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ABSTRACT
In the realm of digital communications, steganography and ste-
ganalysis have become a solution for securely exchanging covert
information. This survey initiates with an exploration of the widely
used passive-warden scenario model, analyzing its significance, key
performance indicators, relevant databases, and clarifying some
commonly misunderstood fundamental concepts associated with
this model. Subsequently, the paper comprehensively examines the
evolution and current state of digital image steganography and ste-
ganalysis, highlighting the transition from traditional handcrafted
based methods to sophisticated deep learning based techniques de-
veloped over the past two decades. It offers thorough descriptions
and evaluations of typical methods in both steganography and
steganalysis, with a particular emphasis on deep learning-based
techniques that have emerged in recent years. Furthermore, the
survey identifies significant challenges currently faced in translat-
ing theoretical research into practical applications. By integrating
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these insights, the survey not only charts the historical development
and technological advancements in steganography and steganalysis
but also establishes a proactive agenda for future research aimed
at enhancing security in covert communications.

Keywords: Steganalysis, steganography

1 Introduction

The primary goal of steganography is to facilitate secure, undetectable commu-
nication, thereby preventing any suspicion about the transmission of a hidden
message. Unlike traditional cryptography, which protects information by en-
crypting the content into a seemingly indecipherable format, steganography
hides the existence of the communication itself, embedding messages within
ordinary, non-suspicious data. Historically, the practice of steganography dates
back to ancient times when ingenious methods were used to hide messages. As
the world transitioned into the digital age, particularly with the proliferation
of internet and the rise of digital media, these developments have dramatically
altered the landscape of steganographic practices, shifting them from the
physical to the digital domain. Digital steganography utilizes sophisticated
algorithms to conceal secret information within multiple digital formats such
as text, audio, images, and video files. Subsequently, these files with embed-
ded secret information are transmitted via public channels to achieve covert
communication. In recent years, the increasing instances of covert communi-
cation through steganographic technologies have highlighted its growing use
in both harmless and harmful contexts. This has raised concerns about the
privacy and security aspects of these technologies. Concurrently, steganalysis
technologies have emerged, and the field of steganalysis has developed as an
essential countermeasure to identify and assess steganographic methods. Ste-
ganalysis primarily employs advanced techniques, including statistical analysis,
machine learning, and pattern recognition, to detect differences in carrier files
before and after secret information has been embedded, thereby identifying
steganographic operations. This interaction is akin to a cat-and-mouse game.
As shown in the timeline diagram of typical steganographic and steganalysis
methods over the past two decades in Figure 1, the fields of steganography
and steganalysis have significantly advanced by continuously evolving their
techniques through ongoing competition.

In the late 20th century, image steganography based on LSB (Least Signifi-
cant Bit) replacement and matching became fundamental in digital steganog-
raphy. LSB replacement overwrites the LSB of pixel to correspond with
message bit. This method introduced the structural asymmetry - specifically,
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Figure 1: Timeline diagram of typical steganographic and steganalysis methods over the
past 20 years. Note that the methods depicted in blue font are based on handcrafted-based
techniques, while those in orange font represent deep learning-based approaches.

never decreasing even pixels and never increasing odd pixels when hiding
data, which can be easily detected by simple statistical methods [36, 30, 71].
Some techniques like [40] developed to attack this form of steganography, even
when the modification rate is as low as 0.0005 per pixel. In contrast, LSB
matching involved adjusting the pixel value by either increasing or decreasing
it by one to match the message bit, effectively overcoming the structural
asymmetry issue. It is crucial to recognize that these naive methods often
assume that the LSB of an image is random enough. Thus, the selection
of embedding positions in a cover image relies on a pseudorandom number
generator, which can introduce noticeable embedding artifacts, particularly
in flat or uniform areas of the image, thereby compromising security. Several
steganalysis algorithms [133, 76, 42, 70, 62, 107] proposed to detect LSB
based steganography, achieving high detection accuracy. In response to these
vulnerabilities, researchers have developed content-adaptive steganography
methods to enhance the security. For instance, Luo et al. firstly proposed an
edge-adaptive steganographic algorithm [106] (called “Edge” for short), which
prioritizes embedding secret information into content edges while preserving
smooth regions from modifications. Compared with previous LSB based meth-
ods, this approach significantly improved the imperceptibility and security.
Consequently, more and more researchers have begun to focus on the impact
of image content on steganography security.

