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ABSTRACT

In this paper, we propose privacy-preserving methods with a se-
cret key for convolutional neural network (CNN)-based models in
speech processing tasks. In environments where untrusted third
parties, like cloud servers, provide CNN-based systems, ensuring
the privacy of speech queries becomes essential. This paper pro-
poses encryption methods for speech queries using secret keys
and a model structure that allows for encrypted queries to be
accepted without decryption. Our approach introduces three types
of secret keys: Shuffling, Flipping, and random orthogonal matrix
(ROM). In experiments, we demonstrate that when the proposed
methods are used with the correct key, identification performance
did not degrade. Conversely, when an incorrect key is used, the
performance significantly decreased. Particularly, with the use of
ROM, we show that even with a relatively small key space, high
privacy-preserving performance can be maintained many speech
processing tasks. Furthermore, we also demonstrate the difficulty
of recovering original speech from encrypted queries in various
robustness evaluations.
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1 Introduction

Speech data usually includes personal information such as age, gender, language,
and speaking content. To exploit such information, CNN models for tasks such
as automatic speech recognition, speech synthesis, and speaker verification
have been actively studied [26, 28]. In recent years, CNN models and speech
data are increasingly uploaded to or stored on cloud servers via the Internet,
and CNN models are run on cloud servers. However, since cloud services are
managed by external providers, various threats such as data leakage due to
malicious attacks from outside or inside are a concern [22, 20]. When using
CNN models on a cloud service, it is necessary to provide a trained model and
query data to the cloud service. Therefore, when cloud services are insecure,
models and queries face threats. To prevent such risks, it is important to
preserve privacy before sending data to insecure services. The issue of privacy
has been gradually gaining attention as the latest topic in the research field of
speech processing [24, 5, 6, 29, 23]. However, most of the existing methods
for preserving the privacy of speech focus on concealing information about
the speaker of the speech [24], and little is mentioned about concealing the
content of speech [27]. There are also problems such as model performance
degradation when the existing methods are in use.

In the research field of image processing, many privacy-preserving methods
have been proposed for CNN-based systems [9, 12]. These methods propose a
framework wherein models can process encrypted images using a secret key
without the need for decryption, thereby protecting the visual information.
Inspired by the research, we have proposed a simple privacy-preserving method
using a secret key for speech data [16]. This approach regarded the privacy-
preserving of speech data as protection of the auditory information. Thus,
this research on the privacy-preserving of speech data aimed to control the
performance of speech processing systems by using a secret key. This paper
expands the robustness of this initial research and presents the robustness
evaluation for speech privacy-preserving. The privacy-preserving methods
used in this paper, e.g. Shuffling, Flipping, ROM are common in biometric
template protection [10, 11] and privacy-preserving image classification areas.
Our contributions are not only to apply them to speech areas but to also
propose the method that can avoid the performance degradation of models.
The proposed method encrypts the speech queries with secret keys and uses a
model structure that allows encrypted speech queries to be accepted without
decryption. To realize this framework, we assume that the first layer of the
CNN model is a convolutional layer, and that the kernel size and stride size
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of the first convolutional layer are equal. For model encryption, the kernel
of the first convolutional layer of the model is encrypted using a matrix
corresponding to the matrix used as the secret key. This operation allows
encrypted speech data to be input directly into the model without decryption,
as it cancels out the effect of encryption on the input speech data. Our
approach introduces three types of secret keys: permutation matrix, sign
inversion, and random orthogonal matrix. To validate the advantages of
our approach, which include task independence and the absence of the need
to retrain the model as long as certain conditions are met, we conducted
performance evaluations of our privacy-preserving methods using three tasks:
automatic speaker verification (ASV), automatic speech recognition (ASR),
and acoustic scene classification (ASC) task. The experimental results show
that CNN models can be used with the same accuracy as before encryption,
when speech encrypted with the correct secret key is input to the model
encrypted with the correct secret key. It is also shown that the accuracies of
the CNN models are significantly reduced when the input speech is encrypted
with an incorrect secret key. In particular, it is shown that using a random
orthogonal matrix as a secret key can preserve speech privacy while maintaining
a large key space, even when the block size is small. Furthermore, experiments
done to evaluate robustness show that when audio encrypted with an incorrect
secret key is input to a model encrypted with the correct secret key, the
performance of the model decreases steadily for larger block sizes, and stable
privacy-preserving performance is obtained. In addition, it is shown that
speech data encrypted with the proposed methods cannot be reconstructed
unless the correct secret key is used.1

The following is the structure of the paper. In Section 2, we describe the
privacy-preserving scenario that we assume. Section 3 gives the details on
the proposed methods and in Section 4, we show the experimental results. In
Section 5, we conclude the study and describe our future work.

2 Privacy-preserving scenario

The scenario assumed for the privacy-preserving frameworks in this paper is
illustrated in Figure 1. Figure 1 consists of the model owner, the authorized
user, and the external provider. The external provider is assumed to be
untrusted, while the model owner and the authorized user are considered
secure. First, the model owner trains a CNN model to process plain speech
data, such as spectrograms and waveforms, within a secure environment. The
trained model is encrypted with a secret key. Subsequently, the model owner

1The code used to generate the secret key, encrypt the model, and encrypt query speech
data is available at https://github.com/kiyalab-tmu/SecretKeyVoicePrivacyPreserving-CNN

https://github.com/kiyalab-tmu/SecretKeyVoicePrivacyPreserving-CNN
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Figure 1: Privacy-preserving scenario

provides the encrypted model to an external provider, such as a cloud service,
and shares the secret key used for the model encryption with an authorized
user. It is assumed that the external provider, being managed by a third party,
is not within a secure environment. When the authorized user utilizes the
encrypted CNN model from the external provider, the user encrypts the query
speech data using the secret key received from the model owner and uploads the
encrypted speech data to the external provider. Finally, the external provider
inputs the encrypted speech data into the encrypted model and returns the
result to the authorized user. In this scenario, even if the external provider is
not secure, only authorized users possessing the correct secret key can utilize
the encrypted model as intended by the model owner, and only encrypted
speech, with the privacy information concealed, is stored with the external
provider. This ensures that privacy is maintained even in the event of a data
leakage.

