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ABSTRACT
Supervised trackers trained on labeled data dominate the single
object tracking field for superior tracking accuracy. The labeling
cost and the huge computational complexity hinder their applica-
tions on edge devices. Unsupervised learning methods have also
been investigated to reduce the labeling cost but their complexity
remains high. They all need large scale offline training. Aiming at
lightweight high-performance tracking, feasibility without offline
pre-training, and algorithmic transparency, we propose a new single
object tracking method, called the green object tracker (GOT), in
this work. GOT conducts an ensemble of three prediction branches
for robust box tracking: 1) a global object-based correlator to
predict the object location roughly, 2) a local patch-based corre-
lator to build temporal correlations of small spatial units, and 3)
a superpixel-based segmentator to exploit the spatial information
of the target frame. GOT offers competitive tracking accuracy
with state-of-the-art unsupervised trackers, which demand heavy
offline pre-training, at a lower computation cost. GOT has a tiny
model size (<3k parameters) and low inference complexity (around
58M FLOPs per frame), leading to the inference complexity that
is between 0.1% ∼ 10% of DL trackers.
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1 Introduction

Video object tracking is one of the fundamental computer vision problems [26]
and finds applications in various applications such as autonomous driving [31,
25] and video surveillance [56]. Given the ground-truth bounding box of the
object in the first frame of a test video, a single object tracker (SOT) predicts
the object box in all subsequent frames. Most trackers follow the tracking-
by-detection paradigm. That is, based on the object template obtained in
the (i − 1)th frame (i.e., the reference frame), a tracker conducts similarity
matching over a search region at the ith frame (i.e., the target frame). This
setting is used to reflect an online real-time tracking environment, where the
data processing is applied to streaming video with a small memory buffer.

Research on SOT has a long history, which will be briefly reviewed in
Section 2. There are two major breakthroughs in SOT development. The
first one lies in the use of the discriminative correlation filter (DCF) [5] and
its variants. Based on handcrafted features (e.g., the histogram of oriented
gradients (HOG) and colornames (CN) [16]) extracted from the reference
template, DCF trackers estimate the location and size of the target template
by examining the correlation (or similarity) between the reference template
and the image content in the target search region. The second one arises by
exploiting deep neural networks (DNNs) or deep learning (DL). Supervised
and unsupervised DL trackers with pre-trained networks have been dominating
in their respective categories in recent years. They are trained with large-
scale offline pre-training data. The former has human-labeled object boxes
throughout all frames, while the latter does not, in all training sequences.

There is a link between DCF and DL trackers. One representative branch
of supervised DL trackers is known as the Siamese network, which maintains
the template matching idea. On the other hand, DL trackers adopt the end-to-
end optimization approach to derive powerful deep features for the matching
purpose. Besides the backbone network, they incorporate several auxiliary
subnetworks called heads, e.g., the classification head and the box regression
head.

The superior tracking accuracy of supervised DL trackers is attributed to
a huge amount of efforts in offline pre-training with densely labeled videos
and images. In addition, the backbone network gets larger and larger from
the AlexNet to the Transformer. Generally speaking, DL trackers demand a
large model size and high computational complexity. The heavy computational
burden hinders their practical applications in edge devices. For example,
SiamRPN++ [32] has a model containing 54M parameters and takes 48.9G
floating point operations (flops) to track one frame. To lower the high compu-
tational resource requirement, research has been done to compress the model
via neural architecture search [58], model distillation [44], or networks pruning
and quantization [4, 9, 6, 27, 1].
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One recent research activity lies in reducing the labeling cost. Along
this line, unsupervised DL trackers have been proposed to enable intelligent
learning, e.g., G. Wang et al. [49], Q. Wu et al. [54], Zheng et al. [61], and Q.
Shen et al. [45]. In the training process, they generate pseudo object boxes in
initial frames, allow a tracker to track in both forward and backward directions,
and enforce the cycle consistency. Various techniques have been proposed to
adjust pseudo labels and improve training efficiency. Unsupervised DL trackers
contain complicated networks needed for large-scale offline pre-training, leading
to large model sizes. The state-of-the-art unsupervised DL tracker, ULAST
[45], achieves comparable performance as top supervised DL trackers. As
a modification of SiamRPN++, ULAST has a large model size and heavy
computational complexity in inference.

Our research goal is to develop unsupervised, high-performance, and
lightweight trackers, where lightweightness is measured in model sizes and
inference computational complexity. Toward this objective, we have developed
new trackers by extending DCF trackers. Examples include UHP-SOT [62],
UHP-SOT++ [64] and GUSOT [63]. The extensions include an object recovery
mechanism and flexible shape estimation in the face of occlusion and defor-
mation, respectively. They improved the tracking accuracy of DCF trackers
greatly while maintaining their lightweight advantage. These trackers were
not only unsupervised but also demanded no offline pre-training. Furthermore,
these trackers adopted a modular design for algorithmic transparency.

Based on the above discussion, we can categorize object trackers into
three types according to their training strategies: A) supervised trackers, B)
unsupervised trackers with offline pre-training, and C) unsupervised trackers
without offline pre-training. In terms of training complexity, Type B has the
highest training complexity while Type C has the lowest training complexity
(which is almost none). We consider their representative trackers in Figure 1:

• Type A: SiamFC, ECO, SiamRPN, LightTrack, DSTfc, and FEAR-XS;

• Type B: USOT and ULAST;

• Type C: STRCF, UHP-SOT, UHP-SOT++, GUSOT, and GOT.

We compare their characteristics in three aspects in the figure: tracking
performance (along the y-axis), model sizes (along the x-axis), and inference
complexity (in circle sizes).

The green object tracker (GOT) is a new tracker proposed in this work.
It is called “green” due to its low computational complexity in both training
and inference stages, leading to a low carbon footprint. There is an emerging
research trend in artificial intelligence (AI) and machine learning (ML) by
taking the carbon footprint into account. It is called “green learning” [30].
Besides sustainability, green learning emphasizes algorithmic transparency by
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Figure 1: Comparison of object trackers in the number of model parameters (along the
x-axis), the AUC performance (along the y-axis) and inference complexity in floating point
operations (in circle sizes) with respect to the LaSOT dataset.

adopting a modular design. GOT has been developed based on the green
learning principle.

GOT conducts an ensemble of three prediction branches for robust object
tracking: 1) a global object-based correlator to predict the object location
roughly, 2) a local patch-based correlator to build temporal correlations of
small spatial units, and 3) a superpixel-based segmentator to exploit the spatial
information (e.g., color similarity and geometrical constraints) of the target
frame. For the first and the main branch, GOT adopts GUSOT as the baseline.
The outputs from three branches are then fused to generate the ultimate object
box, where an innovative fusion strategy is developed.

GOT contains two novel ideas that have been neglected in the existing
object tracking literature. They are elaborated below.