In previous steganographic methods, we typically need to manually estab-
lish the embedding rules and the modification positions to ensure that the
extractor could accurately retrieve the secret message. In 2007, Fridrich et al.
introduced a general and efficient framework [39] for developing steganographic
schemes that minimize the statistical impact of embedding. This framework
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simplifies the design of steganography into two main steps: first, designing
an embedding cost for each unit, where the cost indicates the difficulty of
detecting modifications after embedding: the higher the cost, the easier the
detection; second, applying certain coding methods, such as Syndrome-Trellis
Codes (STC) [34] and Steganographic Polar Codes (SPC) [93] techniques,
for data hiding while minimizing the total embedding costs of pre-assigned
embedding units. At the receiver end, the recipient does not need to be
aware of the specific steganographic modifications or embedding costs at all.
Instead, they can directly extract the secret information from the stego image
using the corresponding decoding rules. In 2010, HUGO [120] emerged as the
first method to adopt the minimal distortion framework to construct content-
adaptive steganography. HUGO primarily achieves resistance to steganalysis
based on second-order features by designing a distortion function that consid-
ers the impact of pixel modifications on feature perturbation. Compared to
earlier LSB-based methods, HUGO significantly enhances security performance.
Subsequently, a series of content-adaptive steganographic methods appeared,
such as WOW [53], UNIWARD [56], HILL [78], CMD [79], UERD [47], Mi-
POD [132], and J-MiPOD [18], which progressively improved the security
performance of image steganography. Like HUGO, these methods are based
on this framework and primarily focus on designing the embedding costs in
the first step. To achieve high security, the main idea of these methods was
to assign small cost values to image areas that are difficult to model, while
assigning large cost values to easily modeled areas such as regular textures
and flat regions. However, the setup of these embedding costs and certain
rules primarily depend on human experience, which significantly limits the
improvement of steganographic security due to human factors. Since 2016, the
advancement of deep learning methods [75], especially convolutional neural
networks (CNNs) has led to significant interest in applying deep learning
to image steganography, culminating in the development of methods like
ASDL-GAN [154] , the first deep learning-based steganographic approach that
employs generative adversarial networks (GANs) for automated embedding
cost learning. Although the security performance of ASDL-GAN still does not
match that of traditional steganography like S-UNIWARD, it has introduced a
novel approach to steganography research. Unlike methods that manually set
embedding costs, deep learning-based steganography is data-driven and is bet-
ter able to learn embedding costs. Since then, a variety of deep learning-based
steganographic methods have emerged, which can be categorized into two main
categories: adversarial sample-based methods for adjusting the embedding
costs of existing steganographic algorithms, such as ADV-EMB [152], Min-max
[3], MAE [98] and USGS [99], and GAN-based methods for automatically learn-
ing the embedding costs of images, such as ASDL-GAN [154], UT-GAN [187],
Steg-GMAN [60] and its asymetry version (asym Steg-GMAN) [61]. Currently,
modern deep learning-based steganography methods have surpassed traditional
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techniques that relied on manually set embedding costs, thus becoming the
dominant trend in steganography research.