Similar to this task, the VoicePrivacy challenge [24] is famously related to
speech privacy in the speech processing area. However, the privacy-preserving
scenario of the VoicePrivacy challenge considers that the speaker wishes to
keep their identity confidential while not protecting the content of the speech.
In this case, the attacker aims to identify the speaker from the speech data.
On the other hand, our paper presents a scenario where the user encrypts
the raw speech data to preserve personal information, including the speech’s
content or a speaker’s information. The attacker aims to steal and misuse
speech data. Our method conceals auditory information by changing the raw
speech data with a secret key.
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3 Proposed methods

This section describes the encryption methods for query speech data, the
methods for model encryption, and the advantage of using an orthogonal
matrix as the secret key in the proposed methods. The proposed methods
are familiar in the image processing area. However, we show the theoretical
correctness of adapting the framework to speech data, which are represented
in one or two dimensions.

3.1 Query encryption

We present a procedure for encrypting speech data using a secret key. Speech
data consists of variable-length one-dimensional data, such as waveforms,
or variable-length two-dimensional data, such as spectrograms obtained by
applying a short-time Fourier transform to waveforms. Here, we propose
three encryption methods using three kinds of orthogonal matrix, that is, the
Shuffling in Section 3.1.1, Flipping in Section 3.1.2, and random orthogonal
matrix (ROM) in Section 3.1.3, which are detailed below.

3.1.1 Shuffling

In this subsection, we describe an encryption method for speech data using
“Shuffling”, which uses a permutation matrix as the secret key. Algorithm 1
outlines the algorithm for encrypting speech data using Shuffling.

1. Speech data X is divided into blocks of block size M as follows:

X =



X11 . . . X1j . . . X1t

...
...

...
Xi1 . . . Xij . . . Xit

...
...

...
Xf1 . . . Xfj . . . Xft

 . (1)

When defining the size of the speech data X as an F × T matrix, F
represents the size in the frequency direction, and T represents the size in
the time direction. For one-dimensional data such as a speech waveform,
F is set to 1, while T is set to [T/M ], where M is the block size. For two-
dimensional data like a spectrogram, F is determined by the frequency
resolution, while both T and F are set to [T/M ] and [F/M ], respectively.
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Algorithm 1 Shuffling speech data encryption
Require: X: speech data, M : block size, Ks: secret key
Ensure: X(Ks): encrypted speech data
1: X(Ks) ← O
2: f ← [F/M ]
3: t← [T/M ]
4: for ((i = 0; i < f ; i = i+M)) do
5: for ((j = 0; j < t; j = j +M)) do
6: Xij ←X[i : i+M, j : j +M ]

7: X̂ij ← flatten(Xij)

8: X̂
(Ks)

ij ← X̂ij [Ks]

9: X
(Ks)
ij ← reshape(X̂

(Ks)

ij )

10: X(Ks)[i : i+M, j : j +M ]←X
(Ks)
ij )

11: end for
12: end for
13: return X(Ks)

Each block Xij within the matrix X is further defined as follows:

Xij =


x11 x12 . . . x1m

x21 x22 . . . x2m

...
...

...
xn1 xn2 . . . xnm

 . (2)

The size of the block Xij can be expressed as n×m, when X represents
one-dimensional data, n = 1 and m = M , and when X represents
two-dimensional data, n and m are both set to M .

2. To encrypt each block Xij using a secret key, Xij is flattened to a
one-dimensional vector X̂ij as follows:

X̂ij = flatten(Xij)

= [x1, x2, . . . , xm, xm+1, . . . , xN ] , (3)

where N denotes the total number of elements in the block Xij , i.e.,
N = n×m. The flatten function re-indexes the index of each element x
as a row vector and behaves as follows: [x1, x2, . . . , xm, xm+1, . . . , xN ] =
[x11, x12, . . . , x1m, x21, . . . , xnm].

3. The secret key Ks is generated as follows:

Ks = {ks(1), ks(2), . . . , ks(k), . . . , ks(N)}, (4)
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where the symbols l and k in (4) are indices of ks, ks(k) ∈ {1, 2, . . . , N},
ks(k) ̸= ks(l), k, l ∈ {1, 2, . . . , N}, k ̸= l. Algorithm 2 outlines the
procedure for generating the secret key Ks.

Algorithm 2 Secret key generation in Shuffling
Require: M : block size
Ensure: Ks: secret key
1: Ks ← [0, 1, . . . ,M − 1]
2: for i = M − 1 to 1 do
3: j ← random integer from 0 to i
4: Swap Ks[i] and Ks[j]
5: end for
6:
7: return Ks

4. The permutation matrix K ′
s used for encryption is generated as follows:

K ′
s = [eks(1), eks(2), . . . , eks(k), . . . , eks(N)]. (5)

Let eks(i) denote the unit vector.

5. The matrix product of the one-dimensional vector X̂ij and the permuta-

tion matrix K ′
s is calculated to obtain the encrypted row vector X̂

(Ks)

ij

as follows:

X̂
(Ks)t

ij = K ′
sX̂

t

ij

=
[
es(1), . . . , es(N)

]
[x1, . . . , xN ]

t

=
[
x
(ks)
1 , . . . , x

(ks)
N

]t
. (6)

6. Using the reshape function, the one-dimensional vector X̂
(Ks)

ij is trans-
formed to a matrix of the same shape as the block Xij to obtain an
encrypted block X

(Ks)
ij as follows:

X
(Ks)
ij = reshape(X̂

(Ks)

ij )

=


x
(ks)
11 x

(ks)
12 . . . x

(ks)
1m

x
(ks)
21 x

(ks)
22 . . . x

(ks)
2m

...
...

...
x
(ks)
n1 x

(ks)
n2 . . . x

(ks)
nm

 . (7)
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7. All the blocks of the speech data X that were divided in step 1 are
processed in steps 2 - 6 to obtain the encrypted speech data X(Ks).
X(Ks) can be expressed as follows:

X(Ks) =


X

(Ks)
11 . . . X

(Ks)
1t

...
. . .

...
X

(Ks)
f1 . . . X

(Ks)
ft

 . (8)

The steps from 1 to 7 demonstrate the transformation of plain speech data
into encrypted speech data with the secret key Ks.

3.1.2 Flipping

In this subsection, we describe an encryption method for speech data using
“Flipping”, which uses a sign inversion as the secret key. Algorithm 3 outlines
the algorithm for encrypting speech data using Flipping.

1. The speech data X is divided into blocks Xij of block size M according
to (1).

2. To encrypt each block Xij using a secret key, Xij is flattened to a
one-dimensional vector X̂ij according to (3).

3. The secret key Kf is generated. Kf is denoted as follows:

Kf = {kf(1), kf(2), . . . , kf(k), . . . , kf(N)}, (9)

where kf(k) ∈ {0, 1}, P (X = kf(k)) = 0.5, 1 ≤ k ≤ N , Pr(X = p)
represents the probability that X takes the value p. Algorithm 4 outlines
the procedure for generating the secret key Kf.

4. The matrix K ′
f used for encryption is generated as follows:

K ′
f(k) =

{
−1 (kf(k) = 1)

1 (kf(k) = 0)
. (10)

5. The Hadamard product of X̂ij and K ′
f is calculated to obtain the

encrypted row vector X̂
(Kf)

ij as follows:

X̂
(Kf)

ij = K ′
f ⊙ X̂ij

=
[
K ′

f(1),K
′
f(2), . . . ,K

′
f(N)

]
⊙ [x1, . . . , xN ]

=
[
x
(kf)
1 , . . . , x

(kf)
N

]
. (11)
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Algorithm 3 Flipping speech data encryption
Require: X: speech data, M : block size, Kf: secret key
Ensure: X(Kf): encrypted speech data
1: X(Kf) ← O
2: f ← [F/M ]
3: t← [T/M ]
4: for ((i = 0; i < f ; i = i+M)) do
5: for ((j = 0; j < t; j = j +M)) do
6: Xij ←X[i : i+M, j : j +M ]

7: X̂ij ← flatten(Xij)
8: if Kf[j] = 1 then

9: X̂
(Kf)

ij [j]← −X̂ij [j]
10: end if
11: X

(Kf)
ij ← reshape(X̂

(Kf)

ij )

12: X(Kf)[i : i+M, j : j +M ]←X
(Kf)
ij

13: end for
14: end for
15: return X(Kf)

Algorithm 4 Secret key generation in Flipping
Require: M : block size
Ensure: Kf: secret key
1: Initialize Kf with zeros of size M
2: for each element in Kf do
3: Kf ← random number in [0, 1)
4: end for
5: Kf ← (Kf × 2)//1
6:
7: return Kf

6. The one-dimensional vector X̂
(Kf)

ij is reshaped using the reshape function

so that X̂
(Kf)

ij equals the unencrypted block Xij according to (7), and
the encrypted block X

(Kf)
ij is obtained.

7. All the blocks of the speech data X that were divided in step 1 are
processed in steps 2 - 6 to obtain the encrypted speech data X(Kf).

The steps from 1 to 7 demonstrate the transformation of plain speech data
into encrypted speech data with the secret key Kf.
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3.1.3 Random orthogonal matrix

In this section, we describe an encryption method for speech data using “ROM”,
which uses a randomly generated orthogonal matrix as a secret key. Algorithm
5 outlines the algorithm for encrypting speech data using ROM.

Algorithm 5 ROM speech data encryption
Require: X: speech data, M : block size, Kr: secret key
Ensure: X(Kr): encrypted speech data
1: X(Kr) ← O
2: f ← [F/M ]
3: t← [T/M ]
4: for ((i = 0; i < f ; i = i+M)) do
5: for ((j = 0; j < t; j = j +M)) do
6: Xij ←X[i : i+M, j : j +M ]

7: X̂ij ← flatten(Xij)

8: X̂
(Kr)

ij ← X̂
(Kr)

ij Kr

9: X
(Kr)
ij ← reshape(X̂

(Kr)

ij )

10: X(Kr)[i : i+M, j : j +M ]←X
(Kr)
ij

11: end for
12: end for
13: return X(Kr)

1. The speech data X is divided into blocks Xij of block size M according
to (1).

2. To encrypt each block Xij using a secret key, Xij is flattened to a
one-dimensional vector X̂ij according to (3).

3. The secret key Kr is generated. Kr is denoted as follows:

Kr =

k11 . . . k1N
...

. . .
...

kN1 . . . kNN

 = [k1,k2, . . . ,kN ] . (12)

Algorithm 6 outlines the procedure for generating the secret key Kr.

4. The matrix product of X̂ij and Kr is calculated to obtain the encrypted

row vector X̂
(Kr)

ij as follows:

X̂
(Kr)

ij = X̂ijKr

= [x1, . . . , xN ] [k1, . . . ,kN ]

=
[
x
(kr)
1 , . . . , x

(kr)
N

]
. (13)
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Algorithm 6 Secret key generation in ROM [14]

Require: M : block size
Ensure: Kr: secret key
1: A← random normal matrix of size M ×M
2: (Q,R)← QR decomposition of A
3: for i = 1 to M do
4: if R[i, i] < 0 then
5: Q[:, i]← −Q[:, i]
6: end if
7: end for
8: Kr ← Q
9:

10: return Kr

5. The one-dimensional vector X̂
(Kr)

ij is reshaped using the reshape function

so that X̂
(Kr)

ij is equal to the unencrypted block Xij according to (7),
and the encrypted block X

(Kr)
ij is obtained.

6. All the blocks of the speech data X that were divided in step 1 are
processed in steps 2 - 5 to obtain the encrypted speech data X(Kr).

3.2 Model encryption

To input speech data encrypted using the procedure shown in Section 3.1
directly into the trained model without decrypting it, it is required to transform
a part of the trained model. Therefore, we assume that the first layer of the
CNN model is a convolutional layer, and that the kernel size and stride size of
the first convolutional layer are equal. This is because equal kernel and stride
sizes allow the convolution process to be performed for each encrypted block.
Let E be the kernel of the first convolutional layer in which encryption is
applied as shown in Figure 2, and let P be the kernel size. Then, the kernel E
can be expressed as follows:

E =


e11 e12 . . . e1b
e21 e22 . . . e2b
...

...
...

ea1 ea2 . . . eab

 , (14)

where the size of the kernel E can be expressed as a × b. When the speech
data X is one-dimensional data, a = 1 and b = P , and when it is two-
dimensional data, a = P and b = P . In addition, in this paper, the kernel
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Figure 2: Encrypted models for accepting encrypted speech data

size and the block size M used for encryption are assumed to be equal, i.e.,
P = M . On the basis of these assumptions, when plain speech data X is
input to the convolution layer, a convolution operation is performed using the
divided block Xij and the kernel E as follows:

z = Xij ·E. (15)

We consider a scenario where the input data consists of encrypted speech
data and aim to eliminate the effects of encryption without decrypting the
encrypted speech data by using the kernel E. The encryption procedures for
the kernel E for Shuffling, Flipping, and ROM are detailed in Sections 3.2.1,
3.2.2, and 3.2.3, respectively.

3.2.1 Shuffling

The encryption procedure of the model when using the secret key Ks obtained
from Shuffling will be explained. First, the kernel E is flattened to a one-
dimensional row vector using the flatten function to obtain Ê. Next, the matrix
product of the permutation matrix K ′

s and the transposed Ê is calculated to

obtain the encrypted column vector Ê
(Ks) as follows:

Ê
(Ks)

= K ′
sÊ

t
=

[
e
(ks)
11 , e

(ks)
12 , · · · , e(ks)

ab

]t
. (16)
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The column vector Ê
(Ks) is reshaped to be a matrix of the same size as the

unencrypted kernel E to obtain the encrypted kernel E(Ks) as follows:

E(Ks) = reshape(Ê
(Ks)

)

=


e
(ks)
11 e

(ks)
12 . . . e

(ks)
1b

e
(ks)
21 e

(ks)
22 . . . e

(ks)
2b

...
...

...
e
(ks)
a1 e

(ks)
a2 . . . e

(ks)
ab

 . (17)

When calculating convolution with the encrypted speech data X(Ks) and the
encrypted kernel E(Ks), the computation for each encrypted block X

(Ks)
ij is

as follows:

z(Ks) = X
(Ks)
ij ·E(Ks) = X̂

(Ks)

ij Ê
(Ks)

= X̂ijK
′
sK

′t
s Ê

t
= Xij ·E = z. (18)

Since the permutation matrix is a kind of orthogonal matrix, the product of K ′
s

and K
′t
s is a unit matrix according to the property of the orthogonal matrix. By

inputting speech data encrypted with the same secret key used to encrypt the
model into the encrypted model, the internal computations produce identical
results as if no encryption had been performed. Therefore, it is possible to
input encrypted speech data into the model without decryption, allowing for
the correct utilization of the model while preserving the privacy of the speech
data. On the other hand, when encrypted speech data, encrypted using a
different secret key from that used for the model encryption, is input into the
encrypted model, the results differ from those obtained without encryption.
Therefore, it is hard to use the model correctly without prior knowledge of the
secret key. In this framework, since the encryption process is applied to the
original speech data after it has been recorded, the presence of noise in the
original speech data does not affect the encryption. As shown in (18), when
the correct key is used, the impact of the secret key is canceled out during the
inner product calculation. While the performance of the original model may
degrade if it is not robust to noise, this is due to the inherent characteristics of
the model and not due to the proposed encryption method. Our method does
not interfere with the inner product computation the model performs when
the correct key is used.

3.2.2 Flipping

The encryption procedure of the model when using the secret key Kf obtained
from Flipping will be explained. First, the kernel E is flattened to a one-
dimensional row vector using the flatten function to obtain Ê. Next, the
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Hadamard product of K ′
f and Ê is calculated to obtain the encrypted column

vector Ê
(Kf) as follows:

Ê
(Kf)

= K
′t
f ⊙ Ê

t
=

[
e
(kf)
11 , e

(kf)
12 , · · · , e(kf)

ab

]t
. (19)

The column vector Ê
(Kf) is reshaped to be a matrix of the same size as the

unencrypted kernel E to obtain the encrypted kernel E(Kf) according to (17).
When calculating convolution with the encrypted speech data X(Kf) and the
encrypted kernel E(Kf), the computation for each encrypted block X

(Kf)
ij is

as follows:

z(Kf) = X
(Kf)
ij ·E(Kf) = X̂

(Kf)

ij Ê
(Kf)

= (K ′
f ⊙X

(Kf)
ij )(K

′t
f ⊙ Ê

t
)

=
(
[K ′

f(1) . . .K
′
f(N)]⊙ [x1 . . . xN ]

)
K ′

f(1)
...

K ′
f(N)

⊙
e11...
eab




= [K ′
f(1)x1 . . .K

′
f(N)xN ]

K ′
f(1)e11

...
K ′

f(N)eab

 = Xij ·E = z. (20)

Since K ′
f is a matrix consisting of −1 or 1, we can obtain completely the

same results before and after using the proposed method by inputting speech
data encrypted with the secret key Kf to the model encrypted with the same
secret key Kf. Therefore, as well as with Shuffling, it is possible to input the
encrypted speech data into the model without decrypting it.

3.2.3 Random orthogonal matrix

The encryption procedure of the model when using the secret key Kr obtained
from ROM will be explained. First, the kernel E is flattened to a one-
dimensional row vector using the flatten function to obtain Ê. Next, the
matrix product of Kt

r and Ê
t

is calculated to obtain the encrypted column

vector Ê
(Kr) as follows:

Ê
(K)

= Kt
rÊ

t
=

[
e
(k)
11 , e

(k)
12 , · · · , e(k)ab

]t
. (21)

The column vector Ê
(Kr) is reshaped to be a matrix of the same size as the

unencrypted kernel E to obtain the encrypted kernel E(Kr) according to (17).
When calculating convolution with the encrypted speech data X(Kr) and the
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encrypted kernel E(Kr), the computation for each encrypted block X
(Kr)
ij is

as follows:

z(K) = X
(K)
ij ·E(K) = X̂

(K)

ij Ê
(K)

(22)

= X̂ijKrK
t
rÊ

t
= Xij ·E = z.

The matrix product of Kr and Kt
r is a unit matrix according to the property

of the orthogonal matrix. By inputting speech data encrypted with a secret
key Kr into a model encrypted with the same secret key Kr, completely the
same results can be obtained before and after using the proposed method.
Therefore, as well as with Shuffling and Flipping, it is possible to input the
encrypted speech data into the model without decoding it.

3.3 Key space of secret key

In this section, we discuss the key space size for the secret keys utilized
in Shuffling, Flipping, and ROM. Concerning Shuffling, as depicted in (4),
the secret key Ks is a matrix for rearranging the indices of elements within
each block Xij in any order, e.g., Ks = [3, 1, 2] when the input data X is
one-dimensional and M = 3. Therefore, when the speech data X is one-
dimensional, the secret key Ks can have M ! possible patterns, and when the
speech data X is two-dimensional, it can have (M ×M)! possible patterns.
Concerning Flipping, as depicted in (9), the secret key Kf is a bit sequence
consisting of 0 or 1, e.g., Kf = [0, 0, 1] when the input data is one-dimensional
and M = 3. Therefore, the secret key Kf can only be used in 2M ways when
the speech data X is one-dimensional and in 2M×M ways when the speech
data X is two-dimensional. Since each bit in Kf is generated independently
with a probability of 0.5, all 2M or 2M×M patterns occur with equal probability.
Concerning ROM, as depicted in (12), the secret key Kr is an orthogonal
matrix and is composed of randomly generated real-valued elements, including
negative values. As an example of the secret key Kr, the matrix for the case
where the input data is one-dimensional and M = 3 is shown below:

Kr =

0.9898 −0.0661 −0.1264
0.1309 0.7732 0.6205
0.0568 −0.6307 0.7740

 . (23)

As shown in (23), Kr is a matrix of M ×M when the speech data X is
one-dimensional and M2 ×M2 when X is two-dimensional, allowing for the
generation of many patterns of secret keys. Focusing on periods of silence in
the speech data, there is a risk that the secret key can be easily estimated by a
third party if the keyspace is small. Therefore, it is better to have a large key
space for the secret key to make the prediction of the secret key more difficult.
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Despite the limitation that the secret key must be an orthogonal matrix, ROM
has the advantage of the key space of the secret key being larger than that
of Shuffling and Flipping, making the prediction of the secret key much more
difficult.

3.4 Key generation procedure

This section provides the concrete procedure to generate a secret key pair.
For Shuffling, the Python library torch.randperm(n=M) is employed to

generate the secret key Ks. Then, its transpose matrix Kt
s is calculated with

torch.t.
For ROM, the Python library scipy.stats.ortho_group.rvs(dim=M) is

employed to generate the secret key Kr. Then, its transpose matrix Kt
r is

calculated with torch.t.
For the evaluation, many secret key pairs are generated by changing the

seed value, and the keys of different pairs are regarded as incorrect.

4 Experiment

4.1 Evaluation of privacy-preserving performance

4.1.1 Experimental conditions

In this experiment, we evaluated the privacy-preserving performance of the
proposed methods using ASV, ASR, and ASC tasks.

ASV is a technology used to verify the identity of a speaker by analyzing
their speech characteristics. The task of ASV involves determining whether
a claimed speaker matches the true identity by comparing speech samples.
Within the privacy-preserving scenario of the ASV task, encryption is used
with the aim of ensuring that authentication is only successful when the
correct secret key is used, while performance significantly deteriorates when
an incorrect key is utilized. The ASV experiment is assumed to assess privacy-
preserving performance against the speaker’s identity. For the ASV system,
we used an x-vector-based ASV system [21] with a self-supervised-learning
(SSL) based front-end model [28, 1]. For the ASV task, we trained a HuBERT
model [4] with the LibriSpeech corpus [18] following the Fairseq recipe [17]. The
HuBERT model is used as an SSL-based front-end model, and it is regarded as
one of the state-of-the-art systems. The input features for the HuBERT model
are waveforms. The structure and hyperparameters of the HuBERT model were
the same as those of HuBERT Base [4], except that the stride size P of the first
convolutional layer was changed to ten. The speech expression outputted from
the HuBERT model was inputted to an x-vector-based embedding network.
This network was trained with the VoxCeleb1 corpus [15], using the same
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hyperparameters as in Yang et al. [28]. For the ASV evaluation, we used the
VoxCeleb1 test set, and the input waveforms were encrypted by the proposed
encryption methods. The block size M for the encryption methods was set to
10. Equal error rate (EER) was used as the evaluation metric.

ASR is the process of transcribing speech content into text. Within the
privacy-preserving scenario of the ASR task, encryption is performed with the
aim of ensuring that recognition is only successful when the correct secret key is
used, while the performance of the speech recognition deteriorates significantly
when an incorrect key is utilized. The ASR experiment is assumed to assess
privacy-preserving performance against the speech content. For the ASR
task, we trained a transformer model with the LibriSpeech corpus following
the ESPnet2 recipe [26]. The transformer architecture and hyperparameters
were the same as in Karita et al. [7], except for the input feature and the
stride size of the first convolutional layer. The acoustic features are input as
two-dimensional log-mel spectrogram features by arranging the 80-dimensional
log-mel filterbank features extracted for each frame. The stride size P of the
first convolutional layer was set to three to use the proposed methods. For the
ASR evaluation, we used the LibriSpeech test clean subset, and the input log-
mel spectrogram features were encrypted by the proposed methods. The block
size M for the encryption was set to three to match the kernel size P . Word
error rate (WER) was used as an evaluation metric. We also evaluated how
block size influences the performance of the proposed methods in concealing
the speech content within the encrypted speech. Under M = 5, 10, 20, 128,
speech waveforms encrypted using the proposed methods were input to the
plain pre-trained speech recognition model published in Karita et al. [7].

ASC is the task of categorizing audio recordings depending on the type
or category of the surrounding environment in which they were captured [13].
Unlike ASR, ASC focuses on classifying the acoustic event of various environ-
ments. ASC systems analyze features extracted from audio signals, such as
spectrograms, and use machine learning algorithms to classify the audio into
predefined categories or classes. The ASC experiment is assumed to assess
privacy-preserving performance against an acoustic event. For the ASC task,
we used the ConvMixer [25] model trained on the SINS [3] dataset. We used
only the SINS data labeled Absence, Cooking, Dishwashing, Eating, Other,
Vacuumcleaner, Watching TV, Working, Calling, and Visit, and data labeled
Calling and Visit were combined into a single class and labeled Social Activity.
The input features for the ConvMixer model are spectrograms, which are
two-dimensional speech data. The data were clipped so that the length of each
sample was four seconds, and spectrograms were generated from the clipped
data. The structure and hyperparameters of the ConvMixer model were the
same as those of ConvMixer-768/32 [25], except that the stride size P and the
kernel size of the first convolutional layer was changed to eight. For the ASC
evaluation, we used the test set of the SINS dataset, and input spectrograms
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were encrypted by the proposed methods. The block size M for the encryption
methods was set to eight. Accuracy, which indicates the percentage of correct
classifications, was used as an index to evaluate the classification results.

4.1.2 Experimental results

Tables 1, 2, and 3 show the results of the ASV, ASR and ASC experiments,
respectively. In these experiments, the plain model, i.e., no encryption, and
the models encrypted by Shuffling, Flipping and ROM were used. “Correct
key” refers to a situation where the encryption key used for the model matches
the encryption key used for the query. “Incorrect key” refers to a situation
where the encryption key used for the model does not match the encryption
key used for the query. The results of “Incorrect key” are based on the average
values obtained when using five different incorrect secret keys. “Plain” in the
context of query encryption can be regarded as a form of an incorrect key,
indicating that encryption has not been performed.

Table 1 shows the results of the ASV experiments. The EERs for “Correct
key” were completely the same as those of the plain model. In the “Incorrect
key” and “Plain” cases, the EERs were higher than those for “Correct key.”
These results show that only authorized users who know the correct secret key
can correctly use the encrypted model in the ASV task by using the proposed
methods. Furthermore, these results show that there is not much difference
in the trend of the results between the methods, and that all of the methods
succeed in concealing the speaker identity.

Table 1: EER(%) in encryption scenario (M = 10) for ASV.

Model encryption
Query encryption

Plain Correct
key

Inorrect
key

Plain 7.91 - -
Shuffling 36.7 7.91 33.3
Flipping 37.2 7.91 34.1
ROM 35.3 7.91 35.1

Table 2 shows the results of the ASR experiments. The WERs of the
encrypted models for “Correct key” were completely the same as those of the
plain model. In the “Incorrect key” and “Plain” case, the WERs were higher
than those of the “Correct key” case, especially in the Flipping and ROM case.
Therefore, in the “Incorrect key” and “Plain” case, the encrypted models hardly
extracted the speech content, so the encryption by the proposed methods was
highly anonymous. As well as with the ASV results, these results also show
that only authorized users who know the correct key can correctly use the
encrypted model in the ASR task within the proposed methods.
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Table 2: WER(%) in encryption scenario (M = 3) for ASR.

Model encryption
Query encryption

Plain Correct
key

Incorrect
key

Plain 4.4 - -
Shuffling 10.9 4.4 14.18
Flipping 98.1 4.4 98.26
ROM 99.7 4.4 97.62

Table 3 shows the results of the ASR experiments. The accuracies of the
encrypted models for “Correct key” were completely the same as those of the
plain model. In the “Incorrect key” case, the accuracies were higher than
those of the “Correct key” case. In the “Plain” scenario, the accuracy was
also significantly increased since it can be regarded as one of the “Incorrect
key” cases. These results also show that only authorized users who know the
correct key can correctly use the encrypted model in the ASC task by using
the proposed methods. On the basis of the privacy-preserving performance
evaluation experiments described above, it is confirmed that the proposed
methods prevent unauthorized users who do not know the secret key used to
encrypt the model from using the model with high performance.

Table 3: Accuracy (%) in encryption scenario (M = 8) for ASC.

Model encryption
Query encryption

Plain Correct
key

Incorrect
key

Plain 85.4 - -
Shuffling 64.6 85.4 60.5
Flipping 1.97 85.4 1.99
ROM 1.97 85.4 1.99

Encrypted speech can also be obtained as severely noisy speech, so speech
waveforms encrypted with Shuffling, Flipping, and ROM were input to the
ASR model to investigate the encryption robustness of the proposed methods
and the plain model, and the results are shown in Table 4. The WERs for
the encrypted speech were higher in all conditions than the WER for the
unencrypted speech, 2.7%, and we can see that for all encryption methods,
the WER increased as the block size M increased. Furthermore, when M
was small, for example M = 5, 10, the WER was higher when the waveform
was encrypted by Flipping or ROM than when it was encrypted by Shuffling,
indicating that the privacy-preserving performances of Flipping or ROM were
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Table 4: Comparison of WER (%) of ASR model on LibriSpeech corpus (test clean subsets)
encrypted using Shuffling, Flipping, and ROM. WER for unencrypted query input to plain
model is 2.7%.

M Shuffling Flipping ROM
5 13.9 40.5 28.9
10 30.6 68.1 57.6
20 63.9 82.9 85.4
128 94.9 95.0 94.8

better. In particular, for encryption using ROM, the key space is sufficiently
large even when M is small, making it difficult to predict the secret key.

4.2 Comparison of encrypted speech data

In this section, we investigated the characteristics of each proposed encryp-
tion method in some examples. The original speech waveform is shown in
Figures 3(a), Figures 3(b) and 3(c) are waveforms encrypted by Shuffling from
the original waveform with different key sizes (M = 10, 128), and Figures
3(d), 3(e), and 3(f) are their spectrograms, respectively. Figure 4 shows the
waveforms encrypted by Flipping and ROM and their spectrograms. The
key sizes are the same as the Flipping case. From these figures, it can be
confirmed that the speech waveforms encrypted by the proposed encryption
methods are significantly different from the original speech waveform. The
spectrograms of each speech waveform show that the original speech waveform
is significantly different due to the encryption using the proposed methods,
and the characteristics of the original speech waveform are also significantly
different. It was also found that the larger the value of the block size M used
for the proposed encryption methods, the larger the change in the waveforms.
With a larger value of M , the speech content can be concealed more effectively.
Additionally, from the perspective of key space, a larger value of M makes it
more difficult to estimate the secret key.

The original speech waveform is shown in Figure 5(a), and Figures 5(b) and
5(c) are spectrograms encrypted from the original spectrogram by Shuffling
with different key sizes (M = 8, 32). By comparing Figures 5(a) and 5(b) it
can be seen that the harmonic structures of each spectrogram are distorted.
Comparing Figures 5(b) and 5(c), we can see that the larger the value of M , the
greater the range of movement for the positions of values in each block of the
spectrograms. The spectrograms encrypted by Flipping and ROM are shown
in Figure 6. By comparing Figures 5(a) and 6(a), and Figures 5(a) and 6(c),
we can see that the magnitude of each value in the encrypted spectrogram
changes randomly. Comparing Figures 6(a) and 6(b), and Figures 6(c) and
6(d), we can see that the spectrogram values in the block change regardless of
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(f) Encrypted spectrogram
(M = 128)

Figure 3: Examples of waveform encrypted by Shuffling

the block size M . From these figures, it can be visually confirmed that the
encryption of the proposed methods succeeded in anonymizing the speech with
encryption since the harmonic structure of the original spectrogram was hidden
and, in particular, ROM obscured the speech segment and other information.

4.3 Robustness evaluation experiments

4.3.1 Experimental conditions

Four experiments were conducted to evaluate robustness against attacks with
the proposed methods. In the first experiment, we investigated the changes
in the spectrogram encrypted by ROM when decrypted with the correct key
and an incorrect key. In the second experiment, the spectrogram encrypted
by ROM was reconstructed into a speech waveform using Phase Gradient
Heap Integration (PGHI) [19], one of the state-of-the-art phase reconstruction
algorithms, and the reconstructed speech waveform was compared with the
original one. In the third experiment, we prepared an ASV model encrypted
with the correct secret key and input speech encrypted with 1000 incorrect keys
to the model. The two ASV models used in this experiment were HuBERT [4]
and RawNeXt [8]. As in the experiment in Section 4, we prepared two kinds
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Figure 4: Examples of waveform encrypted by Flipping and ROM
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(M = 32)

Figure 5: Examples of spectrogram encrypted by Shuffling

of HuBERT model that included the first convolutional layer with kernel sizes
and stride sizes of five and ten, respectively. The first convolutional layers of
HuBERT5 and HuBERT10 were encrypted by ROM. The RawNeXt model
took speech waveforms as input features and was trained using the VoxCeleb2
corpus [2]. In this experiment, encryption with ROM was applied to the
pre-trained models distributed in Kim et al. [8]. The RawNeXt model was
originally set to a stride size and kernel size of three. For evaluation, we used the
VoxCeleb1 corpus’s test set [15], and EER was used as the evaluation measure.
In the fourth experiment, the same experiment as the third experiment was
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Figure 6: Examples of spectrogram encrypted by Flipping and ROM

applied to the ASR task. In the experiments, speech waveforms encrypted with
100 ROM secret keys were input to a trained ASR model proposed in Karita
et al. [7]. Under M = 3, 5, 10, we used the test clean subset of LibriSpeech as
the evaluation data.

4.3.2 Experimental results

Figure 7 shows the result of the first experiment of the robustness evaluation.
Figure 7(a) is the spectrogram encrypted by using ROM from the original
spectrogram in Figure 3(d) under block size M = 3. Figure 7(b) shows the
spectrogram in Figure 7(a) decrypted using the correct key, while Figure
7(c) shows the spectrogram in Figure 7(a) decrypted using the incorrect key.
Figures 3(d) and 7(b) show that the spectrogram decrypted with the correct
key was exactly the same as the original spectrogram. On the other hand,
Figure 7(c) shows that the original spectrogram information was not decrypted
when an incorrect key was used as a decrypted key. Figures 3(d) and 7(b)
show that the spectrograms were exactly the same as the original spectrograms
when decrypted with the correct keys. On the other hand, Figures 3(d) and
7(c) show that the original spectrogram information was not decrypted when
decrypted using an incorrect key.

The results of phase reconstruction using PGHI on the spectrogram en-
crypted using ROM are shown in Figure 8 as the second experiment of the
robustness evaluation. Figure 8(a) is the original spectrogram, Figure 8(b) is
the spectrogram obtained by encrypting the spectrogram in Figure 8(a) with
ROM under block size M = 3, and Figure 8(c) is the spectrogram of the speech
waveform obtained by applying PGHI to the spectrogram in Figure 8(b). The
figures shown in the upper rows of Figures 8(a) and 8(c) are the original
speech waveform and the speech waveform obtained by PGHI, respectively.
Comparing Figure 8(a) with Figure 8(c), it can be seen that the structure of
the original spectrogram was not reconstructed in the spectrogram after PGHI.
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(a) Encrypted spectrogram
(M = 3)

(b) Spectrogram decrypted
with correct key

(c) Spectrogram decrypted
with incorrect key

Figure 7: Examples of decryption for spectrograms encrypted by ROM under M = 3.

0.000 0.050 0.100 0.150 0.200

Time(s)
0.3

0.1

0.1

0.3

A
m

pl
itu

de

(a) Original (b) Encrypted spectrogram
(M = 3)

0.000 0.050 0.100 0.150 0.200

Time(s)
0.3

0.1

0.1

0.3

A
m

pl
itu

de

(c) Phase reconstruction
(M = 3)

Figure 8: Example of phase reconstruction applied to encrypted spectrogram by ROM under
M = 3.

In addition, comparing the waveforms shown in the upper rows of Figures 8(a)
and 8(c), it can be seen that the original waveforms were not reconstructed at
all. Therefore, it is confirmed that a spectrogram encrypted using the proposed
methods can hardly reconstruct the original speech when the correct key is
not known.
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For the third experiment in the robustness evaluation, we analyzed how the
proposed method behaves with incorrect keys in the ASV task. A violin plot
of the distribution of EER when 1000 ROM secret keys were used as incorrect
keys is shown in Figure 9. The EER for each model, when the speech was
not encrypted, is represented by stars in Figure 9. The variance of EER for
RawNeXt was 66.2, that for HuBERT5 was 24.1, and that for HuBERT10
was 2.51. Figure 9 shows that the smaller the block size used for encryption,
the wider the EER distribution, and it also shown that the larger the block
size, the larger the difference from the EER with the correct key. The reason
why the distribution of RawNeXt’s EER is biased toward low positions can be
considered to be the small block size and the high generalization performance
of the model. Furthermore, to investigate the characteristics of the generated
keys, we measured the Euclidean distance between the speech encrypted with
the correct key and the speech encrypted with incorrect keys. We presented
the distributions for key groups with low EER and high EER in Figure 10.
From this figure, we observed that keys with a low EER are not necessarily
closer to the audio encrypted with the correct key. The characteristics of the
secret keys should be investigated in the future.
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Figure 9: Distribution of EER (%) for speech waveforms encrypted using 1000 ROM secret
keys and input to encrypted ASV model (asterisk: EER (%) for unencrypted ASV model)

For the fourth experiment in the robustness evaluation, we analyzed how
ROM behaves with incorrect keys in the ASR task. Figure 11 shows the
distribution of WER when speech waveforms encrypted with 100 ROM secret
keys were input to the trained speech recognition model proposed in Karita
et al. [7]. The red line in Figure 11 is the WER when plain speech was input
to the plain model. As well as with the results of the third experiment, as
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Figure 11: Distribution of WER(%) in case of speech waveforms encrypted using 100 ROM
secret keys and input to ASR model [7] (line: WER (%) for unencrypted speech waveforms)

the value of M increased, the more the average WER rose, and the more the
distribution became narrower. This implies that a larger value of M results in
higher confidentiality for speech content. The ASV and ASR results confirm
that the proposed methods provide stable privacy-preserving performance
when the block size is large.
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5 Conclusion

In this paper, we described privacy-preserving methods using secret keys
based on Shuffling, Flipping, and ROM. The proposed methods can perform
convolutional computation to cancel the effect of the orthogonal matrix secret
key so that encrypted queries can be input to encrypted CNN models without
decryption. In addition, when the user knows the correct key, there is no
performance degradation at all. Experiments confirmed that, when using the
proposed methods, users who do not know the secret key used to encrypt the
model cannot use the model with high performance, and the larger the block
size used for encryption, the more stable the privacy-preserving performance
is. It was also confirmed that a third party who does not know the secret key
cannot estimate or reconstruct the original speech data from the speech data
encrypted using the proposed methods. For future work, we will develop an
encryption method for speech data that is stable and robust against attacks,
even when the block size is small, and we will investigate the effect of some
noise reduction methods to confuse the inner product calculations. In addition,
it is an important topic to expand our approach not only to CNN-based models
but also to deep-learning models. As a challenging and crucial task, we also
plan to explore research focusing on effectively concealing a part of critical
components.
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