• The performance of the global correlator in the first branch degrades
when the tracked object has severe deformation between two adjacent
frames. The local patch-based correlator in the second branch is used to
provide more flexible shape estimation and object re-identification. It is
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essential to implement the local correlator efficiently. It is formulated as
a binary classification problem. It classifies a local patch into one of two
classes - belonging to the object or the background.

• The tracking process usually alternates between the easy steady period
and the challenging period as confronted with deformations and occlusion.
The proposed fuser monitors the tracking quality and fuses different box
proposals according to the tracking dynamics to ensure robustness against
challenges while maintaining a reasonable complexity.

We evaluate GOT on various benchmarking datasets for thorough perfor-
mance comparison, including OTB2015, VOT2016, TrackingNet, LaSOT, and
so on. It is demonstrated by extensive experiments and ablation studies that
GOT offers competitive tracking accuracy with state-of-the-art unsupervised
trackers (i.e., USOT and ULAST), which demand heavy offline pre-training,
at a lower computation cost. GOT has a tiny model size (<3k parameters)
and low inference complexity (around 58M FLOPs per frame). Its inference
complexity is between 0.1% ∼ 10% of DL trackers. Furthermore, we discuss
the role played by supervision and offline pre-training to shed light on our
design.

The rest of this paper is organized as follows. Related work is reviewed in
Section 2. The GOT method is proposed in Section 3. Experimental results
are shown in Section 4. Concluding remarks are given in Section 6.

2 Related Work

2.1 DCF Trackers

Unsupervised DCF trackers without offline pre-training had been popular
before the arrival of DL trackers. Given a reference template, DCF trackers
conduct circulant patch sampling on the target frame and predict the location
and size of the object template via regression. Quite a few DCF trackers
with various regression objective functions or feature representations were
proposed, e.g., Bolme et al. [5], Henriques et al. [23], Danelljan et al. [15,
17, 18], Bertinetto et al. [2], Lukezic et al. [37], F. Li et al. [34], Xu et al.
[57], and Y. Li et al. [35]. Classic DCF trackers estimate the scale change by
checking multiple scales. Yet, they are not flexible in adjusting the aspect ratio
of the bounding box. Recently, DCF-based trackers such as UHP-SOT++
[64] and GUSOT [63] allow more flexible shape change by adopting low-cost
segmentation techniques and exploiting motion residuals. The latter can
facilitate object re-identification after tracking loss. Generally speaking, all
DCF trackers meet the requirement of being an unsupervised lightweight
solution without offline pre-training. The main concern is their poorer tracking
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accuracy as compared with modern DL trackers. Thus, the main task is
how to boost the tracking performance with little extra cost in memory and
computation. In this work, we adopt GUSOT [63] as the baseline of GOT
since it has demonstrated good performance in tracking long videos.

2.2 DL Trackers

2.2.1 Offline Pre-training

The majority of high-performance DL trackers adopt offline pre-training on
large-scale datasets, including still images [19, 36] and densely annotated videos
[43, 42, 40, 24]. Modularized trackers use pre-trained convolutional neural
networks (CNNs) as the feature extraction backbone [39, 41, 14]. End-to-end
trackers need to finetune the backbone with auxiliary networks to be adapted
to the tracking task [3, 33, 32, 47, 65, 60]. The transformer boosts the tracking
accuracy of supervised DL trackers to a higher level [52, 10]. Although the
power of offline pre-training with annotated boxes in tracking performance
boosting is obvious, there are associated costs. First, it is a heavy burden to
scale up the training data. Second, one needs to remove noise in newly sourced
videos to obtain high-quality annotations. Third, the costly offline training
process yields a large carbon footprint.

2.2.2 Unsupervised Trackers

To address the high human labeling cost, researchers investigate ways to
conduct offline pre-training with unlabeled data [49, 54, 61, 45, 7, 50, 53, 46].
As proposed in ResPUL [54], one idea is to train the backbone network offline
with contrastive learning on static images and enhance the learning process
with temporal sample mining. Another idea is to impose cycle consistency
in offline pre-training. For example, UDT [49] proposed the cycle training
method. It randomly crops patches in the first frame as object templates (or
pseudo labels) and trains the tracker to track forward and then backward
to yield a consistent object location in the initial frame. Later work put
efforts into cleaning noisy pseudo labels and improving cycle training efficiency.
Rather than random cropping on any video frame, USOT [61] detected moving
objects using a dense optical flow and selected valid video segments to avoid
influence from occlusion or out-of-view. It also expanded the cycle training
interval. As the state-of-the-art unsupervised tracker, ULAST [45] applied a
region mask to filter out possible contaminations from the non-object region
and weigh the loss from pseudo labels of different quality. ULAST can achieve
comparable performance against supervised trackers with a large network and
high computational complexity. It demands large-scale offline pre-training and
its training complexity is significantly higher than that of supervised trackers
due to the extra cycle consistency requirement.
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2.2.3 Lightweight Trackers

The majority of DL trackers rely on powerful yet heavy backbones (e.g., CNNs
or transformers). To deploy them on resource-limited platforms, efforts have
been made in compressing a network without degrading its tracking accuracy.
Various approaches have been proposed such as neural architecture search
(NAS) [58], model distillation [44, 12], network quantization [27], feature
sparsification, channel pruning [1], or other specific designs to reduce the
complexity of original network layers [9, 4, 6, 29]. As a pioneering method,
LightTrack [58] lays the foundation for later lightweight trackers. LightTrack
adopted NAS to compress a large-size supervised tracker into its mobile
counterpart. Its design process involved the following three steps: 1) train a
supernet, 2) search for its optimal subnet, and 3) re-train and tune the subnet
on a large number of training data. The inference complexity can be reduced
to around 600M flops per frame at the end. Simply speaking, it begins with a
well-designed supervised tracker and attempts to reduce the model size and
complexity with re-training. Another example was proposed in Shen et al.
[44]. It also conducted NAS to find a small network and used it to distill the
knowledge of a large-size tracker via teacher-student training.

Our work is completely different from DL trackers as the proposed GOT
does not have an end-to-end optimized neural network architecture. It adopts
a modularized and interpretable system design. It is unsupervised without
offline pre-training. It is proper to view GOT as a descent (or a modern
version) of classic DCF trackers. Our main task in developing GOT is to
identify the shortcomings of classic DCF trackers and find their remedies.

3 Green Object Tracker (GOT)

The system diagram of the proposed green object tracker (GOT) is depicted
in Figure 2. It contains three bounding box prediction branches: 1) a global
object-based correlator, 2) a local patch-based correlator applied to small
spatial units, and 3) a superpixel segmentator. Each branch will offer one or
multiple proposals from the input search region, and they will be fused to
yield the final prediction. We use GUSOT [63] in the first branch and the
superpixel segmentation technique [21] in the third branch. In the following,
we provide a brief review of the first branch in Section 3.1, and elaborate on
the second branch in Section 3.2. We do not spend any space on the superpixel
segmentator since it is directly taken from [21]. Finally, we present the fusion
strategy in Section 3.4.
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Figure 2: The system diagram of the proposed green object tracker (GOT). The global
object-based correlator generates a rigid proposal, while the local patch-based correlator
outputs a deformable box and a objectness score map which helps the segmentator calculate
additional deformable boxes. These proposals are fused into one final prediction.

3.1 Global Object-based Correlator

The GUSOT tracker is the evolved result of a series of efforts in enhancing the
performance of lightweight DCF-based trackers. They include STRCF [34],
UHP-SOT [62] and UHP-SOT++ [64]. STRCF adds a temporal regularization
term to the objective function used for the regression of the feature map of
an object template in a DCF tracker. STRCF can effectively capture the
appearance change while being robust against abrupt errors. However, it
generates only rigid predictions and cannot recover from the tracking loss.
UHP-SOT enhances it with two modules: background motion modeling and
trajectory-based box prediction. The former models background motion,
conducts background motion compensation, and identifies the salient motion
of a moving object in a scene. It facilitates the re-identification of the missing
target after tracking loss. The latter estimates the new location and shape of a
tracked object based on its past locations and shapes via linear prediction. The
two modules can collaborate together to estimate the box aspect ratio change
to some extent. UHP-SOT++ further improves the fusion strategy of different
modules and conducts more extensive experiments on the effectiveness of each
module on several tracking datasets.

Although STRCF, UHP-SOT, and UHP-SOT++ boost the performance of
classic DCF trackers by a significant margin, their capability in flexible shape
estimation and object re-identification is still limited. This is because they
rely on the correlation between adjacent frames, while an object template is
vulnerable to shape deformation and cumulative tracking errors in the long
run. To improve the tracking performance in long videos, GUSOT examines
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the shape estimation problem and the object recovery problem furthermore.
It exploits the spatial and temporal correlation by considering foreground
and background color distributions. That is, colors in a search window are
quantized into a set of primary color keys. They are extracted across multiple
frames since they are robust against appearance change. These salient color
keys can identify object/background locations with higher confidence. A low-
cost graph-cut-based segmentation method can be used to provide the object
mask. GUSOT can accommodate flexible shape deformation to a certain
degree.

All above-mentioned trackers model the object appearance from the global
view, i.e., using features of the whole object for the matching purpose. They
provide robust tracking results when the underlying object is distinctive from
background clutters without much deformation or occlusion. For this reason,
we adopt the global object-based correlator in the first branch. The advanced
version, GUSOT, is implemented in GOT.

3.2 Local Patch-based Correlator

The local patch-based correlator analyzes the temporal correlation existing in
parts of the tracked object. It is designed to handle object deformations more
effectively. It is formulated as a binary classification problem. Given a local
patch of size 8× 8, the binary classifier outputs its probability of being parts
of the object or the background. This is a novel contribution of this work.

3.2.1 Feature Extraction and Selection

The channel-wise Saab transform is an unsupervised representation learning
method proposed in Chen et al. [11]. It is slightly modified and used to extract
features of a patch here. We decompose a color input image into overlapping
patches with a certain stride and subtract the mean color of each patch to
obtain its color residuals. The mean color offers the average color of a patch.
The color residuals are analyzed using the processing pipeline shown in Figure
3, where the input consists of zero-mean RGB residual channels. We conduct
the spectral principle component analysis (PCA) on RGB residuals to get
three decorrelated channels denoted by P, Q and R channels. For each of them,
another spatial PCA is conducted to reduce the feature dimension to C. The
final feature vector is formed by concatenating of features of each color channel
at each pixel. Note that spectral and spatial PCA kernels are learned at the
initial frame only and shared among all remaining frames. Given the two
PCA kernels, the computation described above can be easily implemented by
convolutional layers of CNNs. Besides the Saab features, handcrafted features
such as HOG and CN are also included for richer representation. Then, a feature
selection technique called discriminant feature test (DFT) [59] is adopted to
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Figure 3: Channel-wise Saab transformation on color residuals of a patch of size N ×N .

select a subset of discriminant features. The feature selection process is only
conducted in the initial frame. Once the features are selected, they are kept
and shared among later frames to reduce computational complexity.

3.2.2 Patch Classification

If a patch is fully outside and inside the bounding box in the reference frame, it
is assigned “0” and “1”, respectively. As for patches lying on the box boundary,
they are not used in training to avoid confusion. Feature vectors and labels are
used in an XGBoost classifier [8]. In the experiment, we set the tree number
and the maximum tree depth to 40 and 4, respectively. These hyperparameters
are determined via offline cross validation on a set of training videos. They
can also be determined using samples in the initial frame. The predicted
soft probability scores of patches in the search window of the target frame
form a heat map which is called the objectness score map. Note that some
patches inside the bounding box may belong to the background rather than
the object, leading to noisy labels. To alleviate this problem, we adopt a
two-stage training strategy. The first-stage classifier is trained using labels
based on the patch location inside/outside of the bounding box in the reference
frame. It is applied to patches in the target frame to produce soft probabilities.
Then, the soft probabilities are binarized again to provide finetuned patch
labels. Due to the feature similarity between true background patches and
false foreground patches, their predicted soft labels should be closer and, as a
result, finetuned labels are more reliable than initial labels. The second-stage
classifier is trained using finetuned labels.



Unsupervised Green Object Tracker (GOT) without Offline Pre-training 11

3.2.3 From Heat Map to Bounding Box

To obtain a rectangular bounding box, we binarize the heat map and draw
a tight enclosing box to obtain an objectness proposal. Due to noise around
the object boundary, direct usage of the heat map does not yield stable box
prediction. To overcome the problem, we smoothen the heat map and use
it to weigh the raw heat map for noise suppression. Let Pt ∈ RH×W , St−1,
and St denote the raw probability map of frame t, the template of frame t− 1
and the updated template of frame t, respectively. Note that St−1 has been
registered to align with Pt via circulant translation. For t > 0, the processed
heat map is expressed as

P ∗
t = Pt ⊙ St−1, (1)

where ⊙ is the element-wise multiplication for locations where St−1 has the
objectness score below 0.5. Then, St is updated by minimizing a cost function
as follows:

St = argmin
X
∥X − P ∗

t ∥2F + µ∥X − St−1∥2F , (2)

where parameter µ controls the tradeoff between the updating rate and smooth-
ness. Equation (2) is a regularized least-squares problem. It has the closed-form
solution

St = [P ∗
t , µSt−1][IH , µIH ]†

= [P ∗
t , µSt−1]([1, µ]⊗ IH)†

= [P ∗
t , µSt−1]([1, µ]

† ⊗ I†H)

= [P ∗
t , µSt−1]([1, µ]

† ⊗ IH)

= [P ∗
t , µSt−1]([

1

1 + µ2
,

µ

1 + µ2
]T ⊗ IH)

=
1

1 + µ2
P ∗
t +

µ2

1 + µ2
St−1,

(3)

where †, ⊗, and IH are the Moore–Penrose pseudoinverse, the Kronecker
product and the H ×H identity matrix, respectively. We use several examples
to visualize the evolution of templates over time in Figure 4.

3.2.4 Classifier Update

Since the object appearance may change over time, the classifier needs to be
updated to adapt to a new environment. The necessity of classifier update
can be observed based on the classification performance. The heat map is
expected to span the object template reasonably well. If it deviates too much
from the object template, an update is needed. As shown in Figure 5, regions
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Figure 4: (Top) Visualization of the evolution of templates over time and (bottom) vi-
sualization of the noise suppression effect in the raw probability map based on Equation
(1).

of higher probability (marked by warm colors) tend to shrink when there are
new object appearances (in the top example) or they may go out of the box
when new background appears (in the bottom example). Once one of such
phenomena is observed, the classifier should be retrained using samples from
an earlier frame of high confidence and those from the current frame. The
retraining cost is low because of the tiny size of the classifier.
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Figure 5: Proper updating helps maintain decent classification quality.

3.3 Superpixel Segmentation

For the first and the second branches, we exploit temporal correlations of
the object and background across multiple frames. In the third branch, we
consider spatial correlation in the target frame and perform the unsupervised
segmentation task. Superpixel segmentation has been widely studied for
years. It offers a mature technique to generate a rough segmentation mask.
However, to group superpixels into a connected group, an algorithm usually
checks the appearance similarity and geometric connectivity, which can be
expensive. In our case, the heat map provides a natural grouping guidance.
When we overlay the heat map and superpixel segments, each segment gets
an averaged probability score. Then, we can group segments by considering
various probability thresholds and draw multiple box proposals, as shown in
Figure 2. They are called superpixel proposals.

3.4 Fusion of Proposals

There are three types of proposals in GOT: 1) the DCF proposal xdcf from the
global object-based correlator, 2) the objectness proposal xobj from the local
patch-based correlator, and 3) the superpixel proposals χspp = {xspp,i|i =
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1, .., N} from the superpixel segmentator. While χspp contains multiple pro-
posals by grouping different segments, the most valuable one can be selected
by evaluating the intersection-over-union (IoU) as

x∗
spp = arg max

x∈χspp

IoU(x, xdcf ) + λIoU(x, xobj), (4)

where λ is an adaptive weight calculated from IoU(xdcf , xobj). It lowers the
contribution of poor heat maps.

While the global branch may work well alone in many cases, especially for
rigid objects as shown by previous studies, it suffers from severe deformation.
The other two branches offer more flexible shape estimation but may easily go
wild due to local classification errors. A proper fusion strategy is needed to
ensure high performance and robustness. In the following, we first present two
fusion strategies that combine multiple proposals into one final prediction and
then elaborate on tracking quality control and object re-identification.

3.4.1 Two Fusion Strategies

According to the difficulty level of the tracking scenario, one final box bounding
is generated from these proposals with a simple or an advanced fusion strategy.

Simple Fusion. During an easy tracking period without obvious challenges,
multiple proposals tend to agree well with each other. Then, we adopt a simple
strategy based on IoU and probability values. The current tracking status is
considered as easy if

min
xi,xj∈xdcf ,xobj ,xspp

IoU(xi, xj) ≥ α,

where α is the threshold to distinguish good and poor alignment. Under this
condition, we first fuse flexible proposals xobj and xspp and then choose from
the flexible proposal and the rigid proposal xdcf via the following steps:

• Choose from xobj and xspp by finding x∗
df = argmaxx IoU(x, xdcf ).

• Choose from x∗
df and xdcf . Stick to xdcf if it has a larger averaged

probability score inside the box and the size of x∗
def changes too rapidly

when compared with the previous prediction.

Advanced Fusion. When multiple proposals differ a lot, it is nontrivial
to select the best one just using IoU or probability distribution. Instead, we
fuse the information from different sources with the following optimization
process. A rough foreground mask I∗ is derived by searching the optimal 0/1
label assignment to pixels in the image. Let x and lx denote the pixel location
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and its label. The mask, I∗, can be estimated using the Markov Random Field
(MRF) optimization:

I∗ = argmin
I

∑
x

ρ(x, lx) +
∑

{x,y}∈ℵ

wxy∥lx − ly∥, (5)

where ℵ is the four-connected neighborhood, the second term assigns penalties
to neighboring points that do not have the same labels, the weight wxy is
calculated from the color difference between x and y, and

ρ(x, lx) = − log pcolor(lx|x)− log pobj(lx|x) (6)

treats the negative log-likelihood of x being assigned to the foreground color
and that of x being foreground in terms of objectness. The former is modeled
by the Gaussian mixtures while the latter comes from the classification results.
The rough mask in Equation (5) takes color, objectness, and connectivity into
account to find the most likely label assignment. While the solution could
be improved iteratively, we only run one iteration since the result is good
enough to serve as the rough mask. Next, to fuse proposals, we select the one
that gets the highest IoU with the wrapping box of the rough mask. If the
advanced fusion fails, we go back to the simple fusion as a backup. The overall
fusion strategy that consists of both simple and advanced fusion schemes is
summarized in Algorithm 1.

Algorithm 1 Fusion of Multiple Proposals
Input: xdcf , xobj , χspp, α, P ∗

t

Output: final prediction xt

xspp ← argmaxx∈χspp IoU(x, xdcf ) + λIoU(x, xobj)
flag ← {minxi,xj∈xdcf ,xobj ,xspp

IoU(xi, xj)} ≥ α
if flag is false then

generate box xmrf from MRF mask
if success then

return xt ← argmaxx∈xdcf ,xobj ,χspp IoU(x, xmrf )
end if

end if
x∗
df ← argmaxx∈xobj ,xspp

IoU(x, xdcf )
SP∗

t
(x∗

df )← averaged probability inside x∗
df

SP∗
t
(xdcf )← averaged probability inside xdcf

if x∗
df is stable or SP∗

t
(x∗

df ) > SP∗
t
(xdcf ) then

return xt ← x∗
df

end if
return xt ← xdcf
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3.4.2 Tracking Quality Control

For rigid objects with rigid motion, the global object-based correlator can
provide a fairly good prediction. The template matching similarity score of
DCF is usually high. The local patch-based correlator usually helps in the
face of challenges such as background clutters and occlusions. However, due
to the complicated nature of local patch classification, its proposal may be
noisy. Detection and removal of noisy proposals in the second branch are
important to good tracking performance in general. To solve this issue, we
monitor the quality of the heat map and may discard noisy proposals until
classification gets stable again. The flowchart of tracking quality control is
depicted in Figure 6. After the heat map is obtained, we check whether the
high probability region is too small or too large and whether it contains several
unconnected blobs. All of them indicate that the local patch-based correlator
is not stable. Thus, its proposal is discarded. Once the problem is resolved,
the heat map becomes stable, and the objectness proposal shall have small
variations in height and width. Then, we can turn on the shape estimation
functionality (i.e., the local patch-based correlator in the second branch) and
conduct the fusion of all proposals.

Figure 6: Management of different tools for tracking, where S.E. denotes the shape estimation
function provided by the second branch.

An exemplary sequence is illustrated in Figure 7. In the beginning, the
tracking process is smooth and the simple fusion is sufficient. Then, when
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Figure 7: The fusion strategy (given in the fourth row, where S.F. stands for simple fusion)
changes with tracking dynamics over time. The DCF proposal, the objectness proposal,
and the superpixel proposal are given in the first, second, and third rows, respectively. The
sequence is motorcycle-9 from LaSOT and the object is the motorbike.

some challenges appear and multiple proposed boxes do not align, we turn
to the advanced MRF fusion. When there is severe background clutter or
occlusion that confuses the classifier in the second branch, the DCF proposal
is adopted directly until the turbulence goes away. Then, the process repeats
until the end of the video.

3.4.3 Object Re-identification

Besides shape estimation, the objectness proposal can be used for object
re-identification after tracking loss. Given the current DCF proposal and the
motion proposal that covers the most motion flow and possibly contains the
lost foreground object, GUSOT selects one of the two via trajectory stability
and color/template similarity. However, GUSOT is not general enough to
cover all cases. The objectness score provides an extra view of the appearance
similarity with timely updated object information, and it helps recover the
object quickly.

Given a candidate box proposal x with center xct, its averaged objectness
score Sobj(x) inside the box, the feature representation f(x) of the region,
and the DCF template ft−1, the scoring function for this candidate can be
calculated as

S(x) = β1⟨f(x), ft−1⟩+ β2Sobj(x)− β3∥xct − x̂t,ct∥2, (7)

where x̂t is the linear prediction of the box center based on past predictions,
β1 and β3 are positive constants to adjust the magnitudes of all terms to the
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same level, β2 is a positive adaptive weight that assigns lower contributions
for poorer probability maps. An ideal candidate box is expected to have
high template similarity, high objectness score, and with a small translation
from the last prediction. Then, we can choose from the DCF proposal and
the motion proposal by selecting the one with a higher evaluation score to
re-identify the lost object.

4 Experiments

4.1 Experimental Setup

4.1.1 Performance Metrics

The one-pass-evaluation (OPE) protocol is adopted for all trackers in per-
formance benchmarking unless specified otherwise. The metrics for tracking
accuracy include: the distance precision (DP) and the area-under-curve (AUC).
DP measures the center precision at the 20-pixel threshold to rank different
trackers, and AUC is calculated using the overlap precision curve. For model
complexity, we consider two metrics: the model size and the computational
complexity required to predict the target object box from the reference one
on average. The latter is also called the inference complexity per frame. The
model size is the number of model parameters. The inference complexity per
frame is measured by the number of (multiplication or add) floating point
operations (flops).

4.1.2 Benchmarking Object Trackers

We compare GOT with the following four categories of trackers.

• supervised lightweight DL trackers: LightTrack [58], DSTfc [44], and
FEAR-XS [6].

• supervised DL trackers: SiamFC [3], ECO [14], and SiamRPN [33].

• unsupervised DL trackers: LUDT [51], ResPUL [54], USOT [61], and
ULAST [45].

• unsupervised DCF trackers: KCF [23], SRDCF [16], and STRCF [34].

These methods are either state-of-the-art or pioneering works in their categories.
Here we do not include some other lightweight and powerful trackers such as
Kang et al. [29] and Cui et al. [12] that are similar descents of those. Because
we do not claim superiority over all sophisticated DL trackers, but validate
our green design that does not require offline training.
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4.1.3 Tracking Datasets

We conduct performance evaluations of various trackers on four datasets.

• OTB2015 [55]. It contains 100 videos with an average length of 598
frames. The dataset was released in 2015. Many video sequences are of
lower resolution.

• VOT2016 [22]. It contains 60 video sequences with an average length of
358 frames. It has a significant overlap with the OTB2015 dataset. One
of its purposes is to detect the frequency of tracking failures. Different
from the OPE protocol, once a failure is detected, the baseline experiment
re-initializes the tracker.

• TrackingNet [40]. It is a large-scale dataset for object tracking in the
wild. Its testing set consists of 511 videos with an average length of 442
frames.

• LaSOT [20]. It is the largest single object tracking dataset by far. It has
280 long testing videos with 685K frames in total. The average video
length is 2000+ frames. Thus, it serves as an important benchmark for
measuring long-term tracking performance.

4.1.4 Implementation Details

In the implementation, each region of interest is warped into a 60× 60 patch
with an object that takes around 32× 32 pixels. The XGBoost classifier in the
local correlator has 40 trees with the maximum depth set to 4. Parameters
α = 0.7 and µ = 5 are used in the fuser. The minimum size of a superpixel
is 50. The first branch (i.e., the global correlator), the combined second and
third branches (i.e., the local correlator and the superpixel segmentator), and
the fuser runs at 15 FPS, 5 FPS, and 15 FPS on one Intel(R) Core(TM)
i5-9400F CPU, respectively. In our current preliminary implementation, they
run sequentially thus leading to an overall speed of 3 FPS on CPU. To make
it more suitable for real-time tracking, we plan to add some code optimization
in the future, such as parallel programming and code refactoring with modern
libraries for faster feature extraction.

4.2 Performance Evaluation

We compare the performance of GOT with four categories of trackers on four
datasets in Table 1. Trackers are grouped based on their categories. From top
to down, they are supervised lightweight DL trackers, supervised DL trackers,
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unsupervised DL trackers, and unsupervised DCF trackers, respectively. Our
proposed GOT belongs to the last category. We have the following observations.

OTB2015. GOT has the best performance in DP and the second best
performance in AUC among unsupervised trackers on this dataset. One
explanation is that DL trackers are trained on high-resolution videos and
they do not generalize well to low-resolution videos. GOT is robust against
different resolutions since its HoG and CN features are stable to ensure a
higher successful rate of the template matching idea.

VOT2016. It adopts the expected average overlap (EAO) metric to
evaluate the overall performance of a tracker. EAO considers both accuracy
and robustness. The observation on this dataset reveals that the advantages
of the local correlator branch are not obvious on very short videos since the
tracker gets corrected automatically if its IoU is lower than a threshold. Yet,
GOT still ranks third among unsupervised trackers (i.e., the last two categories)
with a tiny model (of 2.2K parameters) and much lower inference complexity
by 3 to 5 orders of magnitude.

TrackingNet. The ground-truth box is provided for the first frame only.
The performance of GOT is evaluated by an online server. GOT ranks second
among unsupervised trackers. Its performance is also comparable with almost
all supervised DL trackers (except LightTrack).

LaSOT. GOT ranks second among unsupervised trackers. It even has
better performance than some supervised trackers such as DSTfc while main-
taining a much smaller model size and lower computational complexity.

4.3 Comparison Among Lightweight Trackers

We compare the design methods and training costs of GOT and three light-
weight DL trackers in Table 2. The lightweight DL trackers conduct the neural
architecture search (NAS) or model distillation/optimization to reduce the
model size and inference complexity. As shown in Table 1, LightTrack achieves
even higher tracking accuracy than large models. Besides NAS, FEAR-XS
[6] adopts several special tools such as depth-wise separable convolutions and
increases the number of object templates to lower complexity while maintaining
high accuracy. Although DSTfc has the smallest model size among the three,
its model size is still larger than that of GOT by two orders of magnitude.
Furthermore, the tracking performance of GOT is better than that of DSTfc
in three datasets. As to the training cost, all three lightweight DL trackers
need pre-training on millions of labeled frames while GOT does not require
any as shown in the last column of Table 1. The superiority of LightTrack in
accuracy does have a cost, including long pre-training, architecture search and
fine-tuning. Finally, it is worth mentioning that GOT is more transparent in
its design. Thus, its source of tracking errors can be explained and addressed.
In contrast, the failure of lightweight DL trackers is difficult to analyze. It
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Table 2: Comparison of design methods and pre-training costs of GOT and three lightweight
DL trackers.

Trackers Design Methods # of Pre-Training Boxes
LightTrack[58] NAS ≈ 10M

DSTfc[44] NAS, model distillation ≈ 2M
FEAR-XS[6] NAS, network optimization ≈ 13M
GOT (Ours) fusion of 3 branches 0

could be overcome by adding more pre-training samples and repeating the
whole design process one more time.

4.4 Attribute-based Performance Evaluation

To shed light on the strengths and weaknesses of GOT, we conduct the
attribute-based study among GOT, the GUSOT baseline, and USOT, which
is an unsupervised DL tracker, on the LaSOT dataset. DPs and AUCs with
respect to different challenging attributes are presented in Figure 8. GUSOT
outperforms USOT in all aspects except deformation (DEF) due to its limited
segmentation-based shape adaptation capability. With the help of the local
correlator branch and the powerful fuser, GOT performs better than GUSOT
and has comparable performance with USOT, which is equipped with a box
regression network, in DEF. For the same reason, GOT outperforms GUSOT in
other DEF-related attributes such as viewpoint change (VC), rotation (ROT),
and aspect ratio change (ARC). Another improvement lies is camera motion
(CM), where the local correlator contributes to better object re-identification.
GOT has the least improvement in low resolution (LR). It appears that both
the local correlator and the superpixel segmentation cannot help the GUSOT
baseline much in this case. Lower video resolutions make the local features
(say, around the boundaries) less distinguishable from each other.

As discussed above, GOT adapts to the new appearance and shape well
against the DEF challenge. Representative frames of four video sequences
from LaSOT are illustrated in Figure 9 as supporting evidence. All tracked
objects have severe deformations. For the first sequence of turning book pages,
GOT covers the whole book correctly. For the second sequence of a flag,
GOT can track the flag accurately. For the third sequence of a zebra, object
re-identification helps GOT relocate the prediction to the correct place once
the object is free from occlusion. For the fourth sequence of two cups, GOT is
robust against background clutters. In contrast, other trackers fail to catch
the new appearance or completely lose the object.
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Figure 8: Attribute-based evaluation of GOT, GUSOT and USOT on LaSOT in terms of DP
and AUC, where attributes of interest include the aspect ratio change (ARC), background
clutter (BC), camera motion (CM), deformation (DEF), fast motion (FM), full occlusion
(FOC), illumination variation (IV), low resolution (LR), motion blur (MB), occlusion
(OCC), out-of-view (OV), partial occlusion (POC), rotation (ROT), scale variation (SV)
and viewpoint change (VC).

Figure 9: Comparison of the tracked object boxes of GOT, GUSOT, USOT, and SiamFC
for four video sequences from LaSOT (from top to bottom: book, flag, zebra, and cups).
The initial appearances are given in the first (i.e., leftmost) column. The tracking results
for four representative frames are illustrated.

4.5 Insights into GOT’s New Ingredients

GOT has two new ingredients: 1) the local correlator in the 2nd branch and 2)
the fuser to combine the outputs from all three branches. We provide further
insights into them below.
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4.5.1 Local Correlator

The local patch-based correlator allows more fine-grained learning and spatial-
temporal modeling of the object appearance, which is complementary to
the global modeling in the global correlator and entails the flexibility of
shape estimation. It is formulated as a binary classification problem because
the underlying target of tracking is to differentiate the foreground and the
background. The usage of the XGBoost classifier and updating strategies
naturally follow up as we expect a lightweight and robust solution method that
does not need much offline training. To better understand the contribution of
each design, we compare the performance of GOT under different settings on
the LaSOT dataset in Table 3. The settings include:

• With or without the local correlator branch;

• With or without classifier update;

• With or without object re-identification.

We see from the table that a “plain” local correlator already achieves a sub-
stantial improvement in DP. Classifier update and/or object re-identification
improve more in AUC but less in DP. This is because deformation tends
to happen around object boundaries and the change of the object center is
relatively slow. On the other hand, the addition of classifier update and object
re-identification helps improve the quality of the objectness map for better
shape estimation. In addition, the improvement from object re-identification
indicates the frequent object loss in long videos and the effective contribution
of the objectness score. Both classifier update and object re-identification are
needed to achieve the best performance.

Table 3: Performance comparison of GOT under different settings on the LaSOT dataset,
where the best performance is shown in red. The ablation study includes: 1) with or without
the local correlator branch; 2) with or without classifier update; 3) with or without object
re-identification.

L.C.B. Clf. update Re-idf. DP (↑) AUC (↑)
36.1 36.8

✓ 38.0 37.5
✓ ✓ 38.2 38.0
✓ ✓ 38.2 37.9
✓ ✓ ✓ 38.8 38.5

To study the necessity of quality checking and maintenance in the classifi-
cation system of the local correlator branch, we compare the tracking accuracy
of three settings in Table 4, where object re-identification is turned off in all
settings. Without the shape estimation on-off scheme, the tracker simply stops



Unsupervised Green Object Tracker (GOT) without Offline Pre-training 25

Table 4: Ablation study of the classification system in the local correlator branch in GOT
on LaSOT under three settings, where the best performance is shown in red.

Shape Estimation On-Off Noise Suppression DP (↑) AUC (↑)
✓ 37.6 37.8

✓ 36.5 36.5
✓ ✓ 38.2 38.0

the shape estimation function after failures. The performance drops, which
reveals the frequent occurrence of challenges even in the early/middle stage of
videos and the importance of quality checking. Noise suppression helps boost
the tracking accuracy furthermore since it alleviates abrupt box changes due
to noise around the object border.

4.5.2 Fuser

The threshold parameter, α, in Algorithm 1 is used to choose between the
simple fusion or the MRF fusion. To study its sensitivity, we select a subset of
10 sequences from LaSOT and turn on shape estimation in most frames. The
mean IoU and the center error between the ground truth and the prediction
change are plotted as functions of the threshold value in Figure 10. The
optimal threshold range is between 0.7 and 0.9 since it has lower center errors
and higher IoUs. Choosing a lower threshold means that we conduct the
simple fusion. This is consistent with the proposed fusion strategy. That is,
the simple fusion should be only used when different proposals are close to
each other. Pure simple and MRF fusion strategies have their own weaknesses
such as the limited selection ability in the simple fusion and errors around
boundaries in the MRF fusion. Proper collaboration between them can boost
the performance.

5 Discussion on GOT’s Limitations

To analyze the limitations of GOT and gain a deeper understanding of the
contributions of supervision and offline pre-training, we compare the perfor-
mance of GOT and three DL trackers on the LaSOT dataset in Figure 11.
The three benchmarking trackers are SiamRPN++ (a supervised DL tracker),
USOT (an unsupervised DL tracker), and SiamFC (a supervised DL tracker
that does not have a regression network as the previous two DL trackers). The
regression network is offline pre-trained. The left subfigure depicts the success
rate as a function of different overlap thresholds. The right subfigure shows
the AUC values as a function of different video lengths with the full length
normalized to one.
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Figure 10: Mean IoU (the higher the better) and center error (the lower the better) on the
selected subset with different fusion thresholds. The subset from LaSOT includes book-10,
bus-2, cat-1, crocodile-14, flag-5, flag-9, gorilla-6, person-1, squirrel-19, mouse-17.

Figure 11: Performance comparison between GOT (orange), SiamRPN++ (red), SiamFC
(cyan), and USOT (blue) on LaSOT in terms of the success rate plot (left) and the AUC
plot.

SiamRPN++ has the best performance among all. It is attributed to both
supervision and offline pre-training. GOT ranks second in most situations
except for the following cases. GOT is slightly worse than USOT when the
overlap threshold is higher or at the beginning part of videos. It is conjectured
that GOT can achieve decent shape estimation but it may not be as effective as
the offline pre-trained regression network used by USOT in a tighter condition,
i.e., a higher overlap threshold or a shorter tracking memory. It is amazing to
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see that GOT outperforms SiamFC across all thresholds and all video lengths.
This shows the importance of the regression network in DL trackers.

To verify the above conjecture, we conduct the deformation-related attribute
study in a shorter tracking memory setting in Figure 12, where only the first
10% of all frames (i.e., the ratio of frame numbers is 0.1) is examined. GOT
is better than SiamFC in most attributes and worse than SiamRPN++ and
USOT. The superiority of SiamFC over GOT in DEF and ROT indicates the
power of supervision in locating the object.

Figure 12: Deformation-related attribute study on LaSOT for the first 10% frames in videos.

We dive into two sequences where GOT’s attributes are poorer and show
the tracking results in Figure 13. As shown in these examples, GOT has
difficulty in handling the following cases: (1) the object has similar local
features with the background, such as the panda in the top sequence; and (2)
the object under tracking does not have a tight shape, such as the bike in the
bottom sequence. For the first case, the local patch-based correlator in GOT
can only capture low-level visual similarities. It cannot distinguish the black
color of the panda and the background. For the second case, the bounding
box contains background patches inside, which become false positive samples.
Besides, the object has a few small individual parts whose representations are
not stable to reflect the appearance of the full object.

The motion may help if the object has obvious movement in the scene.
However, it may not help much if the object moves slowly or overlaps with
another object. These difficulties can be alleviated with supervision or pre-
training. That is, if a learning model is trained with a rich set of object boxes,
it can avoid such mistakes more easily. As for the gap between supervised
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Figure 13: Two tracking examples from LaSOT: bear-4 (top) and bicycle-2 (bottom), with
boxes of the ground truth (green), SiamRPN++ (red), SiamFC (cyan), USOT (blue), and
GOT (orange), respectively.

pre-training and unsupervised pre-training, unsupervised methods use pseudo
boxes generated randomly or from the optical flow that usually contains noise.
Thus, the offered supervision is not as strong as ground truth labels. This
explains why USOT cannot distinguish between the panda and the bush and
fails to exclude the human body from the bike while SiamRPN++ does a good
job.

Supervised DL trackers usually do not distinguish different tracking scenar-
ios but tune a model to handle all cases to achieve high accuracy. Their high
computational complexity, large model sizes and heavy demand on training
data are costly. In contrast, the proposed GOT system with no offline pre-
training can achieve decent tracking performance on general videos. Possible
ways to enhance the performance of lightweight trackers include the design
of better classifiers that have a higher level of semantic meaning and more
powerful regressors for better fusion of predictions from various branches.

6 Conclusion and Future Work

A green object tracker (GOT) with a small model size, low inference complexity,
high tracking accuracy and no offline training was proposed in this work. GOT
contains a novel local patch-based correlator branch to enable more flexible
shape estimation and object re-identification. Furthermore, it has a fusion tool
that combines prediction outputs from the global object-based correlator, the
local patch-based correlator, and the superpixel-based segmentator according
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to tracking dynamics over time. Extensive experiments were conducted to
compare the tracking performance of GOT and state-of-the-art DL trackers.
We hope that this work could shed light on the role played by supervision and
offline pre-training and provide new insights into the design of effective and
efficient tracking systems.

Several future extensions can be considered. It is desired to develop
ways to identify different tracking scenarios since this information can be
leveraged to design a better tracking system. For example, it can adopt
tools of different complexity to strike a balance between model complexity
and tracking performance. Second, it can adopt different fusion strategies to
combine outputs from multiple decision branches for more flexible and robust
tracking performance.
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A Model Size and Complexity Analysis of GOT

The number of model parameters and the computational complexity analysis
of the proposed GOT system are analyzed. For the latter, we compute the
floating point operations (flops) of the optimal implementation. Whenever
it is applicable, we offer the time complexity and provide a rough estimation
based on the running time on our local machine. The complexity analysis
is conducted for tracking a new frame in the inference stage. Regardless of
the original size of the frame, the region of interest is always warped into a
LB × LB = 60× 60 patch. The major components of GOT include the global
object-based correlator (i.e., the DCF tracker), the local patch-based correlator
(i.e., the classification pipeline), the superpixel-based segmentator, and the
Markov Random Field (MRF) optimizer in the fuser.

Global Object-based Correlator. The DCF tracker involves template
matching via FFT and template updating via regression. The template (feature
map) dimension used in GOT is (M,N,D) = (50, 50, 42). The complexity of
template updating is O(DMN logMN), where DMN logMN ≈ 1.19M. The
complexity of template matching is at the same level. Furthermore, there is a
background motion modeling module in GUSOT to capture salient moving
objects in the scene. The location of a certain point (xt, yt) is estimated from
its location in frame t− 1 via the following affine transformation,

xt = a0xt−1 + b0yt−1 + c0, (8)
yt = a1xt−1 + b1yt−1 + c1. (9)

It is applied to every pixel in frame It−1 to get an estimation Ît of frame It.
Then, the motion residual map is calculated as

∆I = |Ît − It|. (10)

The maximum dimension of ∆I is (H,W ) = (720, 480) as images of a larger
size are downsampled. Flops for the affine transformation and the residual
map calculation are 8 ∗H ∗W +H ∗W ≈ 3.11M.

Local Patch-based Correlator. An input image of size 60 × 60 is
decomposed into overlapping blocks of size 8 × 8 with a stride equal to 2,
which generates ((60 − 8)/2 + 1)2 = 729 blocks for features extraction. For
Saab feature extraction, we apply the one-layer Saab transform with filters
of size 5× 5 and stride equal to 1. We keep the top 4 AC kernels from each
of the PQR channels. Thus, there are 3 DC color responses of size 3× 1× 1,
and 12 AC responses of size 5 × 5 × 1. After feature extraction, we apply
the DFT feature selection method to reduce the feature dimension to 50.
Hence, the number of parameters is calculated as 3× 3 (color kernels) + 12×
25 (Saab kernels) + 50 (DFT feature selection index) = 359. Since the Saab
feature extraction process can be implemented as 3D convolutions as in neural
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networks, we follow the flops calculation there to compute the model flops for
the Saab transform. For a general 3D convolution with Ci input channels, Co

filters of spatial size Kh ×Kw and output spatial size of Ho ×Wo, the flops is
calculated as

F = (2× Ci ×Kh ×Kw)×Ho ×Wo × Co. (11)

If the filter is a mean filter, the complexity is further reduced as

F = (Ci ×Kh ×Kw)×Ho ×Wo × Co. (12)

As given in Table 5, the flops in computing the Saab features with filter size
5× 5 at stride 1 for a block of size 8× 8× 3 is 11952. Then, the complexity for
729 blocks is around 8.713M. We run this feature extraction process at most
two times at each frame.

Table 5: Flops of the Saab feature extraction for one spatial block of size 8× 8.

Steps Ci Kh Kw Ho Wo Co Flops

Get mean color 1 5 5 4 4 3 1200
RGB2PQR 3 1 1 8 8 3 1152
Saab on P 1 5 5 4 4 4 3200
Saab on Q 1 5 5 4 4 4 3200
Saab on R 1 5 5 4 4 4 3200

Total 11952

Table 6: The model size and the computational complexity of the whole GOT system.

Module Num. of Params. MFlops

Global Correlator 0 37.11
Local Correlator 2,199 18.12

Super-pixel segmentation 0 1.13
MRF 0 1.20

Total 2,199 57.56

The XGBoost classifier has Ntree = 40 trees with the maximum depth
dM = 4 (i.e., there are at most four tree levels excluding the root). The
maximum number of leaf nodes and parent nodes are Nl = 2dM and Np =
2dM − 1, respectively. Hence, the number of parameters is bounded by Ntree×
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Table 7: The estimated flops for some special algorithmic modules.

Algorithmic Modules Complexity MFlops

2D FFT&IFFT O(L2
B logLB) 0.072

GMM - 1.634
DCF template related O(DMN logMN) 34

Super-pixel segmentation O(L2
B logLB) 1.132

(2×Np +Nl) = 40× (2× 15+ 16) = 1840. The inference for 729 samples costs
dM × Ntree × 729 = 4 ∗ 40 ∗ 729 ≈ 0.117M flops. The complexity of spatial
alignment via 2D FFT/IFFT is O(L2

B logLB). L2
B log2 LB ≈ 0.021M. The

element-wise operation to get suppressed map takes LB × LB = 3600 flops.
The template update costs around 3× LB × LB = 10800 flops.

Felzenszwalb Superpixel Segmentator. The complexity of the su-
perpixel segmentation algorithm is O(L2

B logLB), which roughly takes 1.13
MFlops.

MRF. The adopted Markov Random Field optimizer has one iteration
only. Given an input image of size (LB , LB , C) = (60, 60, 3), it first learns
the GMM models for foreground and background colors, respectively, so
that the foreground/background likelihood can be calculated at each pixel.
Then, around 20 element-wise matrix operations are conducted to calculate
the rough assignment of pixel labels. The flops for matrix operations are
20 ∗ 60 ∗ 60 = 0.072M .

We summarize the model size (in the number of model parameters) and
the overall complexity (in flops) in Table 6. Our tracker has 2,199 model
parameters and roughly 57.56 MFlops. It is worthwhile to point out that
the actual complexity of some special modules such as FFT depend on the
hardware implementation and optimization. Some of them are given in Table
7.

B Long-term Tracking Capability of GOT

To examine GOT’s capability in long-term tracking, we test it on the test
set of the OxUva dataset [48]. OxUva contains 166 long test videos under
the tracking-in-the-wild setting. The object to be tracked disappears from
the field of view in around one half of video frames. Trackers need to report
whether the object is present or absent and give the object box when it is
present. The ground-truth labels are hidden, and the tracking results are
evaluated on a competition server. Since the competition is not maintained
any longer, we cannot submit our results for official evaluation. For this reason,



Unsupervised Green Object Tracker (GOT) without Offline Pre-training 39

we use predictions from the leading tracker LTMU [13] as the pseudo labels
for performance evaluation below. There are three major evaluation metrics:
the true positive rate (TPR), the true negative rate (TNR) and the maximum
geometric mean (MaxGM), which is calculated as

MaxGM = max
0≤p≤1

√
(1− p) · TPR · ((1− p) · TNR + p), (13)

where TPR stands for the fraction of presented objects that are predicted
as present and located with a tight bounding box, and TNR represents the
fraction of absent objects that are correctly reported as absent.

We compare the above performance metrics of GOT against three light-
weight long-term trackers, KCF [23] (the long-term version), TLD [28] and
FuCoLoT [38], in Table 8. TLD and FuCoLoT are equipped with a re-detection
mechanism to find the object after loss. We see that GOT achieves the highest
TPR because of its accurate box predictions. FuCoLoT and GOT do not
provide present/absent predictions so their TNR values are zero. In GOT∗,
the object is claimed to be absent if the similarity score of template matching
is lower than a threshold, which is set to 0.1 in the experiment. Then, KCF
and GOT∗ have comparable performance in TNR. Finally, GOT∗ has the best
performance in MaxGM. The above design indicates that the similarity score
in GOT is a simple yet effective indicator of the object status. The effect of
various threshold values on GOT∗ is illustrated in Figure 14. As the threshold
grows from 0 to 0.15, its TPR decreases slowly while its TNR increases quickly.
The optimal threshold for the MaxGM metric is around 0.1.

Table 8: Performance comparison of GOT and GOT∗ against three lightweight long-term
trackers, KCF (the long-term version), TLD and FuCoLoT, on the OxUvA dataset, where
the best performance is shown in red. KCF and TLD are implemented in OpenCV.

KCF TLD FuCoLoT GOT GOT∗

TPR (↑) 0.165 0.142 0.353 0.425 0.351
TNR (↑) 0.872 0.095 0 0 0.751

MaxGM (↑) 0.380 0.198 0.297 0.326 0.514
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Figure 14: The TPR, TNP and MaxGM values of GOT∗ at different present/absent threshold
values against the OxUva dataset.
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