Similar to the development trajectory of steganography, early steganalysis
methods that contended with the minimal distortion steganography framework
still relied on handcrafted statistical features. These features were designed
to detect changes in the statistics of various high-frequency components and
the correlations between image pixels (or DCT coefficients) caused by stegano-
graphic manipulations. In 2010, the Subtractive Pixel Adjacency Matrix
(SPAM) method [119] was developed, which was particularly effective for de-
tecting LSB matching steganography. However, as content-adaptive steganog-
raphy methods based on the distortion minimization framework evolved, the
performance of SPAM needed further improvement. In 2012, Fridrich et al.
[37] introduced the Spatial Rich Model (SRM), which derived features from a
series of different image high-frequency components and incorporated ensemble
classifiers [66] for classification. SRM has become one of the most classic
algorithms in steganalysis, influencing many subsequent methods based on
both handcrafted-based and deep learning-based approaches. Within the rich
model family, representative works in the spatial domain include tSRM [153],
maxSRMd2 [25], and in the JPEG domain, JRM [72], DCTR [54], GFR [136],
and PHARM [55]. Though methods incorporating local binary pattern (LBP)
features like TLBP [77] and the Reverse JPEG Compatibility Attack (RJCA)
[11] were later proposed, the rich model family had numerous relevant research
until the advent of deep learning. In 2014, Tan et al., recognizing structural
similarities between deep neural networks and SRM, firstly introduced a deep
steganalysis framework called Stacked Convolutional Auto-Encoders (SCAE)
[144], achieving detection results comparable to SPAM. Since then, deep
learning-based steganalysis technology has developed rapidly. By integrating
knowledge from the field of steganalysis, various modules, including specialized
preprocessing layers, activation layers, and pooling layers, have been intro-
duced and designed. Representative works include spatial domain models such
as GNCNN [122], XuNet [181], YeNet [191] , Yedroudj-Net [194], SRNet [6],
WISERNet [206], CovNet [28], ZhuNet [212], SiaStegNet [195], and CVTSteg-
Net [103], JPEG domain models like J-XuNet [182], ZengNet [205], as well as
the universal models UCNet [167]. Notably, in 2016, XuNet outperformed rich
models in steganalysis for the first time, and in 2019, SRNet became the first
fully end-to-end, data-driven deep learning steganalysis model, independent
of any handcrafted feature-based knowledge. It is worth noting that in the
Kaggle ALASKA II competition [17], novel deep learning models from the
field of computer vision were widely applied to steganalysis. This success is
attributed to pretraining on large-scale datasets like ImageNet, which enabled
effective transfer to JPEG steganalysis tasks, surpassing the performance of
SRNet. Inspired by this, Butora et al. [12] generated the JIN dataset based on
ImageNet for pretraining JPEG steganalysis models, significantly enhancing
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their performance in JPEG steganalysis tasks. Since then, some new deep
learning frameworks, such as EfficientNet [143], Transformer [172, 101], etc.,
has been quickly used for steganalysis. In 2022, Luo et al. [103] first utilized
Transformers for steganalysis and proposed CVTStegNet based on a CNN-
Transformer architecture. From the early SPAM with 686-D features to the
SRM with 34,671-D features, and now to deep learning networks with complex
structures and large parameter sizes, the performance of steganalysis has
progressively improved alongside advancements in steganography techniques.
Currently, deep learning-based methods have surpassed handcrafted-based
methods, becoming the mainstream in steganalysis. However, in the pursuit
of higher accuracy, models have become increasingly complex and redundant.
To address this issue, Tan et al. proposed two specialized steganalysis model
compression frameworks, CALPA-Net [146] and STD-Net [145], aimed at
reducing model redundancy while maintaining high accuracy.

The above content briefly reviews the history and key developments in
steganography and steganalysis. For a deeper exploration, this survey will
analyze and discuss these fields in detail, following the pipeline outlined in
Figure 2. The subsequent sections are arranged as follows: Section 2 outlines
the preliminaries of image steganography. Sections 3 and 4 then present typical
steganographic and steganalysis techniques, respectively. Section 5 explores
the challenges currently faced in the fields of steganography and steganalysis.
Concluding remarks are provided in Section 6.
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2 Preliminaries

In this section, we first introduce the model of image steganography within
the passive-warden scenario. Next, we outline the key evaluation criteria
for steganography and steganalysis within this scenario. Following this, we
describe the image databases commonly used in steganography and steganalysis.
Lastly, we present some concepts related to steganography, and provide a brief
comparative analysis of these concepts.

2.1 Model Within the Passive-Warden Scenario

As illustrated in Figure 3, a common model used to explain the dynamics
and interactions of steganography and steganalysis involves three characters:
Alice, Wendy, and Bob. Alice is the sender who wants to communicate a secret
message M to Bob. She uses steganography to embed this message within
an innocuous-looking carrier X, such as an image, video, or audio file, using
a secret key K. The objective is to keep the hidden message undetectable
to anyone except the intended recipient. Wendy, serving as the adversary
or steganalyst, uses various steganalyzers to detect the presence of hidden
information in cover, or even disrupts their communications. Bob, the intended
recipient, uses a corresponding decoding technique and key to extract the
hidden message M ′ from the carrier file Y ′, which may be disrupted by the
transmission channel or Wendy. The ongoing challenge between Alice’s evolving
steganography techniques and Wendy’s efforts to detect them underscores a
continuous dance of concealment and discovery. In their dynamic interplay,
both steganography and steganalysis have experienced a spiral enhancement,
constantly pushing the boundaries of each other’s capabilities.

