
motion to reflect the randomness feature. Additionally, the two absorbing
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bounds in the BBM model reflect the polarization feature. Therefore, the
BBM model can quantitatively describe the complex characteristics of message
evolution in mass media theory.

2.2 Statistical Analysis of the Messages

Given the BBM model, we analyze the probability distribution and statistics
of the messages.

2.2.1 Probability distribution of the messages

Theorem 1 gives the probability distribution of si,t.

Theorem 1. Given si,0, the conditional probabilities that si,t reaches the
absorbing bounds 0 and 1 at time t are

P(si,t = 0|si,0) =
∫ t

0

dτ

τ

∑
j∈E

(si,0 − j)g(j, τ |si,0), and (3)

P(si,t = 1|si,0) =
∫ t

0

dτ

τ

∑
j∈O

(j − si,0)g(j, τ |si,0), (4)

respectively, where E and O refer to the sets of the even and odd numbers,
and g(x, t|x0) :=

1√
2πc2t

exp
{
− (x−x0)

2

2c2t

}
is the transition probability from x0

to x over time t of the Brownian motion with changing rate c. The conditional
probability density function of si,t ∈ (0, 1) is

fsi,t(x|si,0) =
∑
n∈E

g(n+ x, t|si,0)− g(−n− x, t|si,0). (5)

Proof. According to Karatzas and Shreve [29], we have Lemma 1.

Lemma 1. Consider the Brownian motion {xt}t⩾0 on [0, 1], whose changing
rate is c. If the initial value x0 ∈ (0, 1), then for t > 0, x ∈ (0, 1), the
probability density functions of the first hitting time T0 and T1 are

fT0
(t, T0 < T1|x0) =

1

t

∑
n∈E

(x0 − n)g(n, t|x0), and (6)

fT1
(t, T1 < T0|x0) =

1

t

∑
n∈O

(n− x0)g(n, t|x0), (7)

respectively. For t > 0, x ∈ (0, 1), the probability density function of xt is

fxt(x|x0) =
∑
n∈E

g(n+ x, t|x0)− g(−n− x, t|x0). (8)
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From Lemma 1, we can easily show that (5) is satisfied. Note that{
ω : si,t(ω) = 0

∣∣∣si,0}
=
{
ω : T0(ω) ⩽ t, T0(ω) < T1(ω)

∣∣∣si,0}
=

⋃
0⩽τ⩽t

{
ω : T0(ω) = τ, T0(ω) < T1(ω)

∣∣∣si,0} , and (9)

{
ω : si,t(ω) = 1

∣∣∣si,0}
=
{
ω : T1(ω) ⩽ t, T1(ω) < T0(ω)

∣∣∣si,0}
=

⋃
0⩽τ⩽t

{
ω : T1(ω) = τ, T1(ω) < T0(ω)

∣∣∣si,0} . (10)

Therefore, the conditional probabilities that si,t reaches the absorbing bounds
0 and 1 at time t are

P(si,t = 0|si,0) =
∫ t

0

fT0(τ, T0 < T1|si,0)dτ

=

∫ t

0

1

τ

∑
n∈E

(si,0 − n)g(n, τ |si,0)dτ, and

P(si,t = 1|si,0) =
∫ t

0

fT1(τ, T1 < T0|si,0)dτ

=

∫ t

0

1

τ

∑
n∈O

(n− si,0)g(n, τ |si,0)dτ, (11)

respectively. Here, we have proved Theorem 1.

From Theorem 1, we can show that when si,0 < 1
2 , P(si,t = 0|si,0) >

P(si,t = 1|si,0), and conversely, when si,0 > 1
2 , P(si,t = 0|si,0) < P(si,t =

1|si,0). This indicates that if the initial message leans toward one side, then as
the message evolves, the distribution will also tend toward that side. Further-
more, the probability of the message reaching the absorbing bounds increases
monotonically with time, implying that as the message evolves, it tends to
become more polarized. It can be proved that as t approaches infinity, the
message almost surely reaches the absorbing bounds, and adheres to a binomial
distribution, as stated in Theorem 2.

Theorem 2. As t approaches infinity, the probability distribution of si,t is a
binomial distribution, and
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lim
t→∞

P(si,t = 1|si,0)
a.s.
= si,0,

lim
t→∞

P(si,t = 0|si,0)
a.s.
= 1− si,0,

lim
t→∞

fsi,t(x|si,0)
a.s.
= 0, ∀x ∈ (0, 1).

(12)

Here, a.s.
= means the two variables are equal in probability almost surely. And

a.s.
⩽ is defined similarly.

Proof. As t approaches infinity, the transition probability function is

lim
t→∞

g(x, t|x0)
a.s.
= 0,∀x ∈ (0, 1). (13)

From Theorem 1, the probability density function of si,t is

lim
t→∞

fsi,t(x, t|si,0)
a.s.
= 0,∀x ∈ (0, 1). (14)

Because {yi,t}t⩾0 is a Brownian motion, it is a continuous-time martingale.
Because both T0 and T1 are stopping times with respect to {yi,t}t⩾0, the first
time yi,t hits either absorbing bound T := T0 ∧ T1 is also a stopping time.
From Bhattacharya and Waymire [8], the conditional mean of T given si,0 is

E(T |si,0) =
si,0(1− si,0)

c2
< ∞. (15)

