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ABSTRACT

Dialogue policy plays a crucial role in a dialogue system as it deter-
mines the system response given a user input. In a pipeline system,
the dialogue policy is susceptible to the performance degradation
when the preceding components fail to produce correct output. To
address this issue, this paper proposes a new method to train a
robust dialogue policy that can handle noisy representation due
to the mispredicted user dialogue acts from natural language un-
derstanding component. This method is mainly designed with two
strategies, which are student-teacher learning and offline reinforce-
ment learning. Student-teacher learning aims to force the student
model to map the extracted features of the noisy input to be close
to the clean features extracted by teacher model. Meanwhile, the
offline reinforcement learning with multi-label classification objec-
tive is used to train the dialogue policy to provide appropriate
response given user input by only utilizing the trajectories stored in
the dataset. The experimental results show that the proposed hy-
brid learning can substantially improve the multi-turn end-to-end
performance in a pipeline dialogue using MultiWOZ 2.1 dataset
under ConvLab-2 evaluation framework. Furthermore, competitive
results are obtained when compared to the end-to-end performance
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by using the pre-trained GPT-2 model with lower computational
cost.

Keywords: Dialogue system, dialogue policy optimization, student-teacher
learning, offline reinforcement learning

1 Introduction

Designing a faultless dialogue system is challenging, especially in the case of
multi-domain multi-turn dialogue tasks where each conversation with multiple
turns may comprise multiple domains such as finding the best Italian restaurant
and the tourist attraction in the nearby location. Recent progress has shown
two different approaches to design a dialogue system. The first one is the end-
to-end approach in which all dialogue system components are represented by
a single learning machine. This approach shows state-of-the-art results in the
multi-domain dialogue task with convincing performance [17, 21, 51]. However,
this approach is computationally expensive due to the utilization of large pre-
trained language models (PLMs) such as the generative pre-trained transformer
2 (GPT-2) [28]. Furthermore, completely relying on large PLMs for end-to-end
dialogue system is problematic, especially in case of the trustworthy issues.
It is because that PLMs are prone to generate out-of-context sentences even
given by in context input. Addressing this problem is required. For example,
the two best models in DSTC9 track 2 applied the complicated pre-processing
and post-processing stages to make sure the model could handle multi-domain
dialogue task [21, 51]. The pre-processing stage involved fine-tuning the PLMs
with several dialogue datasets, like Schema-Guided [29], Taskmaster [3] and
CamRest676 [47]. Meanwhile, the post-processing stage introduced some
special modules like fault tolerance mechanism and customized user interface
that allowed manual revision.

Due to the aforementioned problems, a practical solution is to construct a
pipeline dialogue system. As we can easily integrate any trustable rule function
in a pipeline setup, the potential trustworthy issues can be resolved. Impor-
tantly, pipeline dialogue systems offer flexibility in optimizing each dialogue
system component. Each component of the dialogue system can be optimized
individually or jointly. Furthermore, the computation cost of the pipeline sys-
tem is relatively cheaper compared to the end-to-end approach. Unfortunately,
designing a high-performance pipeline dialogue system is demanding. It is
because the performance of earlier components has a significant impact on
output quality in later components. Especially in the multi-domain multi-turn
dialogue task, like in MultiWOZ 2.1 [12], the errors from the natural language
understanding (NLU) component considerably degrades the performance of
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the dialogue system. Although the dialogue policy is well trained given a clean
dataset, such a dialogue policy could not handle the noisy input due to the
mispredicted user dialogue acts by the NLU component which contain unseen
information. In Yeung et al. [50], a learning to learn method was proposed to
handle noisy input in a classification task.

To cope with this challenge, this paper presents a robust dialogue policy
which is trained to handle the noisy representation due to the errors caused by
NLU component. This is different from Henderson et al. [14] where the noise
robustness was developed on dialogue state tracking. This work focused on
policy learning. The resulting dialogue policy is merged in the pipeline dialogue
system that considerably saves computation time. The robustness of dialogue
policy is pursued by using offline reinforcement learning (RL) with two different
objectives which are optimized to improve noisy feature representation and
action decision. To achieve the first objective, this study conducts a student-
teacher learning where the student model is trained to map the extracted noisy
features to be near to the clean features produced by the teacher model. A new
kind of knowledge distillation [15, 20] is implemented for reinforcement learning
of dialogue policy. Meanwhile, the second objective is pursued by using focal
loss to deal with the multi-label classification problem. Before optimizing
the dialogue policy, this paper introduces a data augmentation process by
following a dialogue self-play [40] using the ConvLab-2 framework [54]. Such
data augmentation is performed to collect additional expert trajectories so
as to implement offline RL to train the policy. This study proposes a new
approach to enhance the robustness of dialogue policy learning due to the
errors introduced by NLU component. The merit of this work is illustrated
by the experiments on multi-domain multi-turn dialogue policy optimization
under various evaluation metrics.

The remainder of this paper is organized as follows. In Section 2, the
multi-domain task-oriented dialogue system is introduced and the previous
dialogue policy optimization approaches are surveyed. Section 3 presents
the proposed robust dialogue policy learning. The overall learning process
including data pre-processing, data augmentation and student-teacher model
training are explained in details. Section 4 addresses the experimental settings
for evaluation of multi-domain multi-turn dialogue policy followed by the
experimental results to illustrate the benefits of the proposed work. The
summary of findings from this study is given in Section 5.

2 Multi-Domain Task-Oriented Dialogue

The current methods to build multi-domain dialogue system along with dialogue
policy learning [35] are surveyed.
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2.1 Multi-Domain Dialogue System

Multi-domain task-oriented dialogue is a dialogue task in which there may
exist more than one domain in each dialogue session. For example, in the
travel assistant task, a user may request information about a train ticket,
restaurant and hotel in a dialogue session. It is practical and interesting
to work out a multi-domain dialogue system compared to a single domain
dialogue [40, 1, 18, 8]. However, achieving a desirable performance for a
multi-domain dialogue system is challenging. One of the main difficulties
arise by the complexity of dialogue structure due to the information from
several domains. Another challenge is the problem definition itself where the
dialogue system must satisfy the user goal in a limited number of turns or steps,
commonly under 10 conversation turns. In order to promote researches on such
a dialogue system scenario, DSTC9 track 2 has provided ConvLab-2 [54] as
an evaluation framework that integrates with the MultiWOZ 2.1 dataset [12].
Compared to the other frameworks designed for multi-domain dialogue task
[44, 12], Convlab-2 offers two main advantages for system evaluation. Firstly,
ConvLab-2 provides a simulated user which enables an end-to-end system
evaluation with multi-turn evaluation. Such an evaluation can represent real-
world phenomena compared to the component-wise and single-turn evaluation
similar to the traditional evaluation [43]. Secondly, this framework offers
the flexibility to train the dialogue system components consisting of natural
language understanding (NLU), dialogue state tracking (DST), dialogue policy
(POL) and natural language generation (NLG) [25], either individually or
jointly trained. Figure 1 displays an illustration of how the simulated user
and the multi-domain dialogue system interact with each other using the
MultiWOZ 2.1 dataset under the ConvLab-2.