Cover X Stego 𝒀

Embedding

Secret Message 𝑴

Secret Key 𝑲

Lossless Channel

Stego 𝒀

Extracting

Secret Message 𝑴

Secret Key 𝑲

Alice Wendy Bob

Steganalysis

Figure 3: The relationship between image steganography via cover modification and ste-
ganalysis

In this paper, we focus on image steganography via cover modification1

within the passive-warden scenario, where the transmission channel is lossless,
1Typically, there are three different fundamental architectures that determine the internal

mechanism of the embedding and extraction algorithms in steganography: steganography
by cover selection, by cover synthesis, and by cover modification [38]. Among these,
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and the adversary, Wendy, solely monitors communications without making
any modifications on Y , hence Y = Y ′. In this scenario, the fundamental
principle of steganography involves embedding a secret message M into a given
cover image X by altering specific embedding units, such as pixel values in
the spatial domain and DCT coefficients in the JPEG domain, according to
predefined modification rules Emb(·) and a key K. This process results in a
stego image Y containing the secret information as follows:

Y = Emb(X,M,K)

When Bob receives the resulting stego image Y ′(= Y ) via lossless channel, he
can recover the corresponding secret message using the extraction function
Ext(·):

M ′ = Ext(Y ′,K) = Ext(Y,K) = M

It is important to note that existing steganographic methods within the
passive-warden scenario do not consider robustness metrics. If the channel
experiences loss (i.e., Y ′ ̸= Y ), these methods cannot guarantee the correct
extraction of the hidden message M at the receiver’s end. In such cases,
consideration of the active-warden scenario, which is beyond the scope of this
paper, becomes necessary.

2.2 Evaluation Criteria in Steganography and Steganalysis

To ensure covert communication, steganography must guarantee that the
cover X and the stego image Y are visually indistinguishable. To this end, the
majority of steganographic algorithms make only minor modifications (typically
±1) to the embedding units. In addition, the extent of these modifications is
relatively small, primarily determined by the amount of secret information to
be embedded. Typically, the embedding payload is measured by metrics such as
bpp (bits per pixel), bpc (bits per channel), and bpnzac (bits per non-zero AC
coefficient). Moreover, modern steganographic methods often embed the secret
information in regions of the image with relatively complex content. These
methods therefore impose specific constraints on the amplitude, quantity,
and location of modifications to maintain the fidelity of the stego image.
Consequently, unlike other data hiding techniques, such as watermarking, most
current steganography studies do not provide metrics like PSNR or SSIM since
these values are generally high, as illustrated in Figure 4.

It is essential to recognize that, although it is difficult for the human eye to
distinguish cover image and its corresponding stego image, the steganography
modifications inevitably alter some inherent statistical characteristics within
the cover image X. This change, particularly in the correlation properties

steganography primarily embeds secret information by modifying the embedding units of
the cover; this approach is the most extensively studied paradigm in steganography today.
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(a) Cover(Bitmap) (b) Stego(S-UNIWARD) (c) Modification Map

(d) Cover (JPEG) (e) Stego(J-UNIWARD) (f) Modification Map

Figure 4: Illustration of the cover image (i.e., (a) is a bitmap and (d) is a JPEG image of QF
90), stego image (i.e., (b) and (e) are the stego obtained by S-UNWARD and J-UNIWARD
at 0.4 bpp/bpnzAC, respectively), and the corresponding modification map using two typical
steganographic methods: S-UNIWARD in the spatial domain and J-UNIWARD in the JPEG
domain. In the examples shown, the modification rates are 7.65% and 9.19%, respectively,
with PSNR values of 59.26dB and 52.77dB before and after steganography.

among adjacent embedding units, introduces detectable artifacts. These
alterations form the basis for detection by steganalysis methods, which typically
analyze statistical differences in images before and after steganography using
techniques such as statistical analysis, deep learning, and others to identify
them. Consequently, steganalysis is essentially treated as a specialized binary
classification problem, distinct from other image classification tasks due to the
visually imperceptible nature of its objects (cover and corresponding stego).
Steganalysis primarily focuses on detecting statistical differences caused by
minor modifications to a small number of embedding units, presenting a binary
classification challenge centered on weak signal detection.