And it is easy to prove that

E
(
sup
t⩾0

|yi,T∧t|
∣∣∣∣si,0) ⩽ 1 < ∞. (16)

According to (15), (16), and the Stopping Time Theorem [8], we can prove
that

E(yi,T |si,0) = E(yi,0|si,0)
a.s.
= si,0. (17)

On the other hand, from the definition of mean,

E(yi,T |si,0) = P(T1 < T0|si,0)
a.s.
= si,0. (18)

From (10), note that

lim
t→∞

{
ω : si,t(ω) = 1

∣∣∣si,0}
= lim

t→∞

⋃
0⩽τ⩽t

{
ω : T0(ω) = τ, T1(ω) < T0(ω)

∣∣∣si,0}
=

⋃
τ⩾0

{
ω : T0(ω) = τ, T1(ω) < T0(ω)

∣∣∣si,0}
=
{
ω : T1(ω) < T0(ω)

∣∣∣si,0} . (19)
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Because {
ω : si,σ(ω) = 1

∣∣∣si,0} ⊂
{
ω : si,τ (ω) = 1

∣∣∣si,0} ,∀σ < τ, (20)

according to the continuity of probability, we have

lim
t→∞

P(si,t = 1|si,0) = P
(
lim
t→∞

si,t = 1
∣∣∣si,0)

= P(T1 < T0|si,0)
a.s.
= si,0. (21)

Similarly, we can prove that

lim
t→∞

P(si,t = 0|si,0)
a.s.
= 1− si,0. (22)

Here, we have proved Theorem 2.

2.2.2 Statistics of the messages

In the BBM model, the message is a stochastic process. With the above
probability distribution, we can further analyze its statistics. First, we analyze
the mean of the messages.

Theorem 3. The conditional mean of si,t given si,0 is

E(si,t|si,0)
a.s.
= si,0, (23)

and the mean of si,t is
Esi,t = µ, (24)

where µ := 1
2 (ξ + ξ). In vector form, (24) is

Est = µ1M×1, (25)

where 1M×1 is the all-one vector.

Proof. According to Bhattacharya and Waymire [8], we have Lemma 2.

Lemma 2. If {xt}t⩾0 is a martingale and T is a stopping time, then the stop
process {xT∧t}t⩾0 is also a martingale.

From Lemma 2, since {yi,t}t⩾0 is a martingale and T is a stopping time,
the stopped process {si,t}t⩾0 = {yi,T∧t}t⩾0 is a martingale. Therefore, we
have

E(si,t|si,0)
a.s.
= si,0, and (26)

Esi,t = E[E(si,t|si,0)] = Esi,0 = µ. (27)

Here, we have proved Theorem 3.
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From Theorem 3, the mean of the message remains the same over time
and equals the mean of the initial message distribution.

Next, we analyze the variance of the messages. It is complicated to calculate
the exact value of the variance of si,t for each t, and we show its upper bound
in Theorem 4.

Theorem 4. The upper bound of the conditional variance of si,t given si,0 is

D(si,t|si,0)
a.s.
⩽ (c2t) ∧ [si,0(1− si,0)], (28)

and the upper bound of the variance of si,t is

Dsi,t ⩽ (c2t+ δ2) ∧ [µ(1− µ)], (29)

where δ2 := 1
12 (ξ − ξ)2 is the variance of the uniform distribution in [ξ, ξ]. In

vector form, (29) is

Dst ⩽ (c2t+ δ2) ∧ [µ(1− µ)]1M×1. (30)

Proof. First, we have

D(si,t|si,0) = D(yi,T∧t|si,0) = c2D(zi,T∧t|si,0) ⩽ c2t. (31)

From Theorem 2, as t approaches infinity, the message almost surely hits the
absorbing bounds, so the variance is

D(si,t|si,0)
a.s.
⩽ P(si,t = 0|si,0)s2i,0 + P(si,t = 1|si,0)(1− si,0)

2

= (1− si,0)s
2
i,0 + si,0(1− si,0)

2

= si,0(1− si,0). (32)

From (31) and (32), we can establish the upper bound of the variance:

D(si,t|si,0)
a.s.
⩽ (c2t) ∧ [si,0(1− si,0)]. (33)

For the convenience of expression, we denote D̄(si,t|si,0) := c2t. According to
the Law of Total Variance, when t is small, the variance is

Dsi,t = E[D(si,t|si,0)] + D[E(si,t|si,0)]
= c2t+ Dsi,0 = c2t+ δ2. (34)

For the convenience of expression, we denote D̄si,t := c2t+ δ2. As t approaches
infinity, the variance is

lim
t→∞

Dsi,t = E[si,0(1− si,0)] + δ2 = Esi,0 − E(si,0)2 + δ2

= µ− (µ2 + δ2) + δ2 = µ(1− µ). (35)

Here, we have proved Theorem 4.
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From Theorem 4, the upper bound of the variance is determined by two
terms, each corresponding to the following two scenarios. When t is small, the
message has not yet reached the absorbing bounds, and the stochastic process
still exhibits Brownian motion features, with its conditional variance increasing
linearly with time. As t approaches infinity, the message almost surely reaches
the absorbing bound, and the distribution of the message takes on a binomial
distribution, as described in Theorem 2. In this case, the variance reaches a
steady state. Furthermore, it can be proved that the variance of the message
is a monotonically increasing function with time.

In summary, from Theorem 1–4, in the BBM model, all messages initially
follow a uniform distribution on a proper subinterval of [0, 1], and eventually
converge to a 0/1 binomial distribution. During the entire message evolution
process, the mean remains constant while the variance gradually increases.

3 The MELODY Model

In this section, we incorporate the above BBM model into the traditional
DeGroot model and propose the MELODY model. We quantitatively analyze
the agents’ opinions dynamics over networks and the impact of messages on
agents’ opinions.

3.1 The Traditional DeGroot Model

Assume that there are a total of N agents in a fully connected network. We
use N := {1, . . . , N} to represent the index set of the agents. Let W ∈ RN×N

denote the adjacency matrix, which is a stochastic matrix with
∑N

j=1 wij =
1,∀i ∈ N and wij ⩾ 0,∀(i, j) ∈ N × N . wij quantifies the j-th agent’s
influence on the i-th agent in opinion update.

Let ot denote the vector of agents’ opinion at time t. Given the initial
opinion o0, the continuous-time form of the DeGroot model is described by
the following differential equation [46]:

ȯt = (W − I)ot, (36)

where I ∈ RN×N is the identity matrix. In (36), without considering the
influence of messages, the changing rate of agents’ opinions ȯt is a linear
combination of the agents’ opinions ot at time t, and the opinions are only
determined by the adjacency matrix W and the initial opinion o0.

From Berger [5], the opinion at time t is

ot = e(W−I)to0, (37)
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where o0 is the vector of agents’ initial opinions, and e(W−I)t :=
∑∞

k=0
tk

k! (W−
I)k. As t approaches infinity, the steady-state opinion is

lim
t→∞

ot = ℓ⊤o01N×1, (38)

where ℓ ∈ RN is the eigenvector of W associated with 1 constrained to∑N
i=1 ℓi = 1.

3.2 The MELODY Model

3.2.1 Model definition

Following the works by Mao et al. [38], Yang et al. [59], and Mao et al. [39], we
model the messages and agents’ opinions as a dynamic system, where agents’
opinions are the state variables, and messages are the input variables. The
incorporation of the BBM model with the DeGroot model leads us to the
following differential equation:

ȯt = (αW − I)ot + (1− α)Ust, (39)

where α ∈ (0, 1) is the weight coefficient of the opinion, and 1−α measures the
extent to which the messages affect the opinion update. A smaller α indicates
that messages exert a greater impact on the changing rate of agents’ opinions.
When α = 1, the MELODY model degenerates into the traditional DeGroot
model in (36). Following the works by Mao et al. [38, 39], the influence
matrix U ∈ RN×M is a stochastic matrix with

∑M
j=1 uij = 1,∀i ∈ N and

uij ⩾ 0,∀(i, j) ∈ N ×M. uij quantifies the influence of the j-th source on the
i-th agent in his/her opinion update. Equation (39) is the MELODY model.

In the MELODY model, the changing rate in opinions ȯt at time t is
composed of two parts: the linear combination of the opinions from all agents
(αW − I)ot at time t and the linear combination of messages (1 − α)Ust
at time t. We can solve (39) and calculate the opinion at time t. For the
convenience of expression, we denote A := αW − I and B := (1 − α)U
hereinafter.

Theorem 5. The opinion ot at time t is

ot = eAto0 +

∫ t

0

eA(t−τ)Bsτdτ. (40)

From Theorem 5, agents’ opinions are influenced not only by the adjacency
matrix W and the initial opinions o0 but also by the messages {st}t⩾0 and
the influence matrix U .
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3.2.2 Statistics of the opinions

We analyze the mean and variance of agents’ opinions in the MELODY model.

Theorem 6. The mean of ot is

Eot = eAto0 + µ(I − eAt)1N×1. (41)

As t approaches infinity,

lim
t→∞

Eot = µ1N×1. (42)

Proof. From Theorem 5, the mean of agents’ opinions is

Eot = E
[
eAto0 +

∫ t

0

eA(t−τ)Bsτdτ

]
= eAto0 +

∫ t

0

eA(t−τ)BEsτdτ

= eAto0 + µ

∫ t

0

eA(t−τ)dτB1N×1

= eAto0 + µ(1− α)(eAt − I)A−11N×1. (43)

From Horn and Johnson [28], because 1N×1 is an eigenvector of the row-
stochastic matrix W with eigenvalue 1, it is also an eigenvector of A with
eigenvalue α − 1. Furthermore, from Horn and Johnson [28], because W is
a row-stochastic matrix, the moduli of all eigenvalues are less than or equal
to 1. So the moduli of all eigenvalues of matrix A are less than or equal to
α− 1 < 0. That is, A is nonsingular, and 1N×1 is an eigenvector of A−1 with
eigenvalue (α− 1)−1, i.e.,

A−11N×1 = (α− 1)−11N×1. (44)

Therefore, from (43) and (44), we have (41). Furthermore, because the moduli
of all eigenvalues of matrix A are negative, as t approaches infinity, the matrix
exponential function eAt tends to the zero matrix. Therefore, we have

lim
t→∞

Eot = lim
t→∞

eAto0 + µ(1− α)A−1(eAt − I)1N×1 (45)

= µ(α− 1)A−11N×1 = µ1N×1.

From Theorem 6, Eot transitions from o0 to µ1N×1 over time, and as t
approaches infinity, Eot converges to the mean of the message distribution.

Next, we study the variance of ot. As it is difficult to analyze the variance
of ot for each t, we focus on the variance of the steady-state opinion ot as t
approaches infinity.
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Theorem 7. The variance of ot is

Dot = diag

∫ t

0

∫ t

0

eA(t−σ)BΣσ,τB
⊤eA

⊤(t−τ)dσdτ, (46)

where Σσ,τ := E(sσs⊤τ )−EsσEs⊤τ = E(sσs⊤τ )−µ21M×11
⊤
M×1. As t approaches

infinity,
lim
t→∞

Dot = µ(1− µ)diag(A−1BB⊤A−⊤), (47)

where diag transforms the diagonal of a matrix into a column vector.

Proof. From Theorem 5, the variance of agents’ opinions is

Dot = D
[
eAto0 +

∫ t

0

eA(t−τ)Bsτdτ

]
= D

[∫ t

0

eA(t−τ)Bsτdτ

]
= diagE

[∫ t

0

eA(t−τ)Bsτdτ

∫ t

0

s⊤τ B
⊤eA

⊤(t−τ)dτ

]
− diag

∫ t

0

eA(t−τ)BEsτdτ
∫ t

0

Es⊤τ B
⊤eA

⊤(t−τ)dτ

= diag

∫ t

0

∫ t

0

eA(t−σ)BE(sσs⊤τ )B
⊤eA

⊤(t−τ)dσdτ

− diag

∫ t

0

∫ t

0

eA(t−σ)BEsσEs⊤τ B
⊤eA

⊤(t−τ)dσdτ

= diag

∫ t

0

∫ t

0

eA(t−σ)BΣσ,τB
⊤eA

⊤(t−τ)dσdτ. (48)

As t approaches infinity, by setting the right-hand side of (39) to zero vectors,
we have

lim
t→∞

ot
a.s.
= lim

t→∞
A−1Bst. (49)

From Theorem 1, as t approaches infinity, each element si,t in st adheres to a
binomial distribution, with a probability of si,0 for taking the value of 1, and
a probability of 1− si,0 for taking the value of 0. Therefore, the variance is

lim
t→∞

Dot = lim
t→∞

diag(A−1BΣt,tB
⊤A−⊤). (50)

We use Theorem 4 to calculate the covariance. The diagonal elements of
limt→∞ Σt,t are equal to the variance as shown in (35), while the off-diagonal
elements are zero because {zi,t}t⩾0 are identical for i ∈ M, i.e.,

lim
t→∞

Σt,t = µ(1− µ)I. (51)

Here, we have proved Theorem 7.
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From (47), as t approaches infinity, the variance of agents’ opinions is
proportional to the variance of the messages µ(1 − µ), as shown in (35).
The vector diag(A−1BB⊤A−⊤) is the weighted average coefficient of all
messages. Specifically, when the influence matrix U = 1

M 1N×M , where
1N×M := 1N×11

⊤
M×1 is the all-one matrix with dimension of N × M , the

influence of all messages on agent’s opinion update is homogeneous. In this
case, the variance of the steady-state opinions is shown in Corollary 1.

Corollary 1. If U = 1
M 1N×M , as t approaches infinity, the variance of ot is

lim
t→∞

Dot =
µ(1− µ)

M
1N×1. (52)

Proof. Substituting U = 1
M 1N×M into the right-hand side of (47), we have

lim
t→∞

Dot = µ(1− µ)diag(A−1BB⊤A−⊤)

=
µ(1− µ)(1− α)2

M2
diag(A−11N×11

⊤
M×11M×11

⊤
N×1A

−⊤)

=
µ(1− µ)(1− α)2

M
diag[(A−11N×1)(A

−11N×1)
⊤], (53)

and from (44), we have

lim
t→∞

Dot =
µ(1− µ)

M
diag(1N×11

⊤
N×1) =

µ(1− µ)

M
1N×1. (54)

Here, we have proved (52).

3.2.3 Impact of the messages on the opinions

Next, we compare the MELODY model with the DeGroot model and study
the impact of the messages on agents’ opinions.

First, due to the randomness of messages, agents’ opinions in the MELODY
model are a stochastic process. However, in the DeGroot model, the vector
of the opinions is deterministic given the initial opinions and the adjacency
matrix.

Second, as shown in (41), the mean of agents’ opinions consists of two
terms in the MELODY model. The first term quantifies the impact of the
initial opinions and the adjacency matrix, which is similar to the DeGroot
model, while the second term quantifies the impact of messages. As the time
approaches infinity, the mean of agents’ steady-state opinions converges to the
mean of the message distribution. However, as shown in (38), in the DeGroot
model, agents’ steady-state opinions are determined by the initial opinions
and the adjacency matrix.
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Third, in the MELODY model, the variance of agents’ opinions increases
over time, which is attributed to the growing uncertainty in the messages. In
contrast, the DeGroot model’s opinions are deterministic, so the variance is
always zero.

In summary, in the BBM model, external messages cause stochastic fluctua-
tions in agents’ opinions over time, leading to increased variance. Additionally,
the mean of agents’ steady-state opinions in the BBM model converges to the
mean of the message distribution, reflecting the influence of external messages
on opinion dynamics.

4 Simulation Results

In this section, first, we conduct simulations to verify the analyses of the BBM
model in Section 2. Then, we conduct simulations over synthetic and real
networks to verify the analyses of the MELODY model in Section 3.

4.1 The BBM Model

We first simulate the message evolution process and verify our analyses of
the statistical properties of the messages. We set the parameters as follows:
s0 = 0.3 and c = 1, and we observe the same trend for other values of the
parameters. We generate a total of 10,000 message trajectories of the stochastic
process according to (1) and (2). Because Brownian motion is a continuous
function of time, we need to discretize it during simulation. The time interval
for simulating Brownian motion is dt = 0.01.

4.1.1 Probability distribution of the messages

The curves for P(st = 1|s0 = 0.3) and P(st = 0|s0 = 0.3) are shown in Figure
1a. Solid lines represent simulation values computed using the frequency of
messages reaching the absorbing bounds at 0 and 1 at time t, respectively.
Dashed lines represent theoretical values computed using (4). From Figure 1a,
simulation results match our theoretical analysis results very well, validating
the correctness of Theorem 1. Figure 1a also illustrates that the probability of
a message reaching the absorbing bounds monotonically increases with time.
The probability distribution functions fsi,t(x|s0 = 0.3) at t = 0.005, 0.01, 0.02
are plotted in Figure 1b. Again, the simulation and theoretical values exhibit
a notable similarity, confirming the correctness of Theorem 1.

From Figure 1a, as t approaches infinity, limt→∞ P(st = 1|s0 = 0.3) = 0.3
and limt→∞ P(st = 0|s0 = 0.3) = 0.7, which is consistent with Theorem 2.
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Figure 1: Probability distribution of the messages in the BBM model.

4.1.2 Statistics of the messages

We simulate the mean and variance of the messages with ξ = 0.2, ξ = 0.8,
c = 1. When we calculate the conditional mean and conditional variance,
we fix si,0 = 0.3. We also generate a total of 10,000 message trajectories.
As shown in Figure 2, solid lines represent simulation values calculated by
statistical methods, and dashed lines represent the theoretical values computed
using (23), (24), (28), and (29), respectively. The simulation values closely
align with theoretical values, validating Theorem 3 and Theorem 4.

4.2 The MELODY Model

Next, we simulate the opinion dynamics under the impact of messages over
synthetic and real networks and verify our analyses of the statistical properties
of the opinions. We first generate a small-scale synthetic network with 2
message sources and 3 agents and conduct simulations. The small numbers
of message sources and agents facilitate better view of simulation results. To
examine the generalization capability of our proposed MELODY model, we
also conduct simulations over three real networks.

4.2.1 Simulation results over synthetic networks

We set the parameters of the synthetic network as follows: M = 2, N = 3,
ξ = 0.2, ξ = 0.8, c = 1, W =

[
0.2 0.3 0.5
0.7 0.2 0.1
0.1 0.1 0.8

]
, U =

[
0.8 0.2
0.5 0.5
0.2 0.8

]
, α = 0.3, and

o0 =
[
0.2
0.5
0.8

]
, and we observe the same trend for other values of the parameters.
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Figure 2: Statistics of the messages in the BBM model.
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Figure 3: Statistics of the opinions in the MELODY model in synthetic networks.

The messages are generated using the BBM model according to (1) and (2).
The experiment repeats 10,000 times, and the mean and the variance of agents’
opinions are plotted in Figure 3.

In Figure 3a, solid lines represent the simulated mean of agents’ opinions,
and dashed lines represent the theoretical mean of agents’ opinions calculated
using (41). Simulation results match our theoretical analysis results very well.
As the time approaches infinity, all agents’ opinions converge to the mean
of the initial message distribution, validating Theorem 6. Given W and o0,
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the opinion curves based on the DeGroot model, with identical simulation
parameters, are also included as dashed-dotted lines in Figure 3a. Unlike
the MELODY model, the steady-state opinions in the DeGroot model are
independent of the initial message distribution.

In Figure 3b, solid lines represent the simulated variance of agents’ opinions.
Dashed lines represent the theoretical variance of the steady-state opinion cal-
culated using (47). Once again, a close correspondence between the simulated
and theoretical variance of the steady-state opinions validates the correctness
of Theorem 7.

4.2.2 Simulation results over real networks

The real networks used in the simulations include the Karate Club graph
[60], the Les Misérable graph [31], and the Facebook network [35]. These
networks are undirected and connected. The numbers of nodes and edges of
these networks are in Table 1. Note that in online social networks, the number
of message sources is often smaller than that of agents. We set the numbers of
message sources as M = 10, 20, and 100 for these three networks, respectively.
The messages are generated using the BBM model according to (1) and (2).

Table 1: Numbers of nodes and edges of the real social networks.

Network Number of nodes N Number of edges
Karate Club graph [60] 34 78
Les Misérable graph [31] 77 254
Facebook network [35] 4,039 88,234

We assume that agents are equally influenced by all their neighbors when
updating their opinions. Therefore, in the adjacency matrix W , we set
wij = 1/deg(i) when the two nodes i, j ∈ N are connected, and we set wij = 0
otherwise. Here, deg(i) > 0 is the degree of the node i. We assume that the
influence of all messages on the agents’ opinions is equal. Therefore, we set the
influence matrix as a scaled all-one matrix, i.e., U = 1

M 1N×M . The agents’
initial opinions o0 are randomly selected from [0, 1]N and remain unchanged
during each simulation run. We set other parameters as follows: ξ = 0.2,
ξ = 0.8, c = 1, and α = 0.3, and we observe the same trend for other values
of the parameters. The experiment repeats 10,000 times, and we show the
average results.

The mean and the variance of agents’ opinions in these three real networks
are plotted in Figure 4. Due to the large number of agents in the real networks,
we plot the mean and the variance of all agents’ opinions but highlight four of
them using different colors as an example for a better view. We observe similar
results for other agents. In Figure 4, solid lines represent the simulated mean
and variance of agents’ opinions, and dashed lines represent the theoretical
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(a) Mean: Karate Club graph (b) Mean: Les Misérable graph (c) Mean: Facebook network

(d) Variance: Karate Club graph (e) Variance: Les Misérable graph (f) Variance: Facebook network

Figure 4: Statistics of the opinions in the MELODY model in real social networks.

mean and variance of the steady-state opinion calculated using (41) and
(52), respectively. Simulation results match our theoretical results very well,
validating the correctness of Theorem 6 and Theorem 7.

5 Real User Test

In this section, we conduct a real user test to verify the correctness of our
proposed models. In the real user test, subjects receive messages and opinions
expressed by other subjects, continually updating their opinions based on the
messages and evolving opinions. Here, we analyze the impact of messages
about stock prices on agents’ opinions of financial market trends. Reddy and
Clinton [51] has validated that stock prices adhere to Brownian motion, and
the circuit breakers further validate the existence of two absorbing bounds [30],
thereby validating the BBM model with real data. Consequently, we solely
verify the accuracy of the MELODY model in this work.
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5.1 Dataset Collection

We conduct 4 groups of real user tests, denoted as G1, G2, G3, and G4. In
these groups, we recruit 24, 17, 19, and 15 subjects, respectively, i.e., N1 = 24,
N2 = 17, N3 = 19, and N4 = 15. We use G := {1, 2, 3, 4} to represent the
index set of the groups and Ni := {1, . . . , Ni} to represent the index set of the
subjects in group Gi. In group Gi, all Ni subjects complete 4 rounds of tests
together, denoted as Ri1, Ri2, Ri3, Ri4. We use R := {1, 2, 3, 4} to represent
the index set of the rounds. Due to feasibility constraints, we are unable to
obtain continuous values of stock prices and opinions over throughout the
entire experiment. Therefore, we sampled values at 10 discrete time points,
corresponding to T := {0, 1, 2, . . . , 9}, within the continuous time interval.
Each sampled time point is called a time step in the following.

In the real user test, the message is represented using 4 stock prices, i.e.,
M = 4, and the subject’s opinion is quantified by the predicted average stock
price, which represents the subject’s views regarding the financial market trend.
In the real-world communication process, the number of message sources is
much smaller than that of agents, so the number of stock prices should be
much smaller than the number of subjects in each group. However, too few
message sources do not conform to real-world communication processes. In
financial markets, relying on only one stock price may not adequately capture
the complexity and variability of market dynamics [40]. Therefore, we select
the number of the stock prices as 4. We also test the scenario where the
number of stocks are 5 or 6, and our simulation results show that the number
of stocks will not significantly impact the results.

The interface of the real user test is shown in Figure 5. In each round, at
time step t, subjects are presented with 4 stock price curves before time step t
and then submit their opinions. After all subjects submit their opinions, they
are presented with a bar chart depicting the distribution of subjects’ opinions
at time step t. Then, they proceed to the next time step t+ 1. To simplify
the experimental operation, subjects select the interval where their opinions
fall, including [0, 0.2), [0.2, 0.4), [0.4, 0.6), [0.6, 0.8), and [0.8, 1], instead of
inputting a real number. We use the midpoint of each interval as the opinion
value, i.e., 0.1, 0.3, 0.5, 0.7, and 0.9, respectively.

At the end of the real user test in group Gi, subject l chooses the proportion
αil by which his/her opinion is influenced by the stock prices and all subjects’
opinions. The options available are 10%/90%, 30%/70%, 50%/50%, 70%/30%,
and 90%/10%, representing αil = 0.9, 0.7, 0.5, 0.3, and 0.1, respectively.

Note that in our real user test, since all subjects need to exchange opinions
with each other, it is essential for them to do the test together in the same
room and to share their opinions in real time. The experiment takes place
in a medium-sized conference room, where each subject is provided with an
internet-connected computer. Due to the physical space and computational
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Figure 5: Interface of the real user test.

resources limitations, we are unable to recruit more than 25 subjects in each
experiment. We plan to address this limitation in our future work.

5.2 Experimental Setup

In the following, we use i ∈ G, j ∈ R, k ∈ M, l ∈ Ni, and t ∈ T to represent
the index of the groups, rounds, message sources, subjects, and time steps,
respectively.

We denote the stock prices in round Rij as {sij,t}t∈T := {[sijk,t]⊤}t∈T ,
each of which is subjected to the Brownian motion with two absorbing bounds 0
and 1 and generated from the BBM model using (1) and (2). We set the initial
price distribution as a uniform distribution on [0.2, 0.8], and the changing rate
c = 0.1 remained constant. After obtaining a Brownian motion trajectory
representing the stock prices, we retained only the values at the time steps.

We denote the subjects’ opinions in round Rij as {oij,t}t∈T :=
{[oijl,t]⊤}t∈T . In round Rij , at time step t = 1, subjects are presented
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with the 4 stock initial price sij,0, and then submit their initial opinions oij,0.
When t = τ > 1, subjects are presented with 4 stock price curves before time
step τ , i.e., {sij,t}t⩽τ , and all subjects’ opinions at time step τ − 1, oij,τ−1,
and then submit their opinions oij,τ .

Given that the 4 stock prices are randomly generated, the subjects’ pref-
erences for them are homogeneous. Therefore, we set the influence matrix
U i =

1
M 1Ni×M . Considering that subjects participate anonymously in the real

user test, we set the adjacency matrix W i =
1
Ni

1Ni×Ni
. Since the parameter

α for all agents in the MELODY model is homogeneous, we use its average
value ᾱ :=

∑
i∈G,l∈Ni

αil/
∑

i∈G Ni.

5.3 Comparison with Existing Models

We compare the MELODY model with prior works including FJ-static [38],
DW-static [12], HK-static [27], AHK-static [4], Sznajd-static [14], Voter-static
[44], DW-dynamic [25], and HK-dynamic [43] models. To achieve a more
comprehensive comparison, we additionally integrate dynamic messages into
four existing opinion models including the FJ-static model, AHK-static model,
Biased Opinion Formation model, and Stochastic Bounded Confidence model,
and obtain the FJ-dynamic, AHK-dynamic, BOF-dynamic, and SBC-dynamic
models, respectively. We then compare these models with the MELODY model.
All parameters in these models are tuned to their optimal settings.

Among these works, the FJ-static, DW-static, HK-static, AHK-static,
Sznajd-static, and Voter-static models are opinion models with static messages.
Thus, when implementing these benchmark models, we keep the 4 stock prices
as the mean of their initial prices. That is, in round Rij , the time-invariant
message is equal to 1

M

∑
k∈M sijk,0. In the Sznajd-static and Voter-static

models, the values of the message and opinion are binary, i.e., 0 or 1. Therefore,
we rounded the generated stock prices and subjects’ opinions to the nearest
integers at each time step.

The FJ-dynamic, DW-dynamic, HK-dynamic, AHK-dynamic, BOF-dyna-
mic, and SBC-dynamic models are opinion models with dynamic messages. In
the HK-dynamic model and the AHK-dynamic model, the stock prices follow a
binomial distribution. Therefore, we rounded the generated stock prices to the
nearest integers at each time step. In the DW-dynamic model, the stock prices
follow a truncated normal distribution. As shown in Figure 1b, the probability
distribution of the messages in the BBM model approximately conforms to
the truncated normal distribution. Therefore, we use our generated stock
prices directly to represent the message inputs in the DW-dynamic model. We
incorporate the generated stock prices as the message inputs into the FJ-static
model, and we call it the FJ-dynamic model. Additionally, inspired by Gündüç
[25] and Mirtabatabaei et al. [43], we model the messages generated from
the BBM model as agents’ opinions, and we then combine them with other
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agents’ opinions in the Biased Opinion Formation model and the Stochastic
Bounded Confidence model, and we call them the BOF-dynamic model and
the SBC-dynamic model, respectively.

For round Rij , we calculate the predicted subjects’ opinions using the
above models, denoted by {ôij,t}t∈T := {ôijl,t}t∈T ,∀l ∈ Ni. We use the
mean absolute error, abbreviated as MAE, between the predicted and the
true opinion values as the metric to measure the prediction accuracy, which is
defined as

MAE(ôij,t,oij,t) =
1

Ni

∑
l∈Ni

|ôijl,t − oijl,t|. (55)

We define the average MAE of the opinion dynamics model by averaging
all rounds of tests, which is

MAE(ôt,ot) =

∑
i∈G,j∈M,l∈Ni

|ôijl,t − oijl,t|∑
i∈G MNi

. (56)

We plot the average MAE curves between the predicted and the true opinion
values of different models over time in Figure 6. It can be observed that the
MELODY model exhibits the highest accuracy in predicting subjects’ opinions.
Since the Sznajd-static and Voter-static models utilize binary messages and
opinions, their accuracy in predicting subjects’ opinions in continuous opinion
space is notably lower than all other models. For the SBC-dynamic model,
at each time step, the opinion update of an agent is primarily influenced by
one or two messages through numerical calculations, while the impact of other
messages is small. Therefore, it also has limited accuracy. The prediction
accuracy of DW-static and DW-dynamic models is relatively lower compared
to other continuous opinion models. This is because the Deffuant-Weisbuch
model assumes that at each time step, agents update their opinions only in
pairs, which differs from the collective opinion updating mechanism in real
social networks. Conversely, the MELODY, FJ-static, FJ-dynamic, HK-static,
HK-dynamic, AHK-static, AHK-dynamic, and BOF-dynamic models assume
that agents’ opinion updates are influenced by either all agents or a group,
leading to higher prediction accuracy.

In the above models, the ones that exhibit prediction performance closest
to our proposed MELODY model are the HK-static and HK-dynamic models.
However, as time increases, the difference in prediction accuracy for agents’
opinions between these models and the MELODY model gradually widens.
This is because, in the HK-static model, the stock prices remain unchanged,
and in the HK-dynamic model, the stock prices follow a binomial distribution,
which does not align with the message evolution in real social networks. Our
proposed MELODY model assumes that the messages follow the BBM model,
which characterizes the temporal continuity, randomness, and polarization
features of the message evolution in real social networks. As time increases, the
messages diverge significantly from their initial values, and both the HK-static
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Figure 6: Comparison of the average MAE between the predicted and the true opinion
values of the MELODY and existing models.

and HK-dynamic models exhibit lower accuracy in predicting messages than
the MELODY model, leading to lower accuracy in predicting opinions.
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5.4 Impact of the Messages on the Opinion Dynamics

From Theorem 6 and Theorem 7, the mean and variance of the agents’ opinions
are influenced by the messages. In this part, we analyze the accuracy of the
MELODY model’s predictions for the mean and variance of subjects’ opinions.
We denote the sample mean and sample variance of subjects’ opinions at time
step t as Eoi,t and Doi,t, respectively. We also use the MAE of the mean and
variance of subjects’ opinions to measure the accuracy of the opinion dynamics
model’s predictions, which are

MAE(E) := MAE(Eôi,t,Eoi,t) =
1

Ni

∑
l∈Ni

|Eôil,t − Eoil,t|, and (57)

MAE(D) := MAE(Dôi,t,Doi,t) =
1

Ni

∑
l∈Ni

|Dôil,t − Doil,t|. (58)

5.4.1 Steady-state opinions

We first consider the case when the time step t = 9. From the experimental
data, it can be observed that at time step t = 9, subjects’ opinions tend to
stabilize. Therefore, we assume that the subjects’ opinions approximately
reach a steady state in round Ri9. We compare the prediction accuracy of the
MELODY model with the DeGroot [17] and FJ-static [38]. In the MELODY
model, we calculate the theoretical mean and variance of agents’ steady-state
opinions using (42) and (52), respectively.

We calculate the steady-state opinions of the DeGroot model using (38).
In the DeGroot model, agents’ opinions are not influenced by messages. By
comparing the MELODY model with the DeGroot model, we can verify the
influence of messages on opinions. As a baseline model considering the influence
of messages on opinions, we choose the FJ-static model. From Parsegov et al.
[48], we can obtain the mean of the steady-state opinions of the FJ-static model.
As the Deffuant-Weisbuch and Hegselmann-Krause models lack the formula
for calculating the mean of the steady-state opinions, we cannot compare them
with the MELODY model. Because the DeGroot and FJ-static models are
deterministic, the mean of the steady-state opinions is equal to the steady-state
opinions, and the variance is zero.

The results are shown in Table 2. In group G1, the mean of subjects’ initial
opinions differs from the mean of the stock initial prices, which highlights the
influence of messages on the mean of the steady-state opinions. In this case,
both the MELODY and FJ-static models exhibit much higher accuracy in
predicting the mean of the steady-state opinions compared to the DeGroot
model. In group G2, G3, and G4, since the mean of subjects’ initial opinions
is equal to the mean of the initial prices, we cannot determine whether the
mean of the steady-state opinions is influenced by the initial opinions or the
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Table 2: Comparison of statistics of the steady-state opinions between the DeGroot, FJ-
static, and MELODY model.

Model DeGroot FJ-static MELODY Mean Mean
Metric MAE(E) MAE(E) MAE(E) MAE(D) of oi,0 of si,0

Group

G1 0.0937 0.0372 0.0229 0.0542 0.55 0.5
G2 0.0441 0.0586 0.0470 0.0295 0.5 0.5
G3 0.0473 0.0565 0.0552 0.0384 0.5 0.5
G4 0.0633 0.0881 0.0833 0.0413 0.5 0.5

Average 0.0621 0.0601 0.0521 0.0408 – –

messages. In this case, the prediction accuracy of the three models is similar.
Furthermore, in all groups, the MELODY model exhibits higher prediction
accuracy for the mean of the steady-state opinion compared to the FJ-static
model. It also exhibits a high prediction accuracy for the variance of the
steady-state opinion. In summary, we have verified that the MELODY model
can accurately quantify the influence of messages on steady-state opinions.

5.4.2 Transition to the steady-state opinions

We plot the mean and variance of the opinions during the transition process
t ∈ T in Figure 7. Since the mean and variance of subjects’ opinions, Eoi,t

and Doi,t of group Gi, are vectors, we compute the mean of all elements
and represent them with solid lines. Additionally, shaded areas represent
one standard deviation of all elements above and below the mean. Dashed
lines represent the theoretical mean and variance of the steady-state opinions
calculated using (42) and (52), respectively. The mean of the opinions remains
nearly constant over time, and its value is equal to the mean of the initial
message distribution, which validates the correctness of Theorem 6. The
variance of the opinions exhibits an increasing trend with time and gradually
approaches the variance of the steady-state opinions, which validates the
correctness of Theorem 7.

6 Conclusions

In this paper, we propose the MELODY model to describe the joint evolution
of messages and opinions in social networks and analyze the impact of messages
on opinion dynamics. We first propose the BBM model to capture the temporal
continuity, randomness, and polarization features of the message evolution
process. We then combine the BBM model with the classic DeGroot opinion
dynamics model and analyze the statistical properties of the opinions with
consideration of message evolution. Our analyses show that the mean of
the opinions remains the same over time and equals the mean of the initial
message distribution, and the variance of agents’ opinions increases over time.
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(a) Mean

(b) Variance

Figure 7: Mean and variance of the opinions in the transition process.

Simulation and real user test results validate the correctness of our analyses.
This investigation is critical to a better understanding of how messages shape
agents’ opinions in social networks and how to guide agents’ opinions.
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