Figure 1: Interaction between system agent and simulated user in a multi-domain dialogue
via an agenda-based policy using ConvLab-2 framework. The system agent can be set with
different configurations.
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2.2 Multi-Domain Dialogue Policy

Dialogue policy is an important component of the dialogue system which
serves as a system brain that determines the response conditioned on dialogue
context [32]. Dialogue policy optimization can be formulated under partially
observable Markov decision process (POMDP) where the dialogue agent does
not have any access to the complete state information s = {g,o} consisting of
user goal g and observation o. Instead, the dialogue agent can only obtain o to
optimize its policy. Basically, dialogue policy π is optimized as π∗ by using RL
where the main objective is to maximize the discounted reward accumulation
r given by state st = {g,ot} and system action at along a whole trajectory
over different time steps t via

π∗ = argmax
π

Eπ

[
T−1∑
t=0

γtr (g,ot,at)

]
(1)

with a discount factor γ and termination time step T . at is a sparse vector where
the positive labels or one-hot values represent specific system dialogue acts in
the current time step. Previously, the dialogue policy is optimized by utilizing
deep RL techniques [7] such as the proximal policy optimization (PPO) [39],
adversarial inverse reinforcement learning (AIRL) [13], generative adversarial
imitation learning (GAIL) [16] and deep RL with human-in-the-loop paradigm
[34, 33]. Methods such as deep Q network [27, 6] or REINFORCE [48] are
also feasible to train dialogue policy. However, the dialogue policies optimized
using those two methods did not perform well in the multi-domain case due
to their inability to handle large state and action spaces. In the Convlab-2
framework, the observation vector o is described as a 340-dimensional vector
composed of six distinct components which are user action, system last action,
belief state, book info, database pointer and termination with the detailed
dimensions shown in Figure 2. Meanwhile, the system action a is specified as
a 209-dimensional vector which reflects the system dialogue acts.

Commonly, before starting RL procedure, the dialogue policy must be
initially trained by using the behavior cloning method through leveraging the
observation-action pairs D = {o,a∗} in MultiWOZ 2.1 dataset. Here, a∗ is
the ground truth action provided by the dataset. Behavior cloning aims to
find the policy network πθ with parameter θ by minimizing the cross-entropy
loss. Due to the multi-domain case, the learning process needs to deal with
the multi-label classification task with sparse one-hot values. Therefore, most
of the previous works applied the cross-entropy (CE) loss that merges a weight
β to the positive labels or one-hot values in a form of

LCE(a
∗, πθ (a|o)) =− E(o,a∗)∼D

[
βa∗⊤ log πθ(a|o)

+(1− a∗)⊤ log (1− πθ(a|o))
]
.

(2)
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Figure 2: Student-teacher offline reinforcement learning process. It initially starts with
teacher model trained with clean data, followed by student-teacher learning using both of
clean and noisy data by the frozen teacher model. The well-trained student model is used as
the final dialogue policy model where the student classifier parameter ϕcls is directly copied
from the teacher classifier parameter θcls.

Once the behavior cloning or training is done, the dialogue policy is fine-tuned
by using the RL algorithm via interacting with the simulated user in a pre-
defined environment. In this setting, the reward is very sparse which may
cause an unstable learning process. The dialogue agent will receive -1 in every
conversation it makes, +5 if the current domain is satisfied, and +40 if all
domains in the user goal are satisfied.

Other approaches were developed by jointly training the dialogue policy
and the NLG component [53, 5] or even jointly training all of the dialogue
components in an end-to-end fashion. In this setting, the action space is
the number of all possible vocabularies. Therefore, the dialogue policy is
trained with autoregressive learning. Notably, most of the previous works only
showed good performance in the component-wise and single-turn evaluation
[43]. Meanwhile, this work considers end-to-end system evaluation with the
multi-turn evaluation as done in the DSTC9 track 2. Therefore, dealing with
the error propagation from the preceding component is essential for a practical
dialogue system. Based on the results in DSTC9 track 2, only limited end-to-
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end approaches showed desirable performance [21, 51]. Those methods also
required a huge amount of computational cost due to the implementation of
large-sized PLM, which is GPT-2.

To relax the computational issue, this paper presents a new approach
to train a robust dialogue policy for pipeline dialogue system that offers a
low computational cost. The dialogue policy is trained by using student-
teacher offline RL to improve its robustness when dealing with noisy input
representation. The teacher is designed to guide the student to map the noisy
input into the same representation as the clean input. Meanwhile, the offline
RL is exploited to show a potential dialogue learning technique when the
abundance of trajectories from data augmentation [9] is available.

3 Robust Multi-Domain Multi-Turn Dialogue Policy Learning

This section addresses the proposed policy learning strategy for multi-domain
multi-turn dialogues. This strategy is generally divided into three stages, as
shown by Figure 3. The first is the data pre-processing followed by data
augmentation using the dialogue self-play [40]. After the dataset is augmented,
the student-teacher dialogue policy model is trained by using the offline
reinforcement learning.

Figure 3: Overview of the proposed learning strategy for robust dialogue policy consisting
of the stages of data pre-processing, data augmentation and dialogue policy training. Perfect
NLU means that the true user dialogue acts are directly passed to the DST component.

3.1 Data Pre-Processing and Data Augmentation

Before starting the training procedure of dialogue policy, the conversations
in each dialogue session in the MultiWOZ 2.1 dataset need to be processed
by converting the raw text data into the observation-action pairs {o,a∗}
by using the vectorized functions provided by ConvLab-2. This pre-process
results in the 340-dimensional observation and 209-dimensional action vector
representations, o ∈ R340 and a ∈ R209. The total number of the generated



8 Rohmatillah and Jen-Tzung Chien

pairs reaches around 50K observation-action pairs. This number may not be
large enough for training an offline RL algorithm that commonly requires huge
numbers of trajectories as the training data. Therefore, this work introduces a
data augmentation process by using the dialogue self-play method [40]. In this
setting, the rule-based policy will interact with the simulated user driven by the
agenda-based policy. Besides adding the augmented data for offline training,
the data augmentation process aims to generate noisy data to improve the
robustness of dialogue policy in the subsequent offline RL training stage. The
dialogue self-play is implemented by utilizing the provided RL environment
in the ConvLab-2 where all of the stored trajectories in the replay buffer are
saved as the augmented data. There will be no overlap with test data which
follows the DSTC-9 track 2 evaluation where the evaluation was done under
an end-to-end system evaluation environment in the Convlab-2.