Like other binary classification tasks, the detection accuracy PA is widely
regarded as the most crucial criterion for evaluating the performance of ste-
ganalysis (as well as steganography). It is defined as:

PA = 1− PE (1)
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where PE denotes the average detection error, further defined as:

PE = (
FP

TN + FP
+

FN

TP + FN
)/2 (2)

Here, FP refers to the number of cover images misclassified as stego images,
TN represents the number of cover images correctly classified as cover images,
FN indicates the number of stego images misclassified as cover images, and
TP refers to the number of stego images correctly classified as stego images.

For steganalysis, a higher detection accuracy PA signifies a stronger dis-
criminative ability of the steganalysis method. Conversely, for steganography,
a lower detection accuracy PA (equivalent to a higher detection error PE)
indicates a higher security performance of the steganographic method.2

The embedding payload is the most important factor that affects the de-
tection error PE . Typically, as the embedding payload increases, the detection
error PE correspondingly decreases. According to experimental results in ex-
isting literatures, when the embedding payload exceeds 0.40 bpp/bpnzac/bpc,
the detection errors PE evaluated on the mainstream databases BOSSBase [1]
and BOWS2 [2] for most existing steganaographic methods become relatively
low (less than 10%) as detected by the current best steganalysis methods,
indicating that these steganographic methods are no longer secure. Therefore,
under the passive-warden scenario, high embedding capacities are typically
not pursued, generally staying at 0.4 bpp/bpnzac/bpc or less. At this em-
bedding rate, imperceptibility can be maintained, so the focus is more on the
steganographic security.

2.3 Databases in Steganography and Steganalysis

Standard image databases are essential for testing and comparing the per-
formance of emerging algorithms, ensuring that advancements in the field
are measurable and reproducible. Table 1 provides a brief overview of the
databases commonly used in steganography and steganalysis.

Prior to 2018, the datasets predominantly utilized for steganography and
steganalysis were BOWS2 [2] and BOSSBase [1]. Both datasets consist of
10,000 grayscale images with dimensions of 512×512, covering a variety of
image types such as life scenes, scenic spots, and buildings. BOWS2 dataset
was developed for a watermarking competition. BOSSBase, created by B.

2In addition to detection accuracy (error), several other evaluation criteria are used,
including wAUC (weighted Area Under the Curve of the Receiver Operating Characteristic)
[12], MD5 (Missed Detection at a 5% False Alarm Rate) [20], and FP50 (False Positive Rate
at 50% Missed Detection) [20].

3Data available at: http://bows2.ec-lille.fr/
4Data available at: http://agents.fel.cvut.cz/boss
5Data available at: https://alaska.utt.fr/
6Data available at: https://github.com/YangzlTHU/IStego100K
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Table 1: Datasets commonly used in steganography and steganalysis research, along with
their specific details

Dataset Number Sizes Type Format Year

BOWS2 3 10,000 512×512 Grayscale PGM 2007

BOSSBase 4 10,000 512×512 Grayscale PGM 2011

ALASKA II 5 80,005 17 different sizes Grayscale
& Color

PGM &
PPM &
JPG

2019

IStego100K 6 208,104 1024×1024 Color JPG 2019

Patrick et al., was specifically designed for the HUGO steganalysis competition.
We need to note that these fixed-size images are derived from full-resolution
RAW data through subsequent processing steps such as image demosaicking,
conversion to 8-bit grayscale, downsampling, and center-cropping. These post-
processing steps, especially with various downsampling methods, can leave
significant artifacts, impacting steganographic security [73]. We should keep
in mind that these public databases have different statistical properties of
neighboring pixels compared to natural images.

With the advancement of steganalysis, especially those involving deep learn-
ing techniques, a small number of image samples are often insufficient. Deep
learning models require large datasets to effectively learn complex stegano-
graphic patterns and prevent overfitting. In 2019, two larger image databases
were constructed to meet these needs: ALASKA II [17] and IStego100K [190].
ALASKA II, created by Remi et al. for the Steganalysis Challenge, aims
to provide a large and diverse dataset of photographic images to bridge the
gap between laboratory research and real-world applications. This dataset
primarily includes images of landscapes, buildings, and everyday scenes, and
features 17 different image sizes. It contains 80,005 images in each of the sizes
256×256 and 512×512, and also includes a set of 80,005 images in various sizes
(M = N , both M and N are in {512,640,720,1024}, where M and N denote
the width and height of the images, respectively) to facilitate the analysis of
steganography in images of arbitrary sizes. Meanwhile, Yang et al. developed
and released IStego100K, a dataset containing over 200,000 images with di-
mensions of 1024× 1024. This collection includes stego images obtained using
various steganographic methods and parameters, such as embedding payload
and quality factor. The dataset is designed to promote the development of
universal steganalysis techniques. Subsequently, there are a number of related
steganalysis methods [64, 48, 121] using this dataset for experiments.

