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ABSTRACT
Due to the limitations of current dynamic point cloud compression
(DPCC) datasets, such as scarce categories, lack of detailed textures,
and minimal variation in point cloud sequence movements. We
present a comprehensive and diverse dataset, namely PKU-DPCC,
to address the need for more categories and scene diversity for
DPCC. Compared with the existing Moving Picture Experts Group
(MPEG) and Audio Video Coding Standard (AVS) PCC datasets,
the proposed dataset shows significant superiority in data scale,
diversity, and compression difficulty. Specifically, our PKU-DPCC
encompasses 50 dynamic point cloud sequences of six superclasses,
and each sequence consists of 250 frames with geometry and at-
tribute information and embodies the object or scene of a specific
subclasses in the real world. Besides the diverse data content,
samples in our dataset possess precise geometry details and various
motion patterns, catering to a wide range of testing requirements
in dynamic PCC. To construct this new dataset, we first collect
numerous 3D meshes and then check the quality of each sample,
resulting in 50 high-quality sequences for conversion to our final
point cloud dataset. Furthermore, we conduct precise annotations
for two scenarios of perceptible distortions and quality assessments
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on the provided point cloud data, which aims to broaden the range
of its applications. To facilitate a fast algorithm performance eval-
uation, we select a part of representative samples constituting a
subset, which has been adopted to the AVS PCC dataset. We
conduct lossless and lossy compression tests on both geometry and
attribute information from our subset to demonstrate the necessity
of our newly constructed dataset. Experimental results reveal that
the proposed dataset can become a new benchmark for evaluating
and improving dynamic PCC algorithms. Our dataset is publicly
available at https://openi.pcl.ac.cn/OpenDatasets/PKU-DPCC.

Keywords: Dynamic point cloud compression, compression dataset, K-means,
G-PCC codec, AVS PCRM software

1 Introduction

Point clouds refer to a collection of points within a Three-Dimensional (3D)
coordinate system. Each point represents a specific position in 3D space and
may encompasses additional information, such as color or intensity values.
Point clouds are generated from 3D scanning equipment like LiDAR sensors,
structured light scanning, and RGB-D camera [12], etc. A LiDAR system
emits laser beams and measures the time for these laser beams to bounce
back after striking a surface. These measurements determine the distance to
objects, creating a point cloud representation of the scanned scene or object.
Point clouds find extensive applications in various domains. For example, in
computer graphics, they are utilized to construct realistic 3D models of objects
or environments. In computer vision, point clouds are processed to extract
features, detect objects, or facilitate 3D reconstructions. In robotics systems,
they provide a 3D description of the environment, which is crucial for robot
navigation, obstacle avoidance, manipulation, and interaction. Moreover, they
hold significant value in application fields such as architecture, archaeology,
urban planning, and virtual reality, where the precise 3D representations of
real-world objects or spaces are indispensable

Point cloud data, characterized by its voluminous nature, especially when
derived from high-resolution cameras or sensors, necessitates the deployment
of point cloud compression (PCC) methods to manage and process large-
scale point cloud data effectively. This imperative stems from the need to
handle the sheer volume of data and the desire to exploit this data across
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various technological domains. PCC research is pivotal in developing efficient
algorithms and techniques to minimize the storage and transmission overhead
associated with point cloud data. Effective compression can drastically reduce
these requirements, leading to lower storage costs and enhanced efficiency in
data management. This is particularly beneficial for organizations that rely
on large-scale data collection, such as geographical information systems and
3D city modeling, where the economic and operational implications of data
storage are non-trivial [25, 42].

Furthermore, PCC plays a critical role in the context of data transmission.
By compressing point cloud data, the volume of data that needs to be trans-
mitted can be substantially reduced. This reduction is crucial for applications
that depend on real-time data transfer, such as telepresence in virtual reality,
live navigation updates in autonomous vehicles, and remote sensing for environ-
mental monitoring. In these scenarios, the ability to transmit data efficiently
over limited bandwidth becomes a key enabler of functionality and perfor-
mance. Moreover, the ongoing research and development in PCC catalyze
technological advancements in data compression and processing methodologies.
These advancements enhance the state-of-the-art in PCC and foster innovation
in related fields such as machine learning, computer vision, and spatial analysis.
In essence, PCC research is a cornerstone of modern data processing, enabling
leveraging point cloud data’s full potential. Through developing sophisticated
compression algorithms and techniques, PCC research drives the evolution of
digital technologies, paving the way for discoveries, applications, and efficiency
in an increasingly data-driven world.

The PCC algorithms can be divided into two main categories: geometry
compression and attribute compression. Geometry compression focuses on
the geometry properties of the point cloud, such as the position. Point cloud
geometry compression algorithms [38, 13, 37, 1, 14, 39, 34, 32, 35] reduce the
size of point cloud data by encoding and compressing the spatial locations of
points. These PCC algorithms commonly employ prediction, transform coding,
quantization, and entropy coding to eliminate redundancies within the point
cloud data. Point cloud attribute compression focuses on additional acquired
information of the point cloud, such as color, intensity, and texture. Attribute
compression algorithms [7, 27] utilize image compression algorithms or other
compression tools to remove the color redundancy among points. It is worth
highlighting that geometry and attribute data are often jointly compressed to
attain higher compression performance [47, 41, 14]. The design principles of
the compression algorithm depend on the characteristics of point cloud data,
application requirements, and the balance between rates and reconstruction
quality [26, 40, 32].

The international standardization organizations are currently investigating
PCC algorithms, including MPEG Geometry-based Point Cloud Compres-
sion (G-PCC) [22, 10, 15] and MPEG Video-based Point Cloud Compression
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(V-PCC) [46]. These organizations are dedicated to developing algorithms
to achieve PCC more effectively and efficiently. Generally, MPEG G-PCC is
a geometry-based compression standard initially focusing on static and dy-
namic acquired point clouds. It employs the coordinate and color quantization
approaches to achieve different compression rates according to various applica-
tion requirements. MPEG V-PCC is a video-based compression standard that
converts point clouds into a series of video frames and then compresses these
frames using existing compression algorithms or tools, such as Versatile Video
Coding (VVC) [3], High-Efficiency Video Coding (HEVC) [28] to achieve high
compression rate and reconstruction quality.

During the PCC process, the compression datasets play a vital role in
training and evaluating coding models. Additionally, it serves as a crucial
benchmark for assessing the effectiveness and performance of various com-
pression techniques. Table 1 summarizes their application fields, advantages,
disadvantages, and accessibility.

MPEG PCC datasets are created to evaluate and compare PCC algo-
rithms in standards. These datasets contain static and dynamic point cloud
from different sources, covering different scenarios and applications. Addition-
ally, they are acquired mainly through specialized equipment, such as LiDAR
scans, structured light scans, and RGB-D cameras. For example, Owlii1 [43],
Microsoft Voxelized Upper Bodies (MVUB2) [21], and 8i Voxelized Full Bodies
(8iVFBv23) [9] are acquired from RGB-D camera array [6, 18]. The advantage
of the MPEG PCC dataset is that it provides rich and diverse point cloud data
acquired from different types of equipment, which process high-quality data
and are suitable for different algorithm evaluations and research. However,
the number of MPEG datasets is small, and the coverage is relatively narrow.
The acquisition process of MPEG requires expensive professional equipment
and technology, which limits the expansion and popularity of the dataset.

Stanford Bunny4 [29] dataset is a classic point cloud dataset containing
a rabbit model. This dataset is commonly used to test and validate the
performance and effectiveness of point cloud processing algorithms, such as
reconstruction and completion. However, the dataset size is small, involving
only one model of point cloud data. For the research community, a dataset
with better diversity and complex scenarios is urgently required.

ShapeNet5 [5] and ModelNet6 [33] datasets are large-scale 3D CAD
model databases, which contain rich point cloud data. These datasets are

1https://mpeg-pcc.org/index.php/pcc-content-database/
owlii-dynamic-human-textured-mesh-sequence-dataset

2http://plenodb.jpeg.org/pc/microsoft
3http://plenodb.jpeg.org/pc/8ilabs
4http://graphics.stanford.edu/data/3Dscanrep/
5https://shapenet.org
6https://modelnet.cs.princeton.edu/

https://mpeg-pcc.org/index.php/pcc-content-database/owlii-dynamic-human-textured-mesh-sequence-dataset
https://mpeg-pcc.org/index.php/pcc-content-database/owlii-dynamic-human-textured-mesh-sequence-dataset
http://plenodb.jpeg.org/pc/microsoft
http://plenodb.jpeg.org/pc/8ilabs
http://graphics.stanford.edu/data/3Dscanrep/
https://shapenet.org
https://modelnet.cs.princeton.edu/
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widely used in the research field of computer vision and computer graphics.
However, the CAD models may have a simple geometry structure and textural.
The acquisition methods of these point cloud datasets mainly involve techniques
and equipment, such as LiDAR scanning, CAD, and mesh transformation.
These methods require specialized equipment support, and thus the datasets
are expensive to obtain. Meanwhile, there are limitations in the size and
diversity, which can only partially cover some applications and scenarios.
There is an urgent need for a scene and category point cloud dataset rich in
as a benchmark for compression testing.

Therefore, we introduce a comprehensive and diverse dynamic PCC dataset
to address the limitations existed in the dynamic PCC datasets. These
limitations include single-category, lack of fine texture, and limited motion
of point cloud sequences. Our proposed dynamic point cloud compression
dataset, namely PKU-DPCC, features abundant motions information, which
significantly increase the compression difficulty. Through the analysis of
bitrates in lossy and lossless compression, we observe that controlling the
bitrates is also challenging. The visualization of PKU-DPCC dataset is shown
in Figure 1, and it offers the following advantages.

• A curated dynamic PCC dataset, incorporating comprehensive geometry
and color information, consisting of 50 sequences that encompass a
diverse array of scenarios with intricate structures, great clarity, and six
superclasses, as shown in Figure 2.

• Each sequence consists of 250 frames, featuring a widely dynamic range
and offering various quantization levels covering from 9 to 15 bits. Ad-
ditionally, the dataset provides access to raw mesh data, which can be
conveniently sampled to obtain any desired number of points for different
requirements.

• To complement the dynamic point cloud sequences, a rigorous cluster-
ing approach is employed to select multiple samples, followed by many
comparisons of geometry and attribute compression performances us-
ing the AVS reference software and other learning-based compression
methods. These analyses effectively highlight the notable differences
between the newly constructed dataset and the other available dynamic
point cloud datasets in AVS and MPEG. Meanwhile, a part of samples
of PKU-DPCC have been adopted by AVS workgroup [36].
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Animal Architecture Artifact Furniture People Vehicle

Figure 1: The visualization of PKU-DPCC dataset exemplifies its diversity and richness.
PKU-DPCC encompasses six superclasses, each comprising various objects or scenes arranged
diversely. The visualization offers a overview of the dataset’s contents, effectively showcasing
the extensive array of objects and scenes it covers.

Figure 2: The superclass and subclass names included in the PKU-DPCC.
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2 Data Acquisition

2.1 Data Generation

When preparing 3D point cloud models for training or testing on point cloud
compression platforms such as MPEG G-PCC or V-PCC, we need to acquire a
large amount of high-quality mesh data, such as from Sketchfab7, and process
them in various ways. These processes include point cloud sampling at different
texture resolutions (4096). While the sampling rates of these mesh data are
generally consistent, the number of points in the sampled point clouds may
vary due to differences in the original data. Additionally, we save the sampled
data in different point cloud storage formats. Finally, we perform quantization
of the point cloud data at various bit depths. In this process, we refer to
MPEG’s distribution classifications for different datasets (e.g., Solid, Dense,
etc.) to cover a wide range of quantization levels, ensuring the data meets
the requirements of the compression tasks and is suitable for input into point
cloud compression tools.

2.2 Data Clustering

In our experimental setup, we deploy K-means clustering [19, 44, 8] to assess
the geometry and attribute compression ratios for each frame, utilizing the AVS
PCRM v11.0 platform under C4 (All-Intra) conditions to calculate compression
ratios. This approach allows us to create clusters with different K values,
such as 4, 6, 8, and 10. It enables us to select point clouds representing
various levels of compression difficulty. Meanwhile, we enrich the AVS dynamic
point cloud dataset by offering a broader range of compression ratios for
diverse algorithms. Upon removing the outlier point of Figure 3, the analysis
of the clustering outcomes shows a more focused data distribution. It is
noteworthy that the most favorable results emerge when clustering into eight
groups (K = 8), including identifying two additional outliers. This clustering
leads to six superclass datasets, in which a part of the subsets are selected as
auxiliary dynamic datasets for AVS standards. This selection is introduced
and explored in AVS proposal [36, 23], enhancing the dataset’s utility for
evaluating compression algorithms across a spectrum of difficulty levels.

3 Experiment Analysis

3.1 Test Condition

MPEG is embarked on developing geometry-based compression for dynamic
dense point clouds, expanding its focus beyond dynamic sparse point clouds.

7https://sketchfab.com

https://sketchfab.com
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(a) K=4 (b) K=6 (c) K=8

Figure 3: The clustering results of geometry and attribute compression ratios for different K
in K-means method. The compression ratios are calculated by AVS Point Cloud Reference
Model (PCRM) v11.0 [16] platform under C4 (All-Intra) conditions. We finally select a part
of sequences as the complementary sequences for the AVS dynamic point cloud dataset.

Dynamic dense point cloud coding may be the next research focus in AVS
PCC inter-frame coding. AVS PCC encompasses four Category 3 (Cat3) type
sequences: Basketball_player_vox11,
Dancer_player_vox11, Exercise_vox11, and Model_vox11. The upper of
Table 2 provides the basic information about these sequences. The lower of
Table 2 illustrates the fundamental characteristics of subset sequences selected
for AVS standard. (1) The six columns in the Table 2 represent the number of
point clouds, geometry quantization precision, number of frames, frame rate,
geometry peak, and attribute information. “Geometry CR” and “Attribute CR”
denote the lossless compression rates for geometry and attributes, respectively.
(2) Compared to the existing 8iVFB and Owlii datasets, our dataset has a
broader quantization range. As shown by the “Geometry CR” and “Attribute
CR” in Table 2, our dataset presents greater compression difficulty and more
complex data distribution. It encompasses a wider range of compression rates,
posing higher challenges for different compression algorithms.

Meanwhile, Figure 4 shows the visualization results of the selected point
clouds. These sequences serve as complementary to the existing AVS dataset.
Subsequent experiments highlight the distinctions between these subset se-
quences and the current AVS sequences, which substantiates the validity of
our proposed sequences.

We primarily focus on three key aspects to substantiate the suitability of
the dataset as a supplementary sequence for the AVS dynamic point cloud
dataset. These aspects are as follows: (1) Compression ratios: We evaluate
the compression ratios derived from the geometry and attribute of the selected
sequence, which effectively highlights the disparities between the newly added
sequences and the existing ones. (2) Rate distortion performance: By
examining the Rate Distortion (RD) curve, we assess the dynamic range
disparity and the distortion of the selected sequence in comparison to the
existing sequence. Notably, we observe a diminishing slope in the curve,
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（a）Woman （b）Girl （c）Caretaker （d）Lillian （e）House

（f）Wardrobe （g）Horned （i）Boat （j）Tiger（h）Vehicle

Figure 4: The visualization of the clustered point clouds. It reveals significant disparities
in category composition and data distribution compared to the original full-body human
point clouds (Owlii [43]). Moreover, we conduct empirical demonstrations highlighting these
differences, such as compression ratio and distortion.

indicating a reduction in distortion over time. (3) Variation analysis: To
ascertain the rationality of the selected sequences, we employ the frame-by-
frame variation analysis of our dynamic point cloud sequence. The magnitude
of variation differences between adjacent frames serves as a determining factor
for the appropriateness of the selected sequence. These investigations provide
compelling evidence for researchers seeking to incorporate our dataset as
valuable test sequence to their future endeavors.

The evaluation of compression performance for geometry and attribute
are specific reference software: MPEG Geometry Solid Test Model v1.0 (GeS-
TM) [17] as the inter-frame test benchmark, MPEG G-PCC8 TMC13 v21.0 [22]
for intra-frame test analysis, and MPEG V-PCC9 TMC2 v12.0 [46] for inter-
frame coding. The latest AVS Point Cloud Reference Model (AVS PCRM)
v11.0 [16] also assesses compression efficiency for geometry and attributes. The
following equation determines the Compression Ratio (CR) for geometry and
attribute compression:

CR =
Bits

3×BW × PN
, (1)

where “Bits” represents the size of the bitstream, “BW” is the bit width, and
“PN” is the point number of the input point cloud. Geometry distortion is
quantified using the Peak Signal-to-Noise Ratio (PSNR), Point-to-Point Geom-
etry PSNR (D1 PSNR), and Point-to-Point Geometry PSNR with Hausdorff
distance (D1H PSNR) [2]. Attribute distortion is assessed via PSNR for the

8https://github.com/MPEGGroup/mpeg-pcc-tmc13
9https://github.com/MPEGGroup/mpeg-pcc-tmc2

https://github.com/MPEGGroup/mpeg-pcc-tmc13
https://github.com/MPEGGroup/mpeg-pcc-tmc2
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YUV color components. Experiments are conducted on a desktop computer
with an Intel(R) Core(TM) i9-9900K CPU at 3.60GHz and 32GB of RAM.

3.2 Non-learning-based Lossless Compression

We present the experimental results in three categories, following the princi-
ples of progressing from non-learning to deep learning based methods, and
from geometry to attributes. The first category is non-learning-based lossless
compression methods. This category primarily uses traditional compression al-
gorithms to analyze the differences in compression rates between our proposed
dataset and other datasets from a lossless compression perspective. Since most
existing international and domestic standards focus on traditional compres-
sion algorithms, such as MPEG G-PCC and AVS PCC, we first analyze the
compression performance of these traditional algorithms.

For lossless compression, we utilize traditional encoding tools, such as
G-PCC, AVS PCRM, and Ges-TM software as our compression algorithms.
This approach allows us to compare the performance differences between
existing compressed datasets and our proposed dataset. The MPEG GeS-
TM [17] software utilizes MPEG Category 2 (Cat2) test sequence to compress
dynamic dense point clouds. While the Cat2 can be divided into easy-to-hard
levels based on encoding difficulty: A level (8iVFBv2: Loot_vox10, 8iVFBv2:
Solier_vox10, 8iVFBv2: Redandblack_vox10, Queen), B level (8iVFBv2:
Longdress
_vox10), and C level (Owlii: Basketball_player_vox11, Dancer_player
_vox11). Notably, the results in Figure 5 reveal the contrasting assessments
between G-PCC, AVS PCRM, and GeS-TM regarding the difficulty of point
cloud compression.

(a) GeS-TM v1.0 (b) G-PCC TMC13 v21.0 (c) PCRM v11.0

Figure 5: The scatter diagram of geometry and attribute compression ratios from various
inter-frame compression tools. The objective is to compare the disparities between the
existing AVS dataset and our proposed dataset. We acquire the compression ratios through
different approaches: (a) employs the MPEG Geometry Solid Test Model (GeS-TM) [17]
inter-frame test software. (b) utilizes the MPEG G-PCC software with an intra-frame
setting. (c) highlights the disparity in compression ratios between the existing AVS dataset
and our proposed dataset by AVS PCRM. The red box corresponds to the existing dynamic
point cloud sequences of AVS, while the remaining dots represent our proposed dataset.



PKU-DPCC: A New Dataset for Dynamic Point Cloud Compression 13

Table 3 presents the compression performance of V-PCC TMC2 v12.0 un-
der the CW condition (lossless geometry and lossless attributes compression).
By comparing the compression ratios and bit rate for the three levels of data
within Cat2, we observe a progressive increase in compression difficulty, with
the compression levels varying from low to high. We utilize the GeS-TM and
PCRM software to evaluate these datasets thoroughly to obtain compression
ratios and conduct scatter plot analyses. Figure 5 (a) exhibits the compression
performance of GeS-TM v1.0 under the Octree-RAHT-C1 condition, explic-
itly highlighting the lossless geometry and lossy attributes. Notably, the
Cat2 classification no longer adequately applies to geometry-based encoders
(e.g., G-PCC), as it represents highly dense human point clouds. Conversely,
geometry-based encoders demonstrate a more comprehensive applicability
range compared to V-PCC [4, 45]. They exhibit superior performance when
dealing with diverse point cloud categories, such as objects, buildings, and
landscapes.

Figure 5 (b) depicts the compression ratios for G-PCC TMC13 v21.0,
employing the Octree-RAHT-C1 conditions. By examining the scatter plots
of the compression ratio, we note minimal changes in the coding complexity
relationship among the different sequences after incorporating the inter-frame
coding tool. Furthermore, Figure 5 (c) shows that the four sequences within
Cat3 exhibit similar compression difficulties, as highlighted by the area enclosed
by the red box. However, our proposed new dataset (PKU-DPCC) exhibits
significant disparities compared to the existing sequences, encompassing diverse
categories, such as objects and buildings.

3.3 Non-learning-based Lossy Compression

The seond category considers the differences in attribute information. We
present the compression performance of traditional algorithms on our dataset.
Since existing learning-based attribute compression algorithms do not outper-
form traditional algorithms, we only showcase the performance of non-deep
methods in simultaneous geometry and attribute compression.

We perform an analysis on four AVS sequences and subset sequences of
PKU-DPCC using AVS PCRM V11.0 software. Meanwhile, we calculate the
geometry and attribute PSNR values for various bitstream sizes and generate
the RD curves, as shown in Figure 6. The distortion curves in Figure 6 (a)
and (b), based on D1 and D1H distortion measures, indicate a wider range of
distortion for our PKU-DPCC dataset compared to the same compression rates.
The performance difference becomes more pronounced at higher compression
rates. Figure 6 (c), (d), and (e) present the RD curves for the YUV components,
illustrating that our data exhibits a smaller slope and lower bitrates than the
four dynamic point cloud sequences in the AVS test condition.
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(a) D1 PSNR (b) D1H PSNR

(c) Y PSNR (d) U PSNR (e) V PSNR

Figure 6: The RD curves of the compression performance of the four AVS dynamic point
clouds sequences and the ten point clouds of PKU-DPCC sequences. (a) and (b) are the RD
curves of geometry compression in terms of D1 PSNR and D1H PSNR, respectively. (c), (d)
and (e) are the RD curves of attribute compression in terms of the YUV PSNR, respectively.

In summary, Figure 6 aims to demonstrate the compression differences
between our dataset and the MPEG dataset, indirectly showcasing the varying
levels of compression difficulty. The poorer compression performance of our
data indicates a higher compression difficulty, posing greater challenges for
both traditional algorithms and deep learning methods. These experiments
also highlight the value of our dataset to the compression community.

3.4 Learning-based Lossy Compression

The third category is learning-based lossy compression methods. This category
focuses on the latest state-of-the-art (SOTA) lossy compression algorithms
based on deep learning. We analyze the RD curves from a lossy compression
perspective and demonstrate the compression challenges presented by our
dataset.

We conduct single-frame and multi-frame point cloud compression tests
on a selected batch of PKU-DPCC. This batch of data is selected based on
clustering results, with representative data chosen from each major category
(superclasses) for experimentation. The chosen point clouds include the fol-
lowing four sequences: Animated_Woman, Tiger_Animation, Walking_Man,
and Wooden_Boat. Specifically, Animated_Woman and Tiger_Animation
are quantized to 10 bits, while Walking_Man and Wooden_Boat are quantized
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to 11 bits. For the multi-frame dynamic compression evaluation, the first 32
frames from these four sequences are extracted as test sequences.

For the lossy single-frame point cloud compression, we select representative
learning-based compression methods for comparison, including the sparse
convolution-based methods PCGCv210 [31] and SparsePCGC11 [30], as well
as the residual coding based method GRASP-Net12 [24]. D1 (Point-to-Point
Distance) PSNR and D2 (Point-to-Plane Distance) PSNR [20] are used as the
evaluation metrics. These results of the single-frame lossy compression are
shown in Figure 7, which indicates the following performance ranking: PCGCv2
> GRASP-Net > SparsePCGC > AVS PCRM > G-PCC. It demonstrates
that our PKU-DPCC quantized to 10-bit and 11-bit range, presents a greater
compression challenge compared to the conventional MPEG datasets.

For lossy dynamic point cloud compression, we employ the learning-based
methods, including PCGCv2 and D-DPCC13 [11] for comparison. The overall
compression performance is depicted in Figure 8. The compression performance
on dynamic point clouds ranks as follows: V-PCC > PCGCv2 > D-DPCC.
These results suggest that our dataset has a broad dynamic range, making
compression more challenging for most learning-based methods like D-DPCC.
Therefore, we recommend incorporating the proposed PKU-DPCC dataset into
the compression performance tests of learning-based point cloud compression
methods and standards.

3.5 Dynamic Range Analysis of Sequences

We perform a dynamic sequence analysis on the selected data, demonstrating
the relationship between the number of frames and the total bitstream size
in Figure 9. The entire bitstream encompasses the attribute bits, geometry
bits, and head information bits. This analysis confirms the dynamic nature
of our proposed sequences. The experiment exhibits significant diversity and
encompasses a broad scope of motion amplitudes. For instance, Figure 9
(a) demonstrates the varying range of motion within the Animated_Woman,
spanning from subtle to substantial and ultimately stabilizing. Figure 9
(b) indicates uniform motion and insignificant variation. Figure 9 (c) and
(h) depict intermittent movements characterized by both forceful and gentle
actions. Figure 9 (d) and (f) show that the mid-term movement is intense,
and the front and back are more moderate. Figure 9 (e) reveals a smooth
initial motion followed by a sudden, substantial jump. Figure 9 (g) presents
irregular motion information. Figure 9 (i) portrays a progression from smooth
to violent and back to smooth motion. All these result analyses indicate that

10https://github.com/NJUVISION/PCGCv2
11https://github.com/NJUVISION/SparsePCGC
12https://github.com/InterDigitalInc/GRASP-Net
13https://github.com/ttlzfhy/D-DPCC

https://github.com/NJUVISION/PCGCv2
https://github.com/NJUVISION/SparsePCGC
https://github.com/InterDigitalInc/GRASP-Net
https://github.com/ttlzfhy/D-DPCC
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(a) Animated_Woman D1 PSNR (b) Animated_Woman D2 PSNR

(c) Tiger_Animation D1 PSNR (d) Tiger_Animation D2 PSNR

(e) Walking_Man D1 PSNR (f) Walking_Man D2 PSNR

(g) Wooden_Boat D1 PSNR (h) Wooden_Boat D2 PSNR

Figure 7: The RD curves of lossy geometry compression using the learning-based networks
on selected single-frame point clouds from PKU-DPCC. With the metric measurements by
D1 PSNR and D2 PSNR, respectively.



18 Xie et al.

(a) Walking_Man D1 PSNR (b) Animated_Woman D1 PSNR

(c) Walking_Man D2 PSNR (d) Animated_Woman D2 PSNR

Figure 8: The RD curves for the dynamic lossy geometry compression, employing various
methods on two selected 32 frame point clouds from PKU-DPCC dataset.

our data (PKU-DPCC) possesses a good dynamic range, presenting greater
challenges for dynamic point cloud compression algorithms and coding tools.
The dataset also indicates that we have contributed an excellent benchmark
to the point cloud compression community.

4 Conclusion

We introduce a distinctive dynamic point cloud dataset, namely PKU-DPCC,
which comprises of multiple subclasses with substantial dissimilarities. PKU-
DPCC possesses distinct appearance characteristics and abundant motion
vector information. Furthermore, its intricate nature presents challenges for
compression, rendering it ideal as a test dataset for evaluating dynamic point
cloud compression algorithms. By leveraging this dataset, we address the
scarcity of diverse dynamic point cloud types and contribute to its enrichment.
We demonstrate the versatility of our proposed dataset, by evaluating its per-
formance across different lossless compression ratios of geometry and attribute,
lossy compression PSNR of geometry and attribute, distortion levels analysis,
and dynamic ranges analysis, etc. Meanwhile, the dataset we proposed has also
been adopted and utilized by the AVS standard working group. In the future,
we plan to expand PKU-DPCC to support various compression applications,



PKU-DPCC: A New Dataset for Dynamic Point Cloud Compression 19

(a) Animated_Woman (b) Caretaker_Shack (c) Young_Girl

(d) Horned_Devil (e) Little_House (f) Lillian_Vgdc

(g) Tiger_Animation (h) Light_Vehicles (i) Wooden_Wardrobe

Figure 9: The relationship between frame rate and total bits. This bits include the attribute
bits, geometry bits, and header information bits. Meanwhile, the proposed dataset highlights
the dynamic nature of the collected data. Each frame in the test data occupies a unique
bit size and displays diverse motion information. Additionally, these figures show that the
motion vector is hard to predict. (a-i) illustrate the bitstream fluctuation range across 64
frames of the selected subset data sequences.

including point cloud quality assessment and just noticeable difference (JND)
prediction of static and dynamic point clouds coding.
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