However, generating meaningful noisy data in the multi-domain dialogue
is non-trivial due to the enriched complexity of observation representation.
In the multi-domain dialogue tasks, the user dialogue act consisting of four
entries is formed as [intent, domain, slot, value]. Randomly introducing noise
to observation o is not helpful since this may produce irrelevant domain
information. For instance, considering a user input “I want to find an Italian
restaurant.”, the correct user dialogue act would be [‘Inform’, ‘Restaurant’,
‘Type’, ‘Italian’]. However, the dialogue act due to random noise might
be produced as [‘Inform’, ‘Taxi’, ‘Type’, ‘Indian’], which bears no relevant
information to user input. Particularly, the entries of slot and the value have
no connection to that of domain within this noisy dialogue act.

As the main objective of this work is to compensate the noise from NLU
component which is mostly represented by BERTNLU, an NLU that uses
BERT [11, 36] as a base language model, then the noisy observation ō is
generated by using the user dialogue acts {û1, . . . , ûm} predicted by BERT as
shown by Figure 3 in the middle part. Each predicted dialogue act û contains
various information in four entries intent, domain, slot and value from the
current user input. The BERTNLU predicted user dialogue acts will change
the information of user action, belief state and database pointer stored in
observation vector o. The process of generating user dialogue acts can be
expressed by

{û1, . . . , ûm} = fMLP(fBERT (x1, . . . , xm))

where fMLP is the multi-layer perceptron (MLP) network added on the top
of BERT model fBERT for intent classification and slot tagging. The input of
BERT {x1, . . . , xm} is the ground-truth conversation history between simulated
user and dialogue system with perfect NLU. To ensure that the observation
ō may reflect reasonable noise, the state history in the noisy DST is set
to be identical with the state history in the perfect DST, as shown by the
dashed line. The generated noise can be said as the noise that occurs in the
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current time step only. The action a∗ is the output of rule-based policy given
clean observation o. After the data augmentation process is completed, both
MultiWOZ 2.1 and the generated dataset are used to train the dialogue policy.

3.2 Student-Teacher Offline Reinforcement Learning

Before training the dialogue policy by using student-teacher offline RL, we
initially train the teacher model by using the behavior cloning to minimize the
action probability discrepancy between the learned policy πθ and the expert
policy πE that can be measured by using the Kullback-Leibler (KL) divergence
with approximation as expressed by

min
πθ

Eo∼ηπE
[DKL (πE(·|o)∥πθ(·|o))]

≈ E(o,a)∼ρπE

[
log

(
πE(a|o)
πθ(a|o)

)] (3)

where ηπE and ρπE denote the state and trajectory distributions under the
expert dialogue policy πE, respectively. Both ηπE and ρπE can be represented
as the dataset used for offline RL training. The most common offline RL
method used in this pre-training stage is the behavior cloning which is the
simplest approach to learn the expert policy. Although the previous works
mentioned that behavior cloning is prone to the compounding errors [26, 46],
as the empirical evidences shown in the experimental results, we argue that
the compounding errors which can degrade the performance of the dialogue
policy do not really exist in the task-oriented dialogue, as long as we can make
sure that the policy discrepancy between πE and πθ in Eq. (3) is very small
with a bound ϵ, namely

Eo∼ηπE
[DKL (πE(·|o)∥πθ(·|o))] ≤ ϵ. (4)

It is because each conversation in the task-oriented dialogue is made under very
short trajectory in a finite horizon which accordingly minimizes the probability
of occurring distributional shift issue leading to severe compounding errors.

It can be verified by deriving the difference of value functions between
expert policy πE and imitated policy πθ in the finite horizon of POMDP. First
of all, consider the value function of a finite horizon as the expected total
reward obtained by policy π without any discount factor γ

Vπ = Eτ∼ρπ [r(g,o,a)]. (5)

τ is a trajectory consisting of (o,a) pairs from initial until terminal time
steps. By using the definition of ∥µ− ν∥1 = 2DTV (µ∥ν) where DTV(µ∥ν)
denotes the total variance distance over two probability distributions µ and
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ν, the difference of values between policies πE and πθ can be expressed and
manipulated to derive an upper bound as follows

VπE − Vπθ
= Eτ∼ρπE

[r(g,o,a)]− Eτ∼ρπθ
[r(g,o,a)]

=
∑

(o,a)∈O×A

(ρπE(o,a)− ρπθ
(o,a)) r(g,o,a)

= 2 · r(g,o,a) ·DTV
(
ρπE(o,a)∥ρπθ(o,a)

)
≤ 2 · r(g,o,a) ·

T−1∑
t=0

Eo∼ηt
πE

[DTV (πE(·|o)∥πθ(·|o))]

≤ (2T ) · r(g,o,a) · Eo∼ηπE
[DTV (πE(·|o)∥πθ(·|o))] ≜ UV .

(6)

The last two inequalities were provided in Ross et al. [37] and further explained
in Ke et al. [19]. Next, by using the Pinsker’s inequality [10] that states

DTV(µ∥ν) ≤
√

1
2DKL(µ∥ν), the upper bound UV in Eq. (6) for finite horizon

case can be further tightened by considering the bound ϵ in Eq. (4) in a form
of

UV ≤ (2T ) · r(g,o,a) · Eo∼ηπE

[√
1

2
DKL (πE(·|o)∥πθ(·|o)

]
≤ (

√
2T ) · r(g,o,a) ·

√
Eo∼ηπE

[DKL (πE(·|o)∥πθ(·|o)]

≤ (
√
2ϵT ) · r(g,o,a).

(7)

By considering the fact that finite number of turns T in dialogue task is likely
small, around 10 turns at most which only happens in the dialogues containing
three domains and at the average only 6 turns in the dialogues containing one
and two domains, it is reasonable that the compounding errors of behavior
cloning in a short horizon will not be really harmful as long as we can guarantee
that the discrepancy of policies between πE and πθ is small enough.

Unlike the previous works [34, 16, 42] which employed the cross-entropy or
balanced cross-entropy loss to minimize Eq. (3), in this work, the dialogue
policy is trained by minimizing the focal loss (FL) [22] which addresses the
sparse multi-label classification via{

LFL
+ = (1− πθ(a|o))ω ⊙ log(πθ(a|o))

LFL
− = (πθ(a|o))ω ⊙ log (1− πθ(a|o))

(8)

where ω is a focusing parameter, ⊙ is the element-wise product, L+ and L−
are the losses for positive and negative labels. The total loss can be calculated
through

LFL(o,a
∗; θ) = −a⊤LFL

+ − (1− a)⊤LFL
− . (9)
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If we set ω > 0, the focal loss will down weight the easy negatives which have
low probability (πθ(a|o) ≪ 0.5). This means that the learning process will
focus more on the harder samples. Meanwhile, if we set ω = 0, it will be
reduced to the standard binary cross-entropy loss. Even though the balanced
cross-entropy loss introduces a weighting factor β to balance the importance of
positive and negative samples, the weighting factor in the focal loss is adaptive
to the current learning progress to distinguish between easy and hard examples.

Since the main objective of this paper is to train a robust dialogue policy,
the objective stated in Eq. (3) should be changed by considering the noise from
BERTNLU model that can be simply formulated as ō = BERTNLU(o). The
probability discrepancy between πE and πθ is then minimized and approximated
as

min
πθ

Eo∼ηπE
[DKL (πE(·|o)∥πθ(·|BERTNLU(o)))]

≈ E(o,a∗)∼ρπE

[
log

(
πE(a

∗|o)
πθ(a∗|BERTNLU(o))

)]
.

(10)

In order to mitigate such noise, this work introduces a student-teacher offline
RL which mainly aims to improve the representation learning. Under this
learning stage, we define the teacher parameters as θ = {θfe, θcls} and student
parameters as ϕ = {ϕfe, ϕcls} which consist of the parameters of feature
extractor and dialogue act classifier. Then, the learning objective can be
defined to force the noisy features extracted by the student model πϕ given ō
to be similar to the clean features extracted by the teacher model πθ given
o. The learning process of this stage is depicted by Figure 2. As the teacher
classifier can show convincing performance given clean input, then the student-
teacher offline RL only focuses on how to improve the feature extractor. The
objective of this learning can be formulated by minimizing the following
student-teacher (ST) loss function

LST(o, ō,a
∗;ϕ, θ) = E(o,a∗,ō)∼D[LFL(ō,a

∗;ϕ) + λ ∥fθfe(o)− fϕfe(ō)∥
2
2]. (11)

The first term is the focal loss given noisy input ō that will be used to update
ϕfe to find the best representation for fϕcls to correctly predict a, which is the
same label for o. ϕcls directly copies θcls and the parameters are frozen during
training. Meanwhile, the second term in Eq. (11) is a feature distance loss
that will be directly used to train fϕfe to map the noisy input representation to
be as close as possible to the clean data representation extracted by fθfe . The
overall learning process of student-teacher offline RL is shown by Algorithm 1
which first calculates teacher model and then student model.
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Algorithm 1: Student-teacher offline reinforcement learning for ro-
bust dialogue policy.

Require : dialogue dataset D containing tuples of (o, ō,a∗),
hyperparameters {α, ω}

Initialize teacher parameters θ = {θfe, θcls}
for each updating iteration do

sample minibatch of {oi,a
∗
i }Ni=1 from D

calculate gradient of LFL (Eq. (9)) by gθ ← ∇ 1
N

∑N
i=1 LFL(oi,a

∗
i ; θ)

θ ← AdamW(θ, α, gθ)

Initialize student parameters ϕ← θ
for each updating iteration do

sample minibatch of {oi, ōi,a
∗
i }Ni=1 from D

calculate gradient of LST (Eq. (11)) by
gϕfe ← ∇ 1

N

∑N
i=1 LST(oi, ōi,a

∗
i ;ϕ, θ)

ϕfe ← AdamW(ϕfe, α, gϕfe)

4 Experiments

The experiments were done by using ConvLab-2 framework. ConvLab-2
provides a framework to allow interactions between simulated user and dialogue
agent in an environment by using MultiWOZ 2.1 [12] dataset. MultiWOZ
2.1 was an updated version of MultiWOZ 2.0 [2], known as a multi-domain,
multi-intent task-oriented dialog corpus [41] that contained 7 domains which
are hotel, attraction, restaurant, train, taxi, police and hospital, 13 user
intents, 25 slot types, 10,483 dialog sessions, and 71,544 dialog turns. By using
ConvLab-2, the end-to-end system evaluation was performed to sufficiently
reflect real-world scenarios.

4.1 Experimental Settings

The MultiWOZ 2.1 dataset was initially split into the training, validation
and test data with 8434, 999 and 1000 samples, respectively. The feature
extractor of both student model fϕfe and teacher model fθfe were formed by
MLP networks with two hidden layers consisting of 100 neurons with activation
function ReLU. Meanwhile, the teacher and student classifiers, fθcls and fϕcls ,
respectively, were based on MLP networks with sigmoid activation function.
The focusing parameters ω and λ in the feature distance loss Eq. (11) were
set to 2 and 1, respectively. The dialogue policy parameters {θ, ϕ} were
optimized by using Adam with the decoupled weight decay (AdamW) [24] with
learning rate α =5e-4 and batch size N =32. The data generated in the data
augmentation process were around 36000 observation-action pairs.



Robust Multi-Domain Multi-Turn Dialogue Policy 13

The benefit of the proposed method for improving dialogue system ro-
bustness was evaluated with the end-to-end system evaluation over a set of
1000 dialogues, consisting of 337, 523 and 140 dialogues containing 1, 2 and
3 domains, respectively. The dialogue system performance was measured
through the interactions with the simulated user where the NLU, DST and
NLG in a pipeline system were identical to the ConvLab-2 default settings,
which included BERT [11] based NLU (BERTNLU), rule-based DST and
template NLG, respectively. The experimental results were carried out on a
PC with a CPU i9-10900K, 128GB of RAM, and a GPU NVIDIA RTX 2080Ti.
Comparative studies were performed by using five primary metrics listed below

− success rate: judges whether constraints (e.g. hotel location or hotel
price) and requests (e.g. hotel phone number) in the user goals have
been satisfied by system.

− F1 score: judges if all requested information like taxi type or taxi phone
number has been informed. This score is computed from precision and
recall.

− complete rate: ratio of the completed user constraints.

− booking rate: ratio of the successful dialogues for booking a request
which is only available in the domains of hotel, restaurant and train.

− average conversation turns between dialogue system and user for success-
ful and all dialogues.

For the first four metrics, the higher the better. For the last metric, the lower
the better. The proposed method was compared with two types of baseline
methods. The first type of baselines was the methods which only optimized
the dialogue policy, mentioned as follows

− behavior cloning optimized with balanced cross-entropy loss (Eq. (2))
and asymmetric loss (ASL) [30]. ASL was shown good benefit in the
multi-label image classifications, leading to state-of-the-art results. ASL
is an extension of focal loss where the weights for positive and negative
labels are different, ω+ and ω−, respectively, by{

LASL
+ = (1− πθ(a|o))ω

+ ⊙ log(πθ(a|o))
LASL
− = (πm

θ (a|o))ω
−
⊙ log (1− πm

θ (a|o))
(12)

The total loss is accumulated just like Eq. (9). πm
θ (a|o) is an asymmetric

probability with a shift m calculated by πm
θ (a|o) = max(πθ(o)−m, 0).