Furthermore, some research teams have improved the performance of
steganographic and steganalysis methods by constructing their own image
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databases or utilizing established databases from the field of computer vision.
For instance, Tang et al. [154] developed proprietary database SZUBase (not
available online), comprising 40,000 full-resolution raw images captured by
various cameras. Similarly, Butora et al. [12] selected 896,357 images of
256×256 size from the ImageNet dataset7 to investigate the effect of pre-
training model.

2.4 Comparison of Related Concepts

In recent years, some steganographic techniques have emerged that differ from
the research scenario of this paper, such as generative steganography [224, 100,
225] and robust steganography [218, 87, 207]. To clearly differentiate from these
techniques, we refer to our research scenario as “Dominant Steganography” in
this section. This term highlights that, based on a rough estimate from the Web
of Science, over 90% of current steganography research focuses on the scenario
examined in this paper (i.e., steganography by cover modification within
the passive-warden scenario), which significantly overshadows other types
of steganography. Additionally, concepts often confused with steganography
include watermarking [22, 38]. The collective relationship among these research
directions is depicted in Figure 5. It is important to recognize that these areas
share significant overlap and utilize similar technical methods. However,
they differ fundamentally in their philosophical bases, which influence their
requirements and, consequently, the design of their solution techniques. In the
following, we will briefly distinguish between these concepts.

• Information Hiding: Information hiding (or data hiding) is a broad
concept that involves concealing any form of information within a host
medium, making it undetectable or inaccessible to unauthorized parties.
Its goals are to maintain the confidentiality and integrity of information
across diverse applications. Therefore, both watermarking and various
forms of steganography can be considered as techniques of information
hiding tailored for specific applications.

• Watermarking: Watermarking involves embedding markers in mul-
timedia content for purposes such as copyright protection, content au-
thentication, and traceability, among others. Depending on the specific
application requirements, watermarking techniques can be categorized
into robust, fragile, and semi-fragile watermarks, and so on.

• Dominant Steganography: Dominant steganography involves embed-
ding a secret message within a cover by altering the embedding units in a
way that is imperceptible, thereby facilitating covert communication. Its

7Available at: https://image-net.org/download.php
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Dominant 

Steganography

Watermarking

Robust

Steganography
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Steganography

Steganography

Others

Information Hiding

Others

Figure 5: Venn diagram illustrating the relationships among information hiding, water-
marking, and steganographic techniques, including dominant steganography, generative
steganography, and robust steganography.

design requirements emphasize security, specifically by evading detection
from existing steganalysis tools. This is the main research scenario of
this paper.

• Generative Steganography: Generative steganography, a type of
steganography by cover synthesis, primarily employs deep learning meth-
ods such as Generative Adversarial Networks (GANs) and diffusion
models to create carriers that inherently contain the hidden information.
To maintain security, it is crucial that images generated with and without
secret information appear to belong to the same probability distribution.
Research shows that there are significant statistical differences between
Artificial Intelligence Generated Content (AIGC) and natural images
captured by devices like cameras or cellphones. Detection algorithms,
such as those proposed by Xi et al. [176] Wang et al. [160], and Luo
et al. [108], can effectively distinguish between these types of images.
Therefore, generative steganography typically evaluates the security by
comparing generated images with and without secret messages rather
than comparing with natural images.

• Robust Steganography: Robust steganography is somewhat akin to
robust watermarking in that the technique aims to fortify steganographic
methods against common multimedia processing operations such as
JPEG compression, making the hidden information resilient to destruc-
tion. Additionally, unlike robust watermarking, robust steganography
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also needs to consider security against steganalysis. Current reports
suggest that, due to the inclusion of robustness requirements, its secu-
rity performance is significantly lower than of dominant steganographic
methods at the same embedding capacity, especially evaluated on the
modern deep learning-based steganalyzers.

3 Image Steganography

As previously introduced, modern image steganography predominantly follows
the minimum distortion framework [39]. In this framework, the steganographic
design methodology comprises two primary steps: designing the embedding
cost function and implementing message embedding using specific encoding
techniques, as illustrated in Figure 6. Over the past decade, significant research
in image steganography has focused on the first step, with efforts concentrated
on developing increasingly complex and advanced cost functions to enhance
steganographic security. The existing methods for measuring distortion (or cost)
can be divided into additive and non-additive categories. Additive distortions
assume independence among the embedding units in an image, meaning the
overall distortion of the cover image equals the sum of the individual embedding
unit costs. In contrast, non-additive distortions, such as [33, 79, 26], account
for interactions among embedding units. In practice, cover images are typically
segmented into disjoint sublattices, with each calculating distortions and
embedding secret information independently. This segmentation allows for
cumulative distortion from all sublattices, as changes in one sublattice can affect
subsequent calculations in neighboring areas. Currently, additive distortions
are the most prevalent. Once the costs are defined, the second step commonly
utilizes existing encoding techniques, particularly Syndrome-Trellis Codes
(STC), for information embedding. Based on the methods used to design
the embedding costs, steganography methods are generally classified into two
categories: handcrafted cost-based and deep learning-based approaches. The
subsequent sections will explore those representative methods from each of
these categories.

3.1 Handcrafted Cost-based Steganography

Handcrafted cost-based steganography typically follows the steps illustrated
in Figure 7 for embedding cost design. Firstly, the statistical features S of
the cover image X are obtained through methods such as variance estimation
and residual extraction. These features reflect the texture and complexity
characteristics of each embedding unit within the cover image. Based on these
characteristics, a distortion for each embedding unit is calculated according
to specific rules, resulting in the embedding cost ρ. This process underscores
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Figure 6: Illustration of the minimum distortion framework for image steganography in
spatial domain.

the heavy reliance on manually set rules in this type of steganography. For
example, the choice of model for estimating local variance in an image, the
selection of high-frequency filters and their parameters for residual extraction,
and the method of defining the distortion for an embedding unit based on
the statistical feature S are all manual factors that significantly influence
the steganographic security. Thus, different embedding cost functions can be
obtained based on various experiential settings.
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Figure 7: Illustration of the process of embedding cost design using a handcrafted based
steganography.

In spatial domain, HUGO [120] is the first steganography method within
the minimal distortion framework, and it significantly outperforms previous
LSB based steganography. WOW [53] used the directional high-pass filtering
to design the cost function. Building upon the WOW, HILL [78] constructed
a high-pass filter and two low-pass filters to calculate the costs, making
their distortion distribution more concentrated. UNIWARD [56] defined the
embedding distortion as a sum of relative changes of coefficients calculated by
a directional filter bank, which can be applied in an arbitary domain, with
its spatial domain version being S-UNIWARD. MiPOD [132] introduced an
additive distortion measurement that ensures limited detectability under a
multivariate generalized Gaussian model. Chen et al. [15] tried to magnify the
cover image first to highlight fine details before calculating the distortion with
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exsiting steganographic methods. CPP [223] combined various steganographic
methods, redefining controversial pixels to improve security performance. Filler
et al. [33] proposed an non-additive framework based on the Gibbs sampler to
search for the optimal embedding schemes. To be specific, it divides the image
into many disjoint sub-images and then embeds multiple times iteratively with
additive distortion measurement on the sub-images, ensuring that the distortion
satisfies a certain specific distribution. CMD [79] and Synch [26] both proposed
the strategy of synchronizing modification directions when adjusting the initial
distortion calculated from existing methods, which further enhance the security.
DeJoin [215] improved the modification strategy of synchronous neighboring
embedding by analyzing and defining the joint distortion between image pixel
blocks. ASYMM [59] proposed a novel model-based steganographic scheme to
reduce dependency on heuristic parameters. By applying the idea of Gibbs
sampler, the adjacent embedding information is incorporated to optimally
embed message into each sub-lattices. Su et al. [138] proposed a Gaussian
Markov random field based model to capture the correlation of locally adjacent
pixels, thus generating symmetric embedding probabilities. CMD-C [151]
introduced the synchronous concept of CMD into color images, guiding pixels
at the same positions in different color channels to be modified in the same
direction, thereby capturing the correlation between color channels. ACMP
[96] considered inter-channel correlations in color images, using a strategy that
adjusts channel modification probabilities for payload distribution. GINