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ABSTRACT
Pedestrian crossing intention prediction based on computer vision
plays a pivotal role in enhancing the safety of autonomous driv-
ing and advanced driver assistance systems. In this paper, we
present a novel multi-modal pedestrian crossing intention predic-
tion framework leveraging the transformer model. By integrating
diverse sources of information and leveraging the transformer’s
sequential modeling and parallelization capabilities, our system
accurately predicts pedestrian crossing intentions. We introduce a
novel representation of traffic environment data and incorporate
lifted 3D human pose and head orientation data to enhance the
model’s understanding of pedestrian behavior. Experimental re-
sults demonstrate the state-of-the-art accuracy of our proposed
system on benchmark datasets.

Keywords: Pedestrian crossing intention prediction, multi-modal learning,
transformer model, human posture

1 Introduction

In the era of automation and artificial intelligence, automotive technologies are
developing toward autonomous driving. In addition to bringing convenience
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to human life, autonomous driving or ADAS (Advanced Driver Assistance
Systems) can also significantly improve safety. Vehicles equipped with such
systems can reduce accidents caused by human mistakes or careless driving
behaviors.

In systems aimed at road safety, safeguarding vulnerable road users, espe-
cially pedestrians, emerges as a critical objective. In contrast to individuals
protected by the sturdy framework of a vehicle, pedestrians are significantly
more vulnerable in traffic environment, emphasizing the importance of accu-
rately predicting their movements. However, predicting pedestrian behavior
poses a formidable challenge due to the unpredictable nature of their move-
ments and the constraints of available data.

In recent years, considerable attention has been devoted to Pedestrian
Crossing Intention Prediction, which is to predict whether pedestrians intend
to cross the road by analyzing various factors such as pedestrian images,
postures, behaviors, and surrounding environmental cues. The ultimate goal
is to predict pedestrians’ crossing intentions a few seconds before they initiate
the crossing. Figure 1 depicts an example of the task.

Figure 1: The system needs to determine whether the pedestrians on the road will cross in
front of the ego-vehicle.

In the early stages, research in this field was relatively scarce. Rasouli
et al. [24] proposed the JAAD dataset, which provided a clear direction and
reference standard for predicting pedestrian crossing behavior and annotations
on pedestrian behavior. Later, the same group of authors released the PIE
dataset [22], which fixed several shortcomings of the JAAD dataset. The
information about pedestrians and surrounding traffic was richer. Since then,
the number and diversity of related studies have increased.
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Compared with vision-based pedestrian intention prediction in the past,
some works have focused on including additional information related to pedes-
trians, such as human pose, trajectory, bounding box movement. Therefore,
multi-modal methods combine multiple types of information into the prediction
model. Besides the information about pedestrians themselves, surrounding en-
vironment data has also been introduced into the prediction system, including
ego-vehicles speed, surrounding environment images and traffic status.

However, some additional information still has not been exploited in this
task. Both JAAD and PIE datasets provide rich road environment information
that has not been fully utilized. In addition, with the introduction of the
Transformer [33], it becomes a more suitable model architecture for predicting
pedestrian crossing intention because of the advantage of being parallelizable
for better computational efficiency and the ability to model the temporal infor-
mation of sequential data. Moreover, a benchmark for evaluating pedestrian
action prediction [13] has been released. This evaluation standard solves the
problem of inconsistent standards for comparing previous methods. However,
we have observed that the testing environment in several previous works may
not necessarily follow the benchmark settings.

In this paper, We explore different information cues and develop a novel
information fusion model based on the Transformer architecture to propose
an accurate pedestrian crossing intention prediction model that could handle
more complex scenarios and provide reliable performance while following the
Benchmark [13] settings.

The main contributions of this paper are summarized as follows:

• We propose a multi-modal method based on the transformer architecture
and uses nine different types of input data for predicting pedestrian
crossing intention that achieves state-of-the-art performance.

• In a novel way, we are the first to combine traffic light, crosswalk, and road
sign data into new traffic awareness data. This has been demonstrated
in our experiments to improve the accuracy of our method.

• Our method uses lifted 3D human pose and 3D head orientation informa-
tion to provide 3D pedestrian information for the model, which allows it
be adapted to a wide variety of scenarios.

2 Related Work

There have been many related studies on pedestrian crossing intention predic-
tion in the past. Initially, the most intuitive and simple way based on vision
was to directly analyze the possibility of pedestrians crossing the road through
a single image from the driver’s view [24, 32, 13]. However, the information
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from a single image provides very limited and insufficient information to make
an accurate prediction.

2.1 Sequential Modeling

Later, most methods used a sequence of data for the prediction [27, 22, 20,
23]. These methods began to consider the changes in various features of
pedestrians over a period of time. Through these changes, we can analyze
pedestrian motion information such as movement speed, movement direction,
speed change, which are related to the possible future location of pedestrians.
Because these methods use sequence data as input data and require the
processing of temporal problems, RNN models were introduced into this field.
RNN models continuously pass current time step information backward so that
the model can retain information from previous time steps and has the ability
to predict future pedestrian states or possible events based on contextual
information, thus improving prediction accuracy.

2.2 Exploration of Novel Inputs

Since then, many representative trajectory-based methods have been developed
[12, 3, 2, 5]. These methods determine the likelihood of a pedestrian crossing
by analyzing the pedestrian’s past trajectory and predicting the pedestrian’s
future direction based on this information, thus completing a more complex
task of pedestrian trajectory prediction and enhancing the reliability of the
model in determining the intention of pedestrian crossing through explicit
future trajectories of pedestrians.

The results of the Trajectory-based method showed the feasibility of using
pedestrian motion information. Subsequently, people have tried discovering
more information about pedestrians from different angles of pedestrian images.
For example, in Rozenberg et al. [26], Manh and Alaghband [17], Wang et
al. [35], and Xue et al. [38], the authors attempted to determine pedestrian
trajectories and appearance information from an eagle-view perspective. Eagle-
view images can prevent pedestrians from being blocked by other objects on
roads, and because of the unique angle of view, distance information that was
difficult to express in 2D images can be expressed more concretely through
eagle-view images. Furthermore, social states based on target pedestrians
and surrounding pedestrians or relationships of target pedestrians with other
objects [37, 34, 2, 38] have been extended to consolidate further the accuracy
of future trajectory or behavior prediction results of pedestrians.

In addition to the works based on using pedestrian motion, there have
also been some works that enhance the prediction through the image and
visual aspects. First, they not only use the image of the pedestrian itself but
also consider the surrounding images of the pedestrian into the prediction
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model [23, 22, 40, 13]. Furthermore, some methods attempt to add semantic
segmentation information [40, 31] so that the model can clearly know the
boundaries of various elements on the road, and the model can more accurately
analyze the road appearance and traffic conditions where the target pedestrian
is located.

In addition, some works have focused on using human pose information due
to the posture and behavior of pedestrians are closely related to the problem.
In previous works, Rasouli et al. [23] and Piccoli et al. [20] used Openpose
tool [6] to generate 2D human poses for pedestrians in PIE dataset, so that
the pose data can be obtained in a more realistic way. Later, to provide richer
information on pedestrian posture, Quintero Mínguez et al. [21] and Kim
et al. [11] introduced 3D human poses as input data. However, these data are
captured by 3D cameras or through eagle-view video, which is infeasible for
practical applications.

In contrast to human pose, head pose is less used in pedestrian crossing
intention prediction. There were some works exploring this type of information.
For example, Kooij et al. [12] Schulz and Stiefelhagen [29], Schulz et al. [28]
and Sui et al. [31] segment the pedestrian’s head or body orientation into eight
discrete and fixed directions. However, they only focus on a single dimension
of the horizontal rotation of the pedestrian. Others use 3D cameras to capture
head orientation [29] or directly extract features of pedestrian head images
using CNN neural networks, but such information may not be accessible for the
model to understand and clarify. In Perdana et al. [19], they first introduced
3D head orientation information as input to their prediction model. However,
this method mainly relies on head direction to determine pedestrian crossing
intention and does not consider multiple different pedestrian features.

In addition to pedestrians themselves, the environment around pedestrians
and traffic information are also very critical. In Rasouli et al. [22], it proposed
a pedestrian intention prediction dataset and used ego-vehicle speed as input
data. They also mentioned that in their dataset, vehicle speed critically
influences whether pedestrians will cross the road. Since then, vehicle speed
information can be seen in most literature. Yang et al. [39] weighted the
presence of traffic lights or crosswalks in the frame and the distance between
the target pedestrian and ego-vehicle to calculate a value as input information,
which also created a novel type of input data. However, we found that although
the PIE and JAAD datasets provide a wealth of information about the traffic
environment, much of the previous methods did not consider this, and there is
still room to explore how this information can be used.

2.3 The Rise of the Transformer Model

Transformer has been widely used in many different tasks, mainly because of
its powerful attention mechanism that allows the model to focus on important
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information. Moreover, it has a parallel computation architecture, making it
suitable for real-time computing. Recently, some pedestrian crossing inten-
tion prediction methods have begun to use transformer architecture [33] and
achieved great performance [16, 31].

3 Proposed Method

The pedestrian crossing prediction model needs to predict in advance before
the pedestrians start to cross the road. This time advance is called TTE,
which refers to the interval between the last frame of the model observation
time and the start of the pedestrian crossing; TTE is set to 30 to 60 frames in
this work, i.e., 1 to 2 seconds, and the observation time is 16 frames, about
0.53 seconds.

3.1 Module Architecture

The illustration of the overall system and processing flow can be found in
Figure 2. According to Figure 2, We can first notice that the proposed system
consists of two parts – the Feature Pre-processing Module and the Prediction
Module. The Feature Pre-processing Module is responsible for converting or
extracting the original input data so that various types of data can be used
to help the model train in the most effective way. The Prediction Module is
responsible for the actual part of performing pedestrian intention prediction.
More information on these two modules will be introduced in the following
sections.

3.1.1 Feature Pre-processing Module

To predict the pedestrian crossing intention, we rely on several different types
of data as a basis for model prediction. Each data has different relationship
with the target pedestrian and can be used to determine whether the pedestrian
wants to cross the road under different circumstances. In addition, exploring
the novel input data is also one of the main contributions of this work.

We include some input data that differs from previous studies, including
unique Traffic Awareness Data composed of the traffic light, sign, and crosswalk
status; 3D human pose data; Ego-Vehicle Turning data; and Pedestrian 3D
head orientation data. Some data that are more commonly found in previous
literature are also included, such as Pedestrian bounding box image, Pedestrian
surrounding image, bounding box keypoint coordinate and Ego-vehicle speed.
The Feature Pre-processing Module plays an important role in generating the
various types of data mentioned above.
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Figure 2: The overall architecture of proposed method.

Our transformation or extraction method can be divided into two main
categories: one category is when the required data does not exist in the
dataset, such as pedestrian head orientation, in which case we need additional
extraction models to derive specific new features from images in the dataset;
the other category is to extract, reorganize or transform the format of existing
data to generate different representative to help models training.

3.1.2 Traffic Awareness Data

The traffic awareness data can help the model understand the surrounding
traffic conditions in which the pedestrian is located. It consists of three different
types of information: The traffic light state for the lane where the ego-vehicle
is located, the presence of specific signs, and the presence of crosswalks in
the current frame. These three data types are represented in a unique way to
provide road environment traffic information.

Traffic Light State The status of traffic lights is very critical for pedestrians
to decide whether to cross the road or not. Many advanced driver assistance
systems can easily detect the status of traffic lights at intersections, so it is
highly feasible to use this information in real-world scenarios. In our method,
we directly use the traffic light status provided by the dataset as training
data. The way it is presented in the dataset is a single-digit number, where
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1 represents a red light, 2 represents a yellow light, and 3 represents a green
light.

Road Sign Road signs mark the right-of-way and the order of passage among
road users. Whether it is a pedestrian or a passing vehicle, they will refer to
the road signs to take corresponding and appropriate actions. In other words,
road signs become a valuable reference when predicting whether pedestrians
are going to cross the road.

For example, at an intersection with a stop sign, vehicles generally slow
down or stop, and pedestrians will prefer to cross the road. The road sign
information is available in both the PIE dataset and JAAD dataset. Road
signs data have the following types and labels: 0 is the blue pedestrian sign, 1
is the yellow pedestrian sign, 2 is the white pedestrian sign, 3 is pedestrian
text, 4 is stop sign, 5 is bus stop, 6 is train stop, 7 is construction sign, 8
is others. In JAAD dataset, there are two types of road sign information:
pedestrian sign and stop sign, which are represented by 1 or 0, respectively, to
indicate their existence.

Crosswalk The presence of a crosswalk at an intersection is an essential basis
for pedestrians to decide whether to cross or not. JAAD dataset provides
information on the presence of crosswalks for each frame. Where label 1
represents when the crosswalk is present in the current frame and 0 when it is
not. In PIE dataset, crosswalk information is provided with more detail such
as its bounding box.

Traffic Awareness Data fusion After experimenting with the above three
kinds of data, we found that early fusion of these data into a new data format
similar to a one-hot array was more effective for training than directly inputting
the data into the model. The model can digest the information more effectively
and learn the correlation between them, reflected in better training results.
The following steps transform the unique format fusion data mentioned above:

First, for the Traffic light state, using a 3-dimensional array to express the
state of red, yellow, and green lights instead of using the dataset format of 1, 2,
and 3 to express them resulted in better model performance. For example, an
array of [0,0,1] represents the current state as the green light. The first to third
dimensions represent the states of red, yellow, and green light, respectively.
The values of each dimension have two states - 1 or 0, representing whether
the corresponding light is on or off.

In real scenarios, there are many different types of road signs. Using
detailed road sign types as training data provides more information to the
model. However, it could provide more redundant and irrelevant information
to the model. This is reflected in the poor performance of the training results.
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Instead, we select the signs directly related to the pedestrian crossing and
use the existing state of these signs in the current frame as input data. For
example, When a stop sign appears, vehicles on the road will tend to slow
down or stop. Or, if a pedestrian sign is present, vehicles will tend to yield
to pedestrians. Therefore, we represent the information of specific road signs
as a 1-dimensional array. When the road sign value is 1, it represents a stop
sign or pedestrian sign in the current frame. When the value is 0, it means
the opposite.

The situation of crosswalk data is similar to sign data in that pedestrians
are generally more willing to cross the road in places with crosswalks, so it is
also one of the factors to consider as needed. When the crosswalk attribute is
1 represents the crosswalk sign is present in the current frame and 0 when it is
not.

After some transformation of the above data, we can merge them by
concatenating to create a 5-dimensional array, which contains the status of
the traffic information of pedestrians surrounding environment such as traffic
lights, street signs, and crosswalks. Therefore, we call it “Traffic Awareness
Data”.

3.1.3 Pedestrian Behavior Data

3D Head Orientation From the discussion in the previous chapter, we can
find that, in addition to the human pose, the pedestrian’s head pose and
direction are also features worth observing. By detecting the pedestrian’s
head orientation, we know whether the target pedestrian is looking at the
driver or seeing the vehicle. We can compute the pedestrian’s head movement
information during the observation time through a sequence of consecutive
head turns, such as whether the pedestrian is nodding or swinging his/her
head to check for incoming vehicles.

In this work, we choose the head orientation estimation method proposed
in Hempel et al. [10] to generate the 3D head orientation. We need to first find
the head position of the pedestrian in the bounding box through the object
detection method “RetinaNet” [14] before we can generate the 3D orientation
data through the head orientation estimation method 6DRepNet [10].

3D Pedestrian Human Pose The 2D human pose data is provided in the
dataset by applying the tool Openpose to extract 18 key points 2D skeleton
coordinates of each pedestrian and represent each keypoint with the corre-
sponding 2D image coordinate. Since 3D skeleton information may provide
richer information for the model, we use the method proposed by Chen et al. [8]
to lift 2D skeletons data to 3D skeletons data. The 3D human pose information
provides richer human posture information for the prediction model.
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Pedestrian Bounding Box Human bounding box coordinates are a piece
of important information for observing the movement of pedestrians. The
bounding box coordinates allow us to know the location of pedestrians, and
the difference between the coordinates allows us to observe the amount and
direction of pedestrians’ movement. This information could help us determine
whether pedestrians are likely to cross in front of the ego-vehicle based on
their movement direction and speed.

3.1.4 Driving Behavior Data

Ego-Vehicle Speed When we are pedestrians and see a vehicle approaching
from afar, we often judge whether it is appropriate to cross the road based on
the vehicle speed. Because if the vehicle wants to give way to pedestrians, it will
generally slow down early. If the vehicle speed is still high when approaching
pedestrians, it means that the driver did not intend to stop or did not notice
the pedestrians. It is clear that pedestrians’ crossing intentions also depend
on the vehicle speed. To obtain vehicle speed, it is generally necessary to
connect to the OBD interface on the vehicle for real-time monitoring or use
GPS devices to record speed. Both of these data are available in the datasets,
and we use GPS speed in our experiments.

3.1.5 Pedestrian Appearance Data

Pedestrian Bounding Box Image Much of the input information mentioned
above, such as the road information around the pedestrians, the speed of
the vehicle, or the pedestrian posture information, can be obtained from
the “images” seen by human road users. Therefore, images provide the most
critical and core information. In addition, pedestrians’ appearance information
can provide many details and even complement other input data, such as
pedestrians’ behavior, distance, and orientation. However, due to the current
neural network’s understanding ability of image input, it is not easy to rely only
on simple images as input data to make the model understand all situations.
This also reflects why our method needs to introduce so many different forms
of input data.

Pedestrian Surround Image Besides the pedestrian appearance information,
the surrounding environment around pedestrians is also vital information,
which can provide a lot of additional information, such as the location where
pedestrians stand, the interaction between pedestrians and surrounding objects,
or whether there are specific objects around them. Especially the location where
pedestrians are standing is very intuitive auxiliary information. Pedestrians
standing on the sidewalk far away from the road are naturally different from
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those walking on the edge of the road in terms of the possibility of crossing the
road. The way to generate this information follows the setting of the benchmark
dataset. It is cropped and obtained by expanding 1.5 times according to the
size of the pedestrian bounding box and filling the original pedestrian bounding
box area with gray pixels to present a rectangle with a hollow center. This
makes the model pay more attention to visual information in the surrounding
environment and avoid being disturbed by pedestrians’ appearance.

Image Feature Extractor The above two types of visual information are
mainly composed of images. If the information of these images is not extracted
preliminarily, the model training will be quite difficult because the model’s
understanding of image information is quite shallow. Therefore, an Image
Feature Extractor is needed. VGG16 is a vast convolution neural network
mainly designed to deal with image information because the amount and
complexity of image information are generally quite large, which is also why
VGG series models are so deep.

Pedestrian bounding box image and surround image will be fed to the
feature extractor, respectively, to generate 512-dimensional image features,
and these two 512-dimensional image features will be used as the training data
for subsequent models.

3.1.6 Prediction Module

Here, we introduce the model flow for the proposed pedestrian crossing intention
prediction method. The specific process diagram can refer to the Prediction
Module part on the right side of Figure 2.

After the Data Pre-processing Module in the previous section generates all
the data we need, the Prediction Module will take over the work of pedestrian
crossing intention prediction. The input data will first enter different branches
to encode temporal information and extract features in each sequence through
the Attention mechanism in Transformer Encoder. So that it can observe the
target pedestrian’s possible crossing intention through changes in input data
within different time steps, just like the primary decision strategy that human
drivers adopt when judging whether pedestrians will cross the road. Then,
the information processed by Transformer blocks will enter the Later Fusion
stage. The Later Fusion stage is responsible for merging data from different
types, comprehensively referencing changes in different data under different
conditions, and further condensing and extracting these features for the final
prediction layer to make the final prediction. The Fusion stage mainly has two
steps: integrate different features together through Concatenate, then reduce
dimensionality and extract them through a Fully Connected Layer. In the
Final Prediction stage, the fusion feature will be integrated again through a
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Fully Connected Layer and passed through an Activation Function to give the
final prediction result.

3.1.7 Transformer Encoder

Next, we will introduce the Transformer Encoder block that is mainly used in
the proposed model. Transformer is a deep learning architecture [33]. Its initial
task was to solve the bottleneck encountered in the NLP (Nature Language
Processing) field when processing sequence information. One of its major
features is that it can analyze and model the information from different time
steps in a sequence at the same time through a novel architecture and the
power of self-attention. Transformer does not need to pass hidden state data
progressively like traditional RNNs to resolve information from different time
steps. Instead, it can simultaneously perform similarity analysis and modeling
of data from different time steps in the sequence, allowing the model to analyze
which time step of data in the entire sequence are related and assign higher
weights to the more critical features, i.e., focusing on the most important part
of information. Moreover, Transformer has a computational advantage that
can be parallelized for processing. Such characteristics and advantages are
particularly suitable for use in the pedestrian crossing intention prediction
task.

The original Transformer architecture includes both the Encoder and
Decoder parts. Because of the language-translation task in the original paper,
besides converting the input language into features with semantic information
through Encoder, it must also convert or says “restore” the semantic information
extracted by Encoder into another completely different language system. This
restoration requires the parsing ability of the Decoder to reconstruct features
into human-readable language. However, we do not need to reconstruct features
into specific complex information in pedestrian crossing intention prediction.
Therefore, our method uses only the Encoder part to model input information
and assist classification.

Next, we will introduce the functions and principles of each module in Trans-
former Encoder. Referring to Figure 3, we can explain Transformer Encoder’s
main parts by dividing it into three parts: Input Embedding and Positional
Encoding, Multi-Head Self Attention, and the Feed Forward Network.

Input Embedding and Positional Encoding In the original Transformer [33]
developed for NLP, the embedding layer is used to convert the original words
into numerical features that the model can process. This embedding layer is
generally a neural network that has been trained with a large amount of word
data, which can map human language into another dimension space. In our
method, the role of the embedding layer is to map and extract information
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Figure 3: Transformer Encoder module flow.

from various data related to pedestrians. Therefore, the embedding layer is
replaced by a learnable fully connected layer.

The subsequent positional encoding is a crucial step in Transformer [33]
because it helps Transformer identify the order relationship between a series
of sequence inputs. Positional encoding adds a unique position code to each
time step of data so that each time step has its meaning of different position
relationships. Positional encoding combines a particular value generated by
unique sine or cosine functions with the original data through an addition
operation, as shown in Equation 1.

PE(pos, 2i) = sin(
pos

100002i/dmodel
)

PE(pos, 2i+ 1) = cos(
pos

100002i/dmodel
)

(1)

Multi-Head Self Attention The Self-Attention mechanism proposed in Vaswani
et al. [33] is an essential component of the Transformer. This mechanism will
calculate the attention weight by performing a weighted linear combination
of the input data with positional encoding to obtain the attention-weighted
output. Here we will briefly describe how it is calculated.

First, we need to obtain three matrices representing different meanings,
i.e. query Q, value V, and key K, through three linear transformations of the
input data that has already been fused with Positional encoding, as shown in
Equation 2.

Q = Linear(Xembedding) = XembeddingWQ

K = Linear(Xembedding) = XembeddingWK

V = Linear(Xembedding) = XembeddingWQ

(2)
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Next, we compare Q with the target K to determine which part of Q and K
has a higher correlation, so that the model will pay more attention to this part
in the training. As for how to determine and calculate correlations, see the
calculation formula of Self Attention Weight in Equation 3.

Attention(Q,K, V ) = softmax

(
QKT

√
dk

)
V (3)

As we can see, Q and K are subjected to dot product operation, which mathe-
matically calculates the similarity. The more similar parts in the matrix will
have larger numerical values. Since Q, K, and V were all linearly transformed
from the same input data, comparing Q and K for similarity can also be
regarded as comparing the same input sequence at different time steps. At
this point, we can see the importance of input data at different time periods
in the entire sequence.

Next, the matrix QKT is standardized by
√
dk and normalized by the

SoftMax function. Finally, V is then multiplied by the attention weight matrix
to obtain the weighted output.

Feed-Forward Network After obtaining the attention-weighted output, the
Feed Forward Network [33] will process the feature again to ensure that
information can be correctly extracted and utilized. It consists of two Fully
connected layers and the output is obtained after being processed by the
activation function ReLU.

Residual Connection and Layer Normalization Note that after the output of
Multi-Head Self Attention [33] and Feed Forward Network [33], the residual
connection and layer normalization will be applied. Residual connection adds
the output feature from the previous layer here to ensure that the original
information will not be lost during propagation in deep learning networks,
causing problems like gradient vanishing. Layer normalization normalizes the
output feature, making the distribution of each feature dimension more stable
and speeding up model convergence.

3.1.8 Multi-modal Fusion and Final Prediction

After the transformer encoder block has processed the data from each branch,
we need to fuse different sources of features. Here, a simple and effective fusion
method is used to concatenate the features from different sources directly, and
then a fully connected layer is applied for fusion and dimensionality reduction
to extract the important information further. Finally, the output after fusion
will be subjected to another fully connected layer for final prediction, thereby
obtaining the prediction result for the pedestrian crossing intention.
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3.1.9 Loss Function

In this paper, we chose to use Focal loss as our loss function instead of Cross
Entropy which is commonly used in this field. This loss function was proposed
in RetinaNet [14], which is used for generating 3D Head Orientation. This
paper proposes a seemingly simple yet quite effective way to deal with the fact
that models tend to bias towards easy samples in training data and ignore
hard samples. This will cause the model to make mistakes when more complex
or uncommon data appear.

Focal loss [14] reduces the weight of easy samples and forces the model
to pay more attention to hard samples. To be more specific, the focal loss is
given in the following equation.

FocalLoss(pt) = −αt(1− pt)
γ log(pt) (4)

where

αt =

{
α , y = 1

1− α , y = 0
pt =

{
p , y = 1

1− p , y = 0
(5)

4 Experimental Results

In this section, we will discuss the evaluation of our proposed method through
experiments on the public JAAD and PIE datasets.

4.1 Datasets

Following the pedestrian crossing intention prediction benchmark, both the
Joint Attention Autonomous Driving (JAAD) Dataset and Pedestrian Intention
Estimation (PIE) datasets are included in the evaluation of the model.

JAAD [24] is a pedestrian crossing and behavior annotation dataset, and
it contains 391K pedestrian samples with bounding box annotations and over
300 video clips from 5 to 15 seconds in length, collected from urban scenes in
North America and Europe. Besides the labeling of crossing and pedestrian
bounding boxes, they annotated some of the pedestrian samples with crossing
intentions and also included data on the behavior of their ego-vehicle drivers.
Moreover, the contextual information of the road in each frame is included,
which provides additional data on the current environmental information and
the pedestrians.

PIE dataset [22] includes 56 video clips from 4 to 10 minutes, totaling over
6 hours. There are 740K pedestrian samples with bounding box annotations,
almost twice the amount of the JAAD dataset. PIE dataset focuses on
pedestrian action prediction, so accurate vehicle information directly collected
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from the vehicle OBD (On-Board Diagnostics) system, spatial annotations for
traffic environment, and pedestrian intention are added to support this task.

4.2 Implementation Details

The adjustment of hyperparameters can significantly affect the training results.
In our implementation, there are two types of parameter settings to be aware
of - Data sampling parameters for the data interface and the hyperparameters
for training the transformer model.

According to previous literature [13, 30, 23, 15, 18] and our experiments,
several important testing parameters need to be considered for pedestrian
crossing intention prediction. We assume that the duration of a pedestrian
appearing in a complete video clip is about 10 seconds. We cannot use the entire
10-second sequence as input data to evaluate and compare with other methods
because the pedestrian crossing prediction model is sensitive to parameters
like “observation time” and “Time-To-Event (TTE)”. These two constraints
must be strictly defined and set. The concept of TTE and observation time
can refer to Figure 4.

Figure 4: The yellow part indicates the range where the model can observe and make
predictions. This range must be prior to the time “TTE” before the pedestrian starts to
cross the road.

The impact of these two parameters on model training has been investigated
in many previous papers [13, 30, 23]. Based on previous literature, the longer
the observation time, the better the training results are generally reflected,
as the model has more information to make the prediction. Shorter TTEs
also generally result in better accuracy, as pedestrian behavior and other
information are closer to actual crossing conditions. However, many methods
still take different settings, making it difficult to make a fair comparison. We
use the same setting as the benchmark [13] in our experiments. The observation
time is set to 16 frames of the original 30-frame-per-second video clip, which
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is approximately 0.53 seconds. The TTE is set to a range of 30 to 60 frames,
i.e., between 1 and 2 seconds before the event.

4.2.1 Training Details and Hyperparameters

The Prediction Module in our method is based on the transformer encoder
model [33], whose architecture can be adjusted with several hyperparameters
depending on the training dataset and application scenario. We are primarily
concerned with the following four hyperparameters in the Transformer Encoder.
The one controls the dimension of input embedding and output of multi-head
self-attention, the dimension in the feed-forward network, the number of
layers of the transformer encoder, and the number of heads of the multi-head
self-attention.

The hyperparameter settings we apply to each data branch are listed below
in the order mentioned above. Bounding box and surrounding image: 128,
128, 1, 4. 3D pose: 128, 64, 2, 4. 3D head orientation: 128, 64, 1, 4. Bounding
box: 128, 128, 1, 4. Ego-vehicle speed: 128, 128, 1, 4. Traffic perception data:
128, 128, 1, 4.

The hyperparameters that are relevant to the training process are listed
below. The batch size is set to 128, and the numbers of Epochs for PIE, JAAD
All, JAAD Beh datasets: 70, 60, 60. The learning rate is set to 0.001 in our
experiments. The output dimensions of the two FC layers for fusion and final
prediction are 128 and 1, respectively. Furthermore, we use Adam optimizer
and apply the same class weights as in the benchmark method [13] to mitigate
the problem of imbalance between crossing and non-crossing samples.

4.3 Experimental Comparisons

The comparisons of the evaluation results of our proposed method with other
state-of-the-art baselines on the benchmark datasets [13] are shown in Table
1. This benchmark covers two different datasets, PIE and JAAD. JAAD is
divided into two subsets, the complete JAAD dataset (JAAD all) and JAAD
behavioral data (JAAD beh), so there are three branches of evaluation data.

The JAAD beh branch includes a large number of pedestrians who show
signs of imminent crossing or are making crossing movements. As a result,
the crossing pedestrian samples are much more compared to the non-crossing
samples. JAAD all dataset adds more than 2000 pedestrian samples that
did not cross and were far from the road compared to JAAD beh. The
behaviour of these pedestrians is more consistent and there is a clearer lack
of intention to cross. These additional samples increase the number of non-
crossing pedestrians by a factor of 15, making the number of non-crossing
samples in this subset much larger than the number of crossing samples.
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Table 1: Pedestrian crossing intention prediction accuracy for different methods on three
public datasets.

Method
PIE JAAD all JAAD beh

ACC AUC F1 Precision Recall ACC AUC F1 Precision Recall ACC AUC F1 Precision Recall

SFGRU ([23]) 0.82 0.79 0.69 0.67 0.7 0.84 0.84 0.65 0.54 0.84 0.51 0.45 0.63 0.61 0.64

I3D ([7]) 0.81 0.83 0.72 0.60 0.9 0.84 0.8 0.63 0.55 0.73 0.62 0.51 0.75 0.65 0.88

TrouSPI-Net ([9]) 0.88 0.87 0.80 0.77 0.84 0.82 0.77 0.58 0.49 0.70 0.64 0.55 0.76 0.65 0.91

MultiRNN ([4]) 0.83 0.8 0.71 0.69 0.73 0.79 0.79 0.58 0.45 0.79 0.61 0.5 0.74 0.64 0.86

D. Yang .et al. ([40]) - - - - - 0.83 0.82 0.63 0.51 0.81 0.62 0.54 0.74 0.65 0.85

PCPA ([13]) 0.87 0.86 0.77 - - 0.85 0.86 0.68 - - 0.58 0.5 0.71 - -

IntFormer ([16]) 0.89 0.92 0.81 - - 0.86 0.78 0.62 - - 0.59 0.54 0.69 - -

Yu Yao .et al. ([41]) 0.84 0.90 0.88 0.96 - 0.87 0.70 0.92 0.66 - - - - - -

BiPed ([25]) 0.91 0.90 0.85 0.82 - 0.83 0.79 0.60 0.52 - - - - - -

Ours 0.91 0.89 0.84 0.84 0.85 0.89 0.78 0.66 0.72 0.61 0.68 0.63 0.76 0.71 0.81

Each of the above three datasets has different data distributions and
characteristic biases, as well as problems with data imbalances, and these
factors will have many implications for the evaluation results. The above
introduction can help the reader to understand the characteristics of each
data branch and to have a further understanding of the performance of each
indicator.

As shown in Table 1, our proposed method achieves the best results in
accuracy in the experimental results on all three datasets. For the remaining
evaluation metrics, although not all of them appear to be best achieved by our
method, it is clear that our method achieves the best ACC performance for
all three datasets, and it provides better overall accuracy and generalization
capability across the three datasets.

We can see from the table that the best results for different metrics in the
three different datasets are generally achieved by different methods. Some
methods appear to have achieved a significant lead in specific metrics but
usually have lower performance in some other metrics. For example, in the
PIE comparison, I3D achieves a recall of 0.9 but a precision of 0.6, compared
to 0.85 and 0.84 from our method, which has a better balance, and this is
reflected in the AUC and F1. Our method achieved the top three scores for all
the PIE metrics in these methods. For JAAD beh, our method outperforms
all the methods that provide JAAD beh scores. Only the recall did not reach
the highest score, obtained by TrouSPI-Net, but the precision of TrouSPI-Net
was only 0.65, compared to 0.71 for our method.

In JAAD All, our method leads in accuracy and precision but does not
perform as well on other metrics as it does on other datasets. It might be
the significant gaps between crossing and non-crossing samples. This behavior
can be observed in the decreasing Recall scores of our method. Improving the
scores on JAAD All and suppressing the impact of unbalanced positive and
negative samples will be an area that our method needs to consider carefully
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in the future. Despite this, our approach strikes a balance between the three
datasets, maintaining a certain standard for JAADall while achieving the State-
of-the-art standard of PIE and JAAD Beh. If we adjust our model architecture
and the combination of input data according to the bias of different datasets,
our method will achieve better results.

4.4 Ablation Study

In this section, we perform several experiments to verify the effects provided
by the various components and different features in our method and their
influence on the training results.

4.4.1 Combination of Different Features

This experiment shows how the different combinations of input data affect the
training results of our method. Due to space limitations, we cannot list all
possible combinations. In Table 2, we show the performance of the proposed
method by using different combinations of features in the experiments on the
three datasets. Previous studies [1, 16, 13] have pointed out that the PIE and
JAAD datasets are more sensitive to specific input data. This means that we
can achieve good baseline results with only certain specific input data with
these two datasets. Furthermore, as suggested in Lorenzo et al. [16], adding
the ego-vehicle speed will significantly improve the prediction results. As
shown in Table 2, the overall performance of the model improved significantly
after adding bounding boxes and ego-vehicle speed. It even surpassed our best
score in Section 4.3 and was ahead of other methods after fusing our proposed
Traffic Awareness data. However, as mentioned in previous sections, we chose
to incorporate more information to support the stability of the model in a
variable scenario in order to maintain the generalization and balance of all
datasets. This ensures that the scores on the PIE datatset are comparable
to SOTA and also takes into account the performance of the model in other
datasets.

4.4.2 Comparison of Different Fusion Methods

We performed some experiments on the architecture and fusion method of the
model to verify the effectiveness of our current approach. In addition to the
Later Fusion method used in our method, we compare three different solutions.
The results are shown in Table 3.

The first is a hierarchical fusion method inspired by Rasouli et al. [23],
which helps the model to integrate and analyze the input information more
deeply by progressively fusing different inputs, so that data inputted later can
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Table 2: We conduct experiments on different combinations of input data to verify the
contribution of each input feature. Note that “B” is Bounding box coordinates, “TA” is
Traffic Awareness data, “LB” is Local Bounding box image, “LS” is Local Surrounding image,
“S” is ego-vehicle Speed, “H” is 3D Head orientation, and “P” is 3D human Pose.

Features
PIE JAAD all JAAD beh

ACC AUC F1 Precision Recall ACC AUC F1 Precision Recall ACC AUC F1 Precision Recall

B 0.87 0.85 0.78 0.76 0.81 0.83 0.74 0.55 0.51 0.60 0.64 0.62 0.71 0.71 0.71

TA 0.85 0.77 0.69 0.82 0.59 0.79 0.50 0.09 0.19 0.06 0.61 0.50 0.75 0.62 0.93

LB, LS 0.71 0.61 0.43 0.49 0.38 0.86 0.75 0.60 0.62 0.58 0.63 0.53 0.75 0.64 0.90

LB, LS, B 0.88 0.86 0.79 0.76 0.83 0.88 0.73 0.60 0.70 0.52 0.63 0.62 0.68 0.71 0.65

B, S 0.90 0.89 0.82 0.79 0.85 0.84 0.77 0.59 0.55 0.65 0.61 0.57 0.70 0.68 0.72

B, S, TA 0.92 0.89 0.85 0.86 0.84 0.83 0.78 0.59 0.51 0.70 0.62 0.57 0.71 0.68 0.75

B, S, TA, H 0.91 0.89 0.84 0.84 0.85 0.83 0.78 0.59 0.51 0.71 0.63 0.62 0.68 0.71 0.65

LB, LS, B, S, TA, H, P 0.91 0.89 0.84 0.84 0.85 0.89 0.78 0.66 0.72 0.61 0.68 0.63 0.76 0.71 0.81

Table 3: Comparison of different fusion methods

Fusion Method
PIE JAAD all JAAD beh

ACC AUC F1 Precision Recall ACC AUC F1 Precision Recall ACC AUC F1 Precision Recall

Hierarchical 0.91 0.89 0.84 0.84 0.83 0.88 0.75 0.62 0.72 0.54 0.67 0.58 0.77 0.67 0.91

Eearly Fusion 0.86 0.81 0.73 0.79 0.68 0.87 0.78 0.63 0.62 0.64 0.64 0.54 0.76 0.64 0.93

Later Fusion + CH Att 0.90 0.88 0.83 0.84 0.82 0.88 0.79 0.66 0.68 0.63 0.64 0.56 0.75 0.66 0.87

Later Fusion + FC 0.91 0.89 0.84 0.84 0.85 0.89 0.78 0.66 0.72 0.61 0.68 0.63 0.76 0.71 0.81

be encoded together with the features of data inputted earlier. In the second
method, Early fusion is used to fuse data before it enters the Transformer
encoder block, and the number of Transformer encoder blocks is reduced to
decrease the complexity of the model. Finally, based on the proposed method,
we replace the Fully connected layer of later fusion with channel attention
in CBAM [36], hoping that the channel attention mechanism can enable the
model to adapt to different environments and automatically adjust the weights
of different input information to optimize the training results.

Among these four fusion schemes, the scheme of combining Later fusion with
the fully connected layer gives the most satisfactory results. In the hierarchical
and channel attention scheme, it is theoretically possible to increase the depth
of the model to provide more information and understanding of complex
scenarios.

However, since these data sets are relatively sparse and the Transformer
tends to perform weakly when there is not enough data, these two more
complex models tend to overfit as they rapidly converge to the training set
during training. Early fusion, on the other hand, renders poor results due to
the fact that the input data is fused before the features are extracted by the
encoders. This approach is not able to learn complex scenes well due to the
lack of model complexity, which can be observed in the reduced accuracy on
PIE dataset with more diverse sample types.
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4.4.3 Comparison of Traffic Awareness Feature Fusions

We represent the status of traffic lights, road signs and crosswalks in a spe-
cial format and integrate them using concatenant operations, so that this
information brings about a visible improvement to the model training. In
this section, we show how different fusion strategies for the information on
traffic lights, road signs, and crosswalks affect the training results. As shown
in Table 4, we test five different fusion strategies. At the beginning of the
study, when we were exploring the feasibility of the traffic light, road sign
and crosswalk data, we train each of the three types of information as three
separate branches as input to the encoder, but this strategy contributes almost
negligibly to the training results, i.e. the “No fusion” row in Table 4. We then
attempt to fuse these data, which are more relative to pedestrian crossing
intentions, in the hope that the model could use this information to learn more
comprehensively and discriminate between different complex scenarios while
reducing the number of transformer encoders and the possibility of overfitting.

Table 4: Comparison of different traffic-aware feature fusion strategies. “T” is Traffic light,
“S” is Sign, “C” is Crosswalk. Where “T+SC” means Traffic is a single branch without fusion,
while Sign and Crosswalk are fused. “TS+C” means Traffic and Sign are fused, Crosswalk is
a single branch. “TC+S” means Traffic and Crosswalk are fused, Sign is a single branch.
“No fusion” means each data is a different kind of three branches without fusion. “TCS Early
Fusion” is the proposed method with three data fusions.

TA Fusion Strategy
PIE JAAD all JAAD beh

ACC AUC F1 Precision Recall ACC AUC F1 Precision Recall ACC AUC F1 Precision Recall

No Fusion 0.90 0.87 0.83 0.85 0.80 0.88 0.77 0.64 0.70 0.59 0.66 0.56 0.77 0.66 0.94

T + SC 0.90 0.87 0.82 0.84 0.80 0.88 0.73 0.60 0.72 0.51 0.69 0.67 0.76 0.75 0.76

TS + C 0.90 0.87 0.82 0.85 0.78 0.89 0.72 0.59 0.79 0.47 0.70 0.66 0.78 0.73 0.83

TC + S 0.90 0.86 0.82 0.87 0.77 0.88 0.77 0.64 0.69 0.60 0.70 0.67 0.76 0.75 0.78

TCS Early Fusion 0.91 0.89 0.84 0.84 0.85 0.89 0.78 0.66 0.72 0.61 0.68 0.63 0.76 0.71 0.81

The fusion strategy also affects the final training result, so we compare the
performance of two different strategies. The first is to fuse the three types of
data and then input them to a single encoder, while the other is to separate
the data into two encoders, with the first encoder inputting the concatenated
data of the two types of information and the other inputting the remaining
data. These two blending strategies resulted in four different combinations of
the three input data, namely T+SC, TS+C, TC+S and TSC Early Fusion in
Table 4. Our final solution, TSC Early Fusion, demonstrates the best results,
maintaining a decent level of performance in all three datasets, but was not
clearly biased towards certain datasets. For example, the TS+C and TC+S
fusion strategies show excellent results in JAAD beh, but they did not provide
improvement in PIE.
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4.5 Qualitative Justification

Figure 5 depicts visualization of some results of the proposed method for the
pedestrian crossing intention prediction task. The model can correctly predict
the complex samples, such as pedestrians walking along the curb, pedestrians
standing at the curb, pedestrians whose frames are blocked, and pedestrians
who tend to move towards the road but do not cross the road in the end.

Figure 5: Some examples correctly predicted by our model. Red bounding boxes indicate
pedestrian samples that cross the road, while green ones indicate samples that do not cross.
The first and second rows show samples of pedestrians walking along the edge of the road.
The third row shows the case of pedestrians standing on the roadside in place. The fourth
and fifth rows show cases of occlusion and unclear images.

Furthermore, adding traffic awareness data, 3D pedestrian head orientation,
and 3D human pose helps the model prediction in many cases. The cases
shown in Figure 6 were previously incorrectly predicted by the model, but the
introduction of these features fixes this problem. For example, the apparent
traffic light status in the frame helps the model to determine more clearly
whether a pedestrian will cross or not. Pedestrians also tend to cross the road
more boldly due to the presence of crosswalks and pedestrian crossing signs or
stop signs. With the help of these data, our method can better understand
the current scene and make correct predictions.
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Figure 6: The additional features introduced in our method will help the model to predict
more accurately in specific situations and improve the prediction of these cases that were
misclassified by the model without using these features.

4.5.1 Discussion of Failure Case and Future Directions

In this section, we discuss the failure cases of this method and the problems
we found in the dataset during our research. At the same time, we will also
make recommendations on the future direction.

Among the failed cases, we found a condition that confuses the model and
repeatedly occurs in incorrect cases. As shown in Figure 7, some cases occurs
when the vehicle is about to turn and the direction of the vehicle initially
driven is changed.

Another example is that when a vehicle turns exactly during the model
observation time, the pedestrian’s bounding box trajectory moves rapidly
horizontally, which is similar to the behavior of a fast-moving pedestrian trying
to cross the road, and can easily lead to misjudgment by the model. We
believe that knowing the future direction of the vehicle will help the model to
distinguish these conditions more clearly. Although the direction of a vehicle
cannot be predicted explicitly in advance, it can still be known from the
vehicle’s directional lights, steering wheel rudder angle, navigational route,
and even the predefined driving route of a self-driving car. Although this
information can be obtained directly from the vehicle in a real-world scenario,
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Figure 7: The cases in the first to third rows of the figure illustrate the impact of ego-vehicle
turning on the prediction of the pedestrian crossing. The fourth column shows that when
the model observes a pedestrian during the ego-vehicle turn, the pedestrian’s bounding box
trajectory is similar to the samples moving rapidly to the right, making it easy to confuse
the model with a fast-moving pedestrian trying to cross. Note that red bounding boxes
indicate pedestrian samples that cross, while green ones indicate those that do not.

it is difficult to extrapolate from the available information in the datasets used
in our experiments.

Some other failure cases include those when pedestrians are in dark or
unclear areas of the image, when vehicles and pedestrians are stationary, when
pedestrians are heavily obscured or highly crowded, and in the more specific
cases where the traffic light status changes after the end of the observation
time, causing the pedestrian behavior to change after the observation.

5 Conclusions

In this paper, we proposed a transformer-based system of predicting the
pedestrians’ intention of crossing the road from multi-modal information.
In this system, we explore how people determine the crossing intention of
pedestrians from the perspective of human drivers and pedestrians themselves,
and integrate the pieces of critical information into the input data as much as
possible to help the model make accurate predictions. Ultimately, we select
nine different types of information as input data.

To the best of our knowledge, we are the first to represent traffic light, road
sign, crosswalk in a novel way and incorporate them into the training, which
helps our model to achieve better training results and proves its importance
and effectiveness through an ablation study. Furthermore, for the pedestrian
posture information, we are the first to use the lifted 3D human pose and 3D
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head orientation information to help the model better understand the posture
and behavior of pedestrians through richer information. Our experimental
results show that the proposed model achieves state-of-the-art performance on
the three subsets of benchmark datasets.

Finally, we perform several experiments to verify the effectiveness of various
components and different input data of our method. At the same time, we
have made recommendations for tackling the problems we have identified for
future development.
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