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ABSTRACT

The implicit neural representation (INR) employed in image com-
pression shows high decoding efficiency, yet it requires long encoding
times due to the need for the model training tailored to the specific
image being coded. Thus, we propose a new image compression
scheme leveraging the 2D Gaussian splatting technique to acceler-
ate encoding speed and maintain decoding efficiency. Specifically,
we parameterize these Gaussians with key attributes including
position, anisotropic covariance, color, and opacity coefficients,
totaling 9 parameters per Gaussian. We initialize these Gaussians
by sampling points from the image, followed by employing an α-
blending mechanism to determine the color values of each pixel.
For compact attribute representation, we adopt a K-means based
vector quantization approach for anisotropic covariance, color and
opacity coefficients. Additionally, we introduce an adaptive dense
control methodology to dynamically adjust Gaussian numbers, fa-
cilitating automatic point reduction or augmentation. Finally, the
position, codebooks and indexes of other attributes are quantized
and compressed by the lossless entropy coding. Our experimental
evaluation demonstrates that our method achieves faster encod-
ing speeds compared to other INR techniques while exhibiting
comparable decoding speeds.
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The source code is available via the following link: https://github.
com/ppingzhang/2DGS_ImageCompression.
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1 Introduction

In environments characterized by massive image generation, image compression
is essential for conserving storage space and bandwidth. Various codecs have
been developed to optimize reconstruction quality within bitrate constraints.
There are three types of image compression methods: conventional transform-
based image compression methods [31, 4], explicit learning based methods [3,
8] and implicit learning based methods [19, 6].

The conventional transform-based image compression pipelines, e.g., JPEG,
HEVC (High-Efficiency Video Coding) [31] and VVC (Versatile Video Cod-
ing) [4], consist of essential modules, such as transform, quantization, and
entropy coding. However, these codecs suffer from drawbacks such as block-
based partitioning, which leads to blocking artifacts, and complex inter-module
dependencies that hinder joint optimization. With the rapid progress of deep
learning, many researchers [3, 8] have looked into using neural networks to
build image compression systems that are optimized end-to-end. In these
explicit representation approaches, the whole system can be improved together,
boosting performance across all parts and ultimately enhancing the overall
outcome. Subsequently, implicit neural representation has been employed in
numerous image compression methods to decrease computational complexity
and enhance decoding time in deep-based image compression [11, 29]. Initial
endeavors employing Implicit Neural Representation (INR) for image compres-
sion entail the training and quantization of individual SIREN networks for
each image [11]. The COOL-CHIC framework [19] incorporates a lightweight
Multilayer Perceptron (MLP) decoder, along with latent representations, to
achieve a reduced decoder complexity. INRs are to learn an implicit continu-
ous mapping using a learnable neural network. Thus, the encoding process is
frequently deemed to be time-consuming [6].

3D Gaussian representation combines the advantages of explicit and implicit
representation, offering a flexible and expressive framework for encapsulating
3D scenes [18]. This novel method enables real-time, high-quality rendering of
radiance fields in a wide variety of scenes, with training times comparable to
the fastest previous techniques. Building upon this foundation, we introduce a
new approach inspired by the principles of the 3D Gaussian representation:
2D Gaussian splatting for image compression.

https://github.com/ppingzhang/2DGS_ImageCompression
https://github.com/ppingzhang/2DGS_ImageCompression
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Different from a typical 3D Gaussian, which consists of 59 learnable param-
eters [18], our proposed method simplifies the parameters of the 2D Gaussian.
It includes only four attributes (equivalent to a total of 9 parameters): po-
sition, anisotropic covariance, color and opacity coefficients. An α-blending
mechanism is employed to calculate the value for each pixel. Here, we use
the adjustive dense control algorithm to dynamically adjust the number of
Gaussians [18]. Using more 2D Gaussians usually improves image quality, but
it can also increase bitrates. Due to the similarity of the covariance matrix, we
employ a K-means algorithm during training for vector quantization to attain
a compact representation. Similarly, due to the lower sensitivity of opacity,
color and opacity values are encapsulated in a vector to facilitate K-means
based vector quantization. This method involves storing parameter codebooks
alongside corresponding indices for each Gaussian, leading to significant re-
ductions in storage requirements for 2D Gaussians. Furthermore, for a more
compact representation of the parameters, we employ post-training quantiza-
tion. This approach allows us to adjust the precision of both the cookbook
and position without the fine-tuning procedure. In comparison to INR-based
codecs such as COIN [11] and WIRE [28], our method demonstrates faster
encoding speed while maintaining comparable decoding speed. In particular,
our model outperforms JPEG in reconstruction quality at low bitrates.

2 Related Work

2.1 Image Compression

Image compression aims to represent image signals compactly for efficient
transmission and storage. Over the past decades, numerous image compression
standards have been developed, such as JPEG [32], JPEG2000 [27], HEVC
(Intra)[30, 38], and VVC (Intra) [4]. These standards commonly employ predic-
tion, transform coding, and entropy coding methods to diminish redundancies
in images.

Learning-based image compression has made significant strides in com-
pression efficacy, highlighting the potential of neural networks to nonlinearly
represent visual signals, consequently boosting compression efficiency [2, 1].
Researchers have been exploring various possibilities for the transform module
in image compression [2, 3, 34, 22, 34, 35]. Variational Autoencoder (VAE)
models have garnered significant attention in the research community due to
their notable performance and architectural robustness [2, 3, 7]. However,
despite these advancements, a persistent challenge remains unaddressed: the
issue of slow decoding speed, particularly evident in codecs utilizing the con-
volutional autoencoder framework [8, 17, 34]. Despite numerous attempts to
ameliorate this limitation through various techniques, such as the checkboard
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structure [16], these codecs continue to exhibit comparatively slower decoding
speeds when compared with traditional codecs.

2.2 Implicit Neural Representation for Compression

INR has attracted considerable interest due to its capability to model diverse
signals. This is accomplished by parameterizing a signal through a function
that synthesizes desired properties from given inputs. As a result, the signal
becomes implicitly encoded within the parameters of the network.

In image compression, INR has emerged as a promising approach that
harnesses the power of neural networks to compress and decompress images
without explicitly encoding pixel values [29, 6]. Strumpler et al. [29] introduced
meta-learned initializations for INR-based compression, aiming to enhance
rate-distortion performance. They subsequently proposed a straightforward
yet highly effective modification to the network architecture compared to prior
works. Dupont et al. [11] presented the COIN model, which stores the weights
of an overfitted neural network rather than RGB values for each pixel in an
image. Additionally, they developed COIN++, an advanced neural compression
framework adept at handling a diverse array of data modalities [12]. In the
realm of video compression, there have been notable strides in INR-based
video compression schemes. Chen et al. [6] introduced an innovative neural
representation for videos known as NeRV. This method encodes videos within
neural networks, offering a novel approach to video compression. Subsequently,
they proposed a hybrid neural representation for storing videos. This approach
provides decoding advantages in terms of speed and flexibility compared to
conventional codecs.

2.3 3D Gaussian Splatting

3D Gaussian Splatting (3DGS) [18] has demonstrated superior quality and
faster rendering capabilities. However, its primary drawback lies in the in-
creased storage requirements compared to NeRF (Neural Radiance Fields)
methods [25, 33], potentially restricting its applicability in various settings.
Consequently, numerous efforts [20, 13] have been made to preserve the quality
and rapid rendering speed of the 3DGS method while reducing model storage
requirements. Numerous Gaussians often exhibit similarity in their parameters.
Based upon this observation, Navaneet et al. [24] propose a straightforward
vector quantization technique leveraging the K-means algorithm for parameter
quantization. Then, the parameters of each Gaussian are represented in a
compact codebook alongside the corresponding indices. Lee et al. [20] pro-
posed a compact 3DGS model to diminish the Gaussian points and compress
the Gaussian attributes effectively. Navaneet et al. [24] introduced a novel
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compressed 3D Gaussian splat representation technique employing sensitivity-
aware vector clustering alongside quantization-aware training to compress
Gaussian parameters effectively. Zhang et al. [36] introduced a 2D Gaussian
representation for images, showcasing its ability to achieve rapid decoding
speeds. The main difference between us lies in the quantization method. Our
method utilizes K-means based vector quantization for covariance and color,
respectively. This allows for updates during training, enabling consideration
of quantization errors in the training process. In contrast, GaussianImage
employs a two-step compression procedure. After the image is overfitted,
GaussianImage requires attribute quantization-aware fine-tuning.

2.4 Model Compression

After obtaining INR, another key issue is model compression as models govern
the bitstream. Model compression aims to reduce the size and complexity of
neural networks [21, 10]. Notably, model pruning seeks to eliminate redundant
layers from neural networks [9, 14]. Weight quantization, another key method,
involves reducing the precision of weights and activations within the model [37,
26]. Similarly, knowledge distillation entails training a compact student model
to emulate the behavior of the original teacher model [14, 15]. Weight quanti-
zation stands out as a fundamental component of model compression. This
technique typically involves decreasing the precision of numerical values by rep-
resenting them with fewer bits, achieved through methods such as fixed-point
quantization and dynamic range quantization [6, 5].

3 Approach

3.1 Overview

The workflow of the proposed model is illustrated in Figure 1. Specifically, we
initialize these Gaussians by the sampled points from the image, which consists
of 4 attributes: position, anisotropic covariance (scale and rotation), color
coefficients, and opacity, resulting in a total of 9 parameters per Gaussian.
To represent these parameters compactly, we employ the K-means based
vector quantization approach. This involves designing a codebook for the
anisotropic covariance Σ, which includes both scale and rotation. For color and
opacity, we amalgamate them into a vector Vc that shares the same codebook.
Subsequently, we utilize an α-blending mechanism to determine the color values
of each pixel. Then, an adaptive dense control methodology is implemented
to dynamically adjust the quantity of Gaussians, facilitating automatic point
reduction or augmentation. Furthermore, the model minimizes the loss between
the ground truth and the blended value. This loss function comprises an ℓ1
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Figure 1: The workflow of the proposed scheme. It includes sampling and initialization,
K-means based vector quantization, α-blending, and adaptive dense control processes.

loss and a Structural Similarity Index (SSIM) loss, ensuring comprehensive
optimization of the entire model. After training, the codebook and indexes of
Vs and Vc, and the position parameter µ are quantized and compressed into
the bit stream. During the decoding phase, the bitstream is decompressed and
dequantized to obtain the decoded attributes of 2D Gaussians, which are then
blended to generate the decoded image.

3.2 Differentiable 2D Gaussian splatting

2D Gaussian is a basic image representation unit, which can be parameterized
by its position µ ∈ R2 and covariance matrices Σ ∈ R2×2 in the 2D space, as
follows:

G(x) = e−
1
2d

TΣ−1d, (1)

where d = x− µ, which is the displacement between the pixel center and the
center of the 2D Gaussian. Since the covariance matrix needs to be positive
definite, it is factored into a rotation matrix R ∈ R2×2 and scaling matrix
S ∈ R2×2 as Σ = RSSTRT for easier optimization [18], where the rotation
matrix R and the scaling matrix S are expressed as

R =

[
cos(θ) − sin(θ)
sin(θ) cos(θ)

]
, (2)

and
S =

[
s1 0
0 s2

]
. (3)

Here, θ represents the rotation angle. s1 and s2 are the scaling factors in
different eigenvector directions.

For each Gaussian, denoted by Gi, where i represents its index, we establish
a default order to perform the α-blending. Thus, the color value of a pixel
(C) is computed by blending all N 2D Gaussians contributing to this pixel
according to the formula:

C =
∑
i∈N

ciαi

i−1∏
j=1

(1− αj) , (4)
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where the variable αi is computed using the 2D covariance Σ and opacity oi:

αi = oi · exp(−σi), (5)

σi =
1

2
dTi Σ

−1di. (6)

3.3 Quantization

K-means based vector quantization. In this model, a significant challenge
arises from the necessity of employing numerous Gaussians to accurately
represent images, with each Gaussian characterized by 9 parameters, resulting
in considerable storage requirements. Consequently, this approach proves
inefficient for certain applications, particularly those deployed on edge devices.
In addition, it is common for 2D Gaussians to exhibit similarities in their
parameter values, such as covariance or color. To efficiently represent these
Gaussians while minimizing redundancy, vector quantization coupled with the
K-means algorithm is employed for attribute quantization.

We combine scaling and rotation parameters into a vector Vs ∈ RN×3,
which represents the covariance. Similarly, due to the lower sensitivity of
opacity, color and opacity values are encapsulated in a vector Vc ∈ RN×4. Each
vector serves as the fundamental unit in the K-means algorithm. Specifically, we
cluster Vs and Vc into k clusters, respectively. These vectors can be represented
using k vectors of size d along with N integer indices. Given that N >> k,
this approach offers substantial compression ratios. To minimize errors, we
update the centroids at each iteration following the K-means algorithm. Here,
the K-means optimization process empirically iterates through 10 iterations.
Parameter quantization. To further compactly represent the parameter,
we utilize post-training quantization (PTQ) [6], which enables us to adjust
the precision of the cookbook and position without the fine-tuning procedure.
The formula for quantization is presented below:

θi =

⌊
θi − θmin

S

⌉
∗ S + θmin, (7)

where
S =

θmax − θmin

2b − 1
. (8)

In this context, the term ⌊ * ⌉ signifies the process of rounding a given value to
the nearest integer. The variable “b” denotes the bit length for the quantized
model, while θmax and θmin represent the maximum and minimum values of
the parameter tensor θ respectively. The scaling factor is denoted by the
variable S, and each parameter can be assigned a value based on (7) and (8).
Following parameter quantization, we employ Arithmetic coding, a lossless



8 Zhang et al.

compression method, to compress the quantized parameters. Due to the
sensitivity of Gaussians to position, we empirically set them to 10 bits, while
other parameters are selected optimally under different bit lengths.

3.4 Adaptive dense control

Inspired by the adaptive dense control method [18], we augment the Gaussians
within both the under-reconstruction and over-reconstruction regions. In
this context, the under-reconstruction region encompasses small Gaussians
characterized by limited coverage. These Gaussians can be effectively managed
by replicating them at the same scale and adjusting their position along
the directional gradient. In contrast, the over-reconstruction region refers
to large Gaussians with significant coverage. We replace these Gaussians
with two new ones, scaling them down by a factor. These Gaussians can be
identified through positional gradients, as they correspond to regions that are
still inadequately reconstructed, prompting the optimization process to make
necessary adjustments to the Gaussians. Meanwhile, we regularly remove
Gaussians with o values less than ϵo, where ϵo is empirically set to 0.001.

4 Experiments

4.1 Training Data

We conducted experiments on the Kodak image dataset, which comprises 24
images with the size of 768× 512. We evaluate our model against three deep
image codecs, including Balle et al.’s model [3], Minnen et al.’s model [23], and
Cheng et al.’s model [8]. We also compare against the JPEG, BPG and VTM
image codecs. Furthermore, we compare with the implicit neural network,
COIN [11]. To benchmark our model, we leverage the CompressAI library
along with its pre-trained models. We implement our model in PyTorch and
perform all experiments on a single RTX3090 GPU.

4.2 Comparison Results

The results of this evaluation across various bits per pixel (bpp) levels are
depicted in Figure 2. It is evident that our model outperforms JPEG at low
bitrates. The visual quality comparison is depicted in Figure 3. Decoded
images from JPEG display noticeable blocking artifacts, whereas those from
our model showcase superior reconstruction performance at low bit rates.
Besides, we display all results in the Kodak dataset as shown in Table 1.
While our approach does not yet reach the level of state-of-the-art compression
methods, we consider its performance promising for future advancements in
this direction.
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Figure 2: Performance comparison of our approach and different baselines on Kodak dataset
in PSNR.

Ground Truth JPEG Ours

0.191/19.896

0.195/26.149
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0.183/27.183

0.190/27.608

Figure 3: Visual quality comparison of different methods on Kodak dataset. The values
below each image are coding bits(bpp)/PSNR(dB) values, where a higher PSNR value
represents better signal quality.
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Table 1: The result (PSNR and bpp) of every image in Kodak dataset.

Images PSNR bpp PSNR bpp PSNR bpp PSNR bpp
kodim01 19.193 0.042 19.869 0.064 21.029 0.126 21.962 0.190
kodim02 24.861 0.043 25.706 0.067 26.790 0.124 27.183 0.183
kodim03 23.226 0.043 24.506 0.066 26.470 0.130 27.608 0.190
kodim04 22.099 0.043 24.055 0.068 25.273 0.125 26.539 0.186
kodim05 16.625 0.040 17.541 0.067 18.702 0.120 19.574 0.174
kodim06 21.032 0.043 21.191 0.066 22.455 0.123 22.853 0.179
kodim07 20.448 0.043 21.272 0.067 23.175 0.121 24.341 0.179
kodim08 15.433 0.041 16.125 0.064 17.657 0.119 18.391 0.175
kodim09 21.593 0.041 22.914 0.065 24.800 0.121 25.841 0.180
kodim10 22.109 0.042 23.232 0.067 25.022 0.125 25.898 0.178
kodim11 20.719 0.041 21.786 0.068 22.956 0.128 23.728 0.188
kodim12 22.549 0.043 24.220 0.068 26.167 0.125 27.330 0.184
kodim13 17.762 0.042 18.256 0.066 18.857 0.128 19.207 0.184
kodim14 19.483 0.042 20.118 0.063 21.566 0.125 22.096 0.189
kodim15 20.954 0.041 22.809 0.065 24.864 0.123 25.880 0.185
kodim16 24.156 0.042 25.015 0.066 25.979 0.130 26.433 0.182
kodim17 22.174 0.042 23.264 0.068 24.707 0.128 25.540 0.189
kodim18 19.971 0.040 20.712 0.066 21.362 0.121 21.980 0.178
kodim19 19.758 0.043 20.999 0.067 22.302 0.127 23.033 0.183
kodim20 20.158 0.043 22.133 0.066 23.936 0.125 25.103 0.185
kodim21 19.955 0.042 21.009 0.066 21.876 0.121 22.692 0.188
kodim22 22.034 0.044 22.819 0.066 23.825 0.123 24.641 0.178
kodim23 22.107 0.040 23.609 0.067 25.099 0.130 26.152 0.189
kodim24 19.242 0.043 20.066 0.065 21.065 0.129 21.634 0.183
Average 20.735 0.042 21.801 0.066 23.164 0.125 23.985 0.183

4.3 Runtime Efficiency

Table 2 presents the computational complexity of various image codecs evalu-
ated on the Kodak dataset. Notably, our model demonstrates superior speed
in the encoding phase compared to COIN [11] and WIRE [28]. Furthermore,
the decoding speed of our proposed model outperforms that of the majority of
deep learning-based codecs, e.g., Balle et al.’s and Minnen et al.’s models.

4.4 Ablation Studies

We conducted ablation studies on the loss function, comparing our proposed
scheme (ℓ1 + SSIM) against using only the ℓ1 loss function. The results are
presented in Table 3, demonstrating that our proposed scheme outperforms
the ℓ1 loss function alone.

Moreover, we examined the impact of different k settings in the K-means
based vector quantization, as shown in Table 3. Our approach incorporates
adaptive k parameters, wherein larger k values are utilized for high bit rates,
while smaller k values are employed for low bit rates. Comparative analysis
against fixed k settings reveals that our proposed scheme consistently achieves
enhanced performance.
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Table 2: The comparison results of the encoding, decoding time, and model size on Kodak
dataset.

Models Encoding time Decoding time Model size (K)

JPEG 0.0195 0.0193 -

BPG 2.0338 0.1174 -

VTM 80.7570 0.1230 -

Balle et al. 0.0474 0.0431 19827.5117

Minnen et al. 3.1228 6.2187 55197.1367

Cheng et al. 4.4117 6.3423 46223.2383

WIRE 424.8000 0.0024 65.4033

COIN 336.6627 0.0011 7.2120

Ours 250.4321 0.0224 6.8664

Table 3: The comparison results of ablation studies. The anchor is our proposed scheme.

Loss k

ℓ1 16 32 64 128

5.7% 79.0% 22.2% 20.0% 20.3%

5 Conclusion

In this paper, we introduce 2D Gaussian splatting as a new technique for
image compression. Our experimental results demonstrate that this approach
can outperform JPEG at low bit-rates. Additionally, our model showcases
notably faster encoding speeds compared to INR-based image codecs, such as
CION and WIRE. We anticipate that continued research in this domain will
yield a new class of methods for neural data compression, offering promising
avenues for further exploration. Additionally, we aim to enhance both the
encoding and decoding speeds through CUDA programming.
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