There are three hyperparameters ω+, ω− and m in this method.
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− policy gradient (PG) [48]: a standard policy based method in RL where
the gradient with respect to the cumulative reward is calculated to
update πθ(·)

− proximal policy optimization (PPO) [39]: an actor-critic method imple-
mented by maximizing the clipped surrogate objective to train the actor
and minimizing the regression error to train the critic.

− guided dialogue policy learning (GDPL) [42]: a solution based on adver-
sarial inverse RL [13] method which learns a reward function by using
the expert trajectories and uses this information to train the dialogue
policy agent sequentially in the same loop.

Another type of baselines conducted the optimization in an end-to-end fashion.
All components from NLU until NLG were optimized jointly.

− domain aware multi-decode (DAMD) [52]: a multi-action data augmenta-
tion scheme to produce diverse response by using additional state-action
pairs.

− minimalist transfer learning (MinTL) [23]: a transfer learning framework
offering plug-and-play approach for task-oriented dialogue system.

− UBAR [49]: a task-oriented dialogue model which used distilGPT-2
model [38] as the base model. The model was fed not only with the user
and response sentences, but also with database search result and belief
state from the previous steps.

− offline RL methods, which are GPT-critic [17], critic regularized regres-
sion (CRR) [45] and decision transformer [4]. All of them used GPT-2
as the base model.

− GPT-TDAPT (GPT-2 model with task and domain adaptive pretraining)
[51]: proposed five stages of learning. The first was the domain adaptation
using the pre-trained GPT-2 where the datasets including Schema [29],
Camrest [47], Taskmaster 2019, Taskmaster 2020 [3] and MSR-e2e were
used. Multi-task fine-tuning using MultiWOZ 2.1, data pre-processing
and post-processing, fault tolerance mechanism, and rule-based post-
processing for refining the agent utterances were the other four stages.

− AUGPT (GPT-2 finetuned with auxiliary tasks) [21]: conducted similar
implementation as the GPT-TDAPT with two distinctions. First, there
was no post-processing approach in this work. Second, the auxiliary
tasks were employed to increase the consistency in sentence generation
given the identical system action responses.
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4.2 Experimental Results

Firstly, the evaluation was carried out to investigate the effect of data aug-
mentation by utilizing the dialogue self-play method under different behavior
cloning objectives. The configuration of the dialogue system was identical for
the methods including BERTNLU, rule-based DST and template NLG. We
set β,m, ω+, ω− to be 5, 0.05, 0 and 2, respectively. As shown in Table 1,
the proposed data augmentation process successfully produced the meaningful
data, as indicated by the performance gaps between the models trained by
using only MultiWOZ 2.1 dataset and the models trained with the generated
data. One of the main reason of this phenomena is the simplicity offered
by the generated data indicated by the number of system dialogue acts in
the action vector a, as shown by Figure 4. Compared to the generated data,
MultiWOZ 2.1 contains more complicated observation-label pairs as more
than one-fifth of data samples have at least 4 positive labels. Furthermore,
it also contains the data with more than 8 positive labels which might be
hard for the model to understand them. Therefore, dialogue policy could learn
better from the generated dataset than the original dataset. Although the
performance gap between models trained using MultiWOZ 2.1 and generated
data is significant, the best results were obtained by combining those two
datasets. Training the models solely by using the generated data only resulted
in suboptimal performances. This evidence implies that each dataset has
unique important information that must be learned by the dialogue policy.
Another interesting finding is the suboptimal performance of the behavior
cloning with asymmetric loss in comparison to the behavior cloning with focal
loss, even after adjusting the hyperparameters in the Eq. (12). The results are
shown by Table 2. Since the behavior cloning with asymmetric loss is quite
sensitive to the hyperparameter tuning, the resulting performance is worse
than that with focal loss. Using asymmetric loss, the most notable evidence
is seen when the precision score drastically declined after the value of ω−

was raised. Despite the fact that the success rate difference between behavior
cloning trained with asymmetric loss and focal loss is relatively not significant,
the focal loss effectively helped the model in achieving a high F1 score of 88.6
as compared to 85.1 for the model trained with asymmetric loss.

The next experiment was performed in order to demonstrate the benefit
of the proposed method, called the student-teacher offline RL (denoted by
STORL). In this evaluation, the proposed method was compared with both
pipeline and end-to-end dialogue system. The evaluation results are shown by
Table 3. From the result, it can be seen that the proposed method properly
learned how to map the noisy input ō into the better representation that
was closer to the representation of teacher model given clean input o. As a
result, the dialogue policy could reduce the impact of the noisy input while
still generating appropriate actions, indicated by absolute improvements 1.4%
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Dialogue Success Inform Complete Booking Average
Policy Objective Rate (%) Precision Recall F1 Rate (%) Rate (%) Turn (Succ/All)

MultiWOZ 2.1
Balanced cross-entropy 48.8 71.3 76.7 71.1 53.0 13.2 13.0/18.7
Asymmetric loss 52.1 81.2 81.0 78.7 58.1 18.3 12.6/15.6
Focal loss 41.1 86.6 73.5 77.0 44.5 0.03 10.9/22.3
Generated Data
Balanced cross-entropy 78.9 79.8 89.2 82.3 81.3 89.5 11.8/12.7
Asymmetric loss 80.0 80.0 92.0 83.1 88.0 90.2 11.2/12.8
Focal loss 81.3 85.0 92.2 86.7 90.0 91.0 11.2/13.7
MultiWOZ 2.1 + Generated Data
Balanced cross-entropy 79.1 83.2 91.4 84.7 86.8 90.2 11.2/13.4
Asymmetric loss 82.6 82.4 93.0 85.1 91.4 91.1 11.4/12.2
Focal loss 83.3 86.7 93.4 88.6 92.0 91.8 11.4/12.3

Table 1: The performance comparison of behavior cloning trained with three different loss
functions under three different datasets. The bold numbers indicate the best score in the
metrics.

Dialogue Hyperparameter Success Inform Complete Booking Average
Policy Objective Setting Rate (%) Precision Recall F1 Rate (%) Rate (%) Turn (Succ/All)

ω+ = 0, ω− = 2, m = 0.05 83.0 82.4 93.0 85.1 91.4 91.1 11.4/12.2
ω+ = 0, ω− = 4, m = 0.05 82.0 75.3 90.8 79.4 87.7 89.1 11.1/12.0

Asymmetric loss ω+ = 0, ω− = 5, m = 0.05 82.5 79.2 93.1 83.1 90.8 90.7 11.4/12.3
ω+ = 1, ω− = 2, m = 0.05 82.1 80.4 92.8 83.8 90.4 90.1 11.3/12.6
ω+ = 1, ω− = 4, m = 0.05 82.0 73.1 92.4 78.9 90.0 89.9 11.3/12.0
ω+ = 1, ω− = 5, m = 0.05 80.2 64.6 90.2 72.2 86.7 90.0 11.5/12.0

Focal loss ω+ = 2, ω− = 2, m = 0 83.3 86.7 93.4 88.6 92.0 91.8 11.4/12.3

Table 2: The performance comparison between behavior cloning trained with asymmetric
loss and focal loss with different hyperparameter settings.

Figure 4: A comparison between MultiWOZ 2.1 data and the generated data in terms of
dialogue act number in the action or label vector a.

and 0.8% in the success rate and complete rate, respectively, when compared
to the teacher model. Conditioned on the clean input, which means the true
user dialogue acts were directly passed to the DST component, the learned
student encoder fϕfe could maintain to map the clean input to the appropriate
representation indicated by the nearly identical performance between teacher
model and the proposed method given by the perfect NLU setting. Furthermore,
compared to the rule-based policy which is always set as the upper bound of



Robust Multi-Domain Multi-Turn Dialogue Policy 17

Table 3: End-to-end system evaluation results of the proposed student-teacher offline
RL (STORL) compared to the previous approaches. The bold numbers indicate the best
score in the metrics without considering system with perfect NLU. AUGPT [21] is a model
participating in DSTC9 track 2. * means the scores were obtained by running the provided
models. ** means the scores were obtained from the results mentioned in GPT-critic paper
[17].

Configuration Success F1 Complete Booking Average
NLU DST Policy NLG Rate (%) Score Rate (%) Rate (%) Turn (Succ/All)
BERT Rule PG* Template 44.7 60.6 47.1 29.7 12.5/20.1
BERT Rule GDPL* Template 47.2 64.6 50.0 26.8 11.9/19.3
BERT Rule PPO* Template 61.2 68.2 64.7 62.4 13.0/18.1
BERT Rule PPO HITL* Template 81.4 84.6 86.2 88.4 11.3/12.4
BERT Rule Rule Template 83.8 86.2 92.7 91.5 11.4/11.9

End-to-End (DAMD)* 34.2 56.9 39.6 52.0 15.6/30.2
End-to-End (MINTL)** 68.1 69.0 71.4 65.4 15.7/20.7
End-to-End (UBAR)** 74.3 76.0 79.8 80.8 14.2/18.1
End-to-End (CRR)** 72.6 76.0 78.2 82.2 13.6/17.9

End-to-End (Decision Transformer)** 75.3 77.0 81.3 83.5 14.8/18.0
End-to-End (GPT-Critic)** 77.7 79.0 84.3 85.4 16.3/19.4

End-to-End (AUGPT (DSTC9 track 2))* 60 70.2 89.3 86 12.7/13.9
BERT Rule STORL Template 84.7 86.9 92.8 92.1 11.5/12.3
BERT Rule STORL (Teacher) Template 83.3 88.6 92.0 91.8 11.4/12.3
Perfect Rule STORL Template 93.0 89.5 96.1 97.7 11.6/12.0
Perfect Rule STORL (Teacher) Template 92.6 91.2 96.0 98.0 11.6/12.0

Table 4: End-to-end system evaluation results on STORL compared to the previous
approaches which were optimized by using the augmented data during pre-training stage.

Configuration Success F1 Complete Booking Average
NLU DST Policy NLG Rate (%) Score Rate (%) Rate (%) Turn (Succ/All)
BERT Rule PG Template 80.6 83.4 87.9 90.7 11.5/13/1
BERT Rule GDPL Template 81.3 84.8 89.8 89.8 11.4/12/6
BERT Rule PPO Template 82.0 84.8 90.1 90.7 11.3/12.4
BERT Rule PPO HITL Template 82.8 84.8 91.2 90.9 11.3/12.4
BERT Rule STORL (Teacher) Template 83.3 88.6 92.0 91.8 11.4/12.3
BERT Rule STORL Template 84.7 86.9 92.8 92.1 11.5/12.3
BERT Rule Rule Template 83.8 86.2 92.7 91.5 11.4/11.9

the dialogue policy optimization, the proposed learning scenario even performs
better than the rule-based policy, especially in terms of success rate and
booking rate by 0.9% and 0.6%, respectively. Unfortunately, there was a trade-
off that should be paid in this learning strategy. Due to the enforcement to
map noisy representation to be as close as possible to the clean representation,
F1 score of the learned dialogue policy was degraded from the teacher model,
by around 1.8.

In order to show further comparison with the dialogue policy baselines,
additional experiments were conducted by training all of the dialogue policy
baselines by utilizing a combination of MultiWoZ 2.1 with the augmented data.
The augmented data were leveraged in the pre-training stage. The optimization
process followed the default setting of each baseline method which mainly used
the behavior cloning in accordance with the balanced cross-entropy loss. The
results are shown in Table 4. As can be observed, all of the dialogue policy
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baselines are significantly improved due to the addition of augmented data
during the pre-training phase. The best baseline performance is obtained by
PPO with human-in-the-loop (PPO HITL) which can reach the performance
close to that using the STORL (Teacher) model. However, by using this
setting, the learning strategy in PPO HITL introduced expert feedback twice.
The first was in the pre-training stage which utilized the expert trajectories,
and the second was in the PPO training in which an expert provided the action
corrections in every interaction with the simulated user. As all of the dialogue
policy baselines could not perform better than STORL (Teacher) model, this
finding indicates that the offline RL is enough for solving the dialogue policy
learning in the dialogue task. Also, the resulting training data are sufficient
so that the learning strategy can guarantee to reach the derived bound in
the Section 3.2 which is achieved by using the focal loss. Furthermore, even
though all of the baselines were trained by using an additional dataset, all
of them still could not outperform the rule-based policy, while the STORL
showed better performance than the rule-based policy due to the well-trained
encoder that can compensate for the errors from BERTNLU.

Compared to the other baselines that applied either RL or offline learning
with large PLMs, the proposed method was only outperformed by the GPT-
TDAPT [51] which achieved the best performance in the DSTC9 track 2. Table
5 shows the performance comparison between STORL and GPT-TDAPT which
also includes the performance of each model given different test data categorized
by the number of domain occurrences in each dialogue. Even though GPT-
TDAPT outperformed STORL in overall testing, in terms of computational
cost comparison, the proposed method only required 7.5 minutes to complete
the testing consisting of 1000 test dialogues. GPT-TDAPT required nearly
74 minutes to complete the testing process. Moreover, the learning process
introduced by GPT-TDAPT implemented some non-trivial tricks in both pre-
processing and post-processing stages which required human manual design to
make sure the model could achieve a convincing result. As a result, the other
end-to-end approaches that employed GPT-2 model such as AUGPT [21] and
GPT-critic [17] showed suboptimal performances due to the missing of the
manual design tricks. On the other hand, this work proposes a much simpler
and straightforward learning process to improve dialogue policy performance
which makes the reproduction of the results becomes much easier. Conditioned
on different categories of test data, the results show that the proposed method
could achieve competitive performances in the simple and hard cases, where
each dialogue consisted of 1 domain and 3 domains, respectively. In case of
dialogues containing 2 domains, the STORL was significantly better than
GPT-TDAPT by around 10% in success rate and 5% in both complete rate
and booking rate. This empirical evidence may suggest a future research for
representation learning methods that can handle all possible cases.
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Table 5: End-to-end system evaluation results on STORL and GPT-TDAPT [51], a model
participating in DSTC9 track 2, under different number of test dialogues in presence of
different number of domains. GPT-TDAPT results were obtained by using the provided
models.

Configuration Success Inform Complete Booking Average Computation
NLU DST Policy NLG Rate (%) Precision Recall F1 Rate (%) Rate (%) Turn (Succ/All) Time (Minutes)
1 Domain (337 test dialogues)
End-to-End (GPT-TDAPT (DSTC9 track 2))* 95.2 84.2 97.4 88.3 98.2 96.7 8.6/8.9 11:23
BERT Rule STORL Template 94.7 87.9 96.9 90.6 97.0 97.8 7.2/7.5 1:30
2 domains (523 test dialogues)
End-to-End (GPT-TDAPT (DSTC9 track 2))* 91.2 78.2 98.6 85.5 97.7 96.3 18.0/18.1 46:13
BERT Rule STORL Template 80.1 81.2 93.5 85.1 91.2 91.6 13.2/14.0 4:30
3 domains (140 test dialogues)
End-to-End (GPT-TDAPT (DSTC9 track 2))* 80.0 80.2 95.5 86.0 90.7 92.9 21.5/22.7 16:21
BERT Rule STORL Template 77.9 83.3 91.5 85.1 88.6 87.1 17.2/17.4 1:30
Overall (1000 test dialogues)
End-to-End (GPT-TDAPT (DSTC9 track 2))* 91.0 80.4 97.8 86.4 96.9 95.8 15.1/15.7 73:57
BERT Rule STORL Template 84.7 83.7 94.3 86.9 92.8 92.1 11.5/12.3 7:30

In comparison with the teacher model, Table 6 shows the benefit of using
the trained encoder through STORL. In the goal IDs 304 and 357, the STORL
model generated the responses identically to the teacher model given clean
input although BERT did not predict the first user dialogue act “[‘Inform’,
‘Train’, ‘none’, ‘none’]”. On the other hand, the teacher model, fed with
noisy input from BERT, produced the irrelevant response by offering the train
schedule in the goal ID 304, and failed to generate any response in goal ID 357.
In the goal ID 623, even though BERT outputs a wrong dialogue act “[‘Inform’,
‘Hotel’, ‘Type’, ‘hotel’]”, the STORL model could provide a nearly similar
response to the teacher model given the clean input while the teacher model
given noisy input could not find any hotel for the user. All of the findings are
in line with the distance metrics (in both ℓ1 and ℓ2) and the distributions of
latent features due to the introduction of the STORL and the teacher model
given the noisy input (Teacher) relative to the teacher model given the clean
or ground truth of user dialogue acts (Teacher*) as shown by Table 7. It can
be seen that the STORL sufficiently maps the features conditioned on the
noisy input to be closer to the teacher features given by the clean input.

More empirical evidence about the benefit of using STORL is shown by
Table 8 which illustrates a qualitative comparison of the conversations made
by STORL policy and rule-based policy given the noisy input from BERTNLU.
Due to the mispredicted slot in the second conversation turn, ‘Destination’ to
‘Departure’, the rule-based policy repeated the question which asked for the
user destination until it obtained slot ‘Destination’. However, the rule-based
policy could not find any schedule for the train departing to Peterborough
due to the inability for handling the conflicted DST information where the
DST stored two different values for ‘Departure’ which were Cambridge and
Peterborough. Meanwhile, the proposed STORL agent could handle the
mispredicted user dialogue acts due to the well-trained encoder which could
map the noisy input into a better representation. Therefore, although BERT
mispredicted the slot ‘Destination’ to ‘Departure’, STORL could provide an
appropriate response by offering a train schedule to Peterborough.
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Table 6: Qualitative illustration using STORL. Teacher* represents the output of teacher
model given clean input. Red colored texts indicate either unpredicted or mispredicted user
dialogue acts.

Goal ID: 304
User: I would just like to find a train first, and get the info. I need to leave after 14:15. I would like to leave on Friday.

I would like to depart from Cambridge.
User DA: [[‘Inform’, ‘Train’, ‘none’, ‘none’], [‘Inform’, ‘Train’, ‘Leave’, ‘14:15’], [‘Inform’, ‘Train’, ‘Day’, ‘Friday’],

[‘Inform’, ‘Train’, ‘Departure’, ‘Cambridge’]]
BERT Predicted DA: [[‘Inform’, ‘Train’, ‘Leave’, ‘14:15’], [‘Inform’, ‘Train’, ‘Day’, ‘Friday’], [‘Inform’, ‘Train’, ‘Departure’, ‘Cambridge’]]
System (Teacher*): What is your destination?
System (Teacher): There is a train leaving at 15:00 would you like me to book this? What station would you like to arrive at?
System (STORL): What is your destination?
Goal ID: 357
User: I would just like to find a train first, and get the info. I’m looking to travel on Thursday.

Can you tell me when that train will be arriving in Norwich? I also need a train departing from Cambridge.
User DA: [[‘Inform’, ‘Train’, ‘none’, ‘none’], [‘Inform’, ‘Train’, ‘Day’, ‘Thursday’], [‘Inform’, ‘Train’, ‘Destination’, ‘Norwich’],

[‘Inform’, ‘Train’, ‘Departure’, ‘Cambridge’]]
BERT Predicted DA: [[‘Inform’, ‘Train’, ‘Day’, ‘Thursday’], [‘Inform’, ‘Train’, ‘Destination’, ‘Norwich’], [‘Inform’, ‘Train’, ‘Departure’, ‘Cambridge’]]
System (Teacher*): What time do you need to arrive? Is there a certain time you are wanting to leave?
System (Teacher): ‘ ’ (Note: Policy was unable to generate any response.)
System (STORL): What time do you need to arrive? Is there a certain time you are wanting to leave?
Goal ID: 623
User: I need a hotel as well. I need one with Wifi. I’m looking for a place to stay in the centre.

I would like it to have a 4 star rating
User DA: [[‘Inform’, ‘Hotel’, ‘none’, ‘none’], [‘Inform’, ‘Hotel’, ‘Internet’, ‘yes’], [‘Inform’, ‘Hotel’, ‘Area’, ‘centre’],

[‘Inform’, ‘Hotel’, ‘Stars’, ‘4’]]
BERT Predicted DA: [[‘Inform’, ‘Hotel’, ‘Internet’, ‘yes’], [‘Inform’, ‘Hotel’, ‘Type’, ‘hotel’], [‘Inform’, ‘Hotel’, ‘Area’, ‘centre’],

[‘Inform’, ‘Hotel’, ‘Stars’, ‘4’]]
System (Teacher*): There are 2 of those. How about Alexander bed and breakfast?
System (Teacher): I am sorry I have no listings for any with 4 stars. I’m sorry, there are no hotel that match your preferences.
System (STORL): There are 1 of those. They have a 4 Star rating. University arms hotel looks like it would be a good choice.

Table 7: Comparison of the distance metrics (both ℓ1 and ℓ2) and the feature distributions
between the latent features by using the teacher model given noisy input (Teacher) and the
STORL relative to the teacher model given clean input (Teacher*).

Features ℓ1 Dist ℓ2 Dist Distribution (mean±std)
Goal ID: 304
Teacher-Teacher* 0.970 0.744 0.0084±0.081 - 0.0058±0.068
STORL-Teacher* 0.383 0.111 0.0066±0.064 - 0.0058±0.068
Goal ID: 357
Teacher-Teacher* 1.200 0.332 0.0101±0.049 - 0.0120±0.055
STORL-Teacher* 0.602 0.115 0.0133±0.054 - 0.0120±0.055
Goal ID: 623
Teacher-Teacher* 0.457 0.322 0.0058±0.064 - 0.0051±0.067
STORL-Teacher* 0.289 0.117 0.0054±0.061 - 0.0051±0.067

5 Conclusions

A novel method for improving the robustness of dialogue policy in addressing
noisy input due to the error output from NLU component in the dialogue
system, named as the student-teacher offline reinforcement learning (STORL)
has been proposed. The proposed method was designed according to two
strategies including student-teacher learning and offline reinforcement learning.
Student-teacher learning aimed to force the student model to map the extracted
features of the noisy input to be close to the clean features extracted by the
teacher model. Meanwhile, the offline reinforcement learning which aimed
to minimize the focal loss was used to train the dialogue policy to be able
to provide appropriate response given the user input by only utilizing the
observation-action pairs stored in the dataset. The experimental findings
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Table 8: Example of the successful and failed dialogue generated by STORL and rule-based
dialogue policy, respectively. Red colored texts indicate the mismatched user dialogue acts
(DAs). Blue and green colored texts indicate the correct and wrong answers, respectively.
The whole conversations are not shown to save space.

Goal: {‘train’: {‘info’:{‘arrive by’: ‘11:45’, ‘day’: ‘Wednesday’, ‘departure’: ‘Cambridge’,
‘destination’: ‘Peterborough’}, ‘request’: {‘duration’: ‘?’, ‘price’: ‘?’}},
‘restaurant’: {‘info’: {‘food’: ‘Indian’, ‘price range’: ‘expensive’}, ‘request’: {‘postcode’: ’?’}}}

STORL Policy
User: Please book that train for me now. I want to get there by 11:45.

The train should leave on Wednesday. I’m departing from Cambridge.
User DA: [[‘Inform’, ‘Train’, ‘none’, ‘none’], [‘Inform’, ‘Train’, ‘Arrive’, ‘11:45’],

[‘Inform’, ‘Train’, ‘Day’, ‘Wednesday’], [‘Inform’, ‘Train’, ‘Departure’, ‘Cambridge’]]
BERT Predicted DA: [[‘Inform’, ‘Train’, ‘Arrive’, ‘11:45’], [‘Inform’, ‘Train’, ‘Day’, ‘Wednesday’],

[‘Inform’, ‘Train’, ‘Departure’, ‘Cambridge’]]
System: Where would you like to go to?
User: I am leaving for Peterborough.
User DA: [[‘Inform’, ‘Train’, ‘Destination’, ‘Peterborough’]]
BERT Predicted DA: [[‘Inform’, ‘Train’, ‘Departure’, ‘Peterborough’]]
System: Would you like me to book the 06:09 train?
User: Can you tell me the price? Can you give me the travel time please?
User DA: [[‘Request’, ‘Train’, ‘Ticket’, ‘?’], [‘Request’, ‘Train’, ‘Time’, ‘?’]]
BERT Predicted DA: [[‘Request’, ‘Train’, ‘Time’, ‘?’], [‘Request’, ‘Train’, ’Ticket’, ‘?’]]
System: The price is 16.50 pounds per ticket. The trip is 50 minutes.
...
Rule-Based Policy
User: Please book that train for me now. I want to get there by 11:45.

The train should leave on Wednesday. I’m departing from Cambridge.
User DA: [[‘Inform’, ‘Train’, ‘none’, ‘none’], [‘Inform’, ‘Train’, ‘Arrive’, ‘11:45’],

[‘Inform’, ‘Train’, ‘Day’, ‘Wednesday’], [‘Inform’, ‘Train’, ‘Departure’, ‘Cambridge’]]
BERT Predicted DA: [[‘Inform’, ‘Train’, ‘Arrive’, ‘11:45’], [‘Inform’, ‘Train’, ‘Day’, ‘Wednesday’],

[‘Inform’, ‘Train’, ‘Departure’, ‘Cambridge’]]
System: Where would you like to go to?
User: I am leaving for Peterborough.
User DA: [[‘Inform’, ‘Train’, ‘Destination’, ‘Peterborough’]]
BERT Predicted DA: [[‘Inform’, ‘Train’, ‘Departure’, ‘Peterborough’]]
System: Where is your destination?
User: Can you also help me find a train going to Peterborough?
User DA: [[‘Inform’, ‘Train’, ‘Destination’, ‘Peterborough’]]
BERT Predicted DA: [[‘Inform’, ‘Train’, ‘Destination’, ‘Peterborough’]]
System: I am sorry there are no trains to arrive at 11:45. There are no trains on Wednesday.

There is no train leaving Peterborough.
...

demonstrated that the proposed hybrid learning did enhance the performance
of the pipeline dialogue system in the ConvLab-2 end-to-end system evaluation
under MultiWOZ 2.1 dataset. Furthermore, the competitive results were also
obtained when compared to the end-to-end approaches by using the pre-trained
GPT-2 model with lower computational cost and simpler learning process. The
source codes based on STORL can be accessed in https://github.com/NYCU-
MLLab/. Future works will include the extension of this method to the other
dialogue domain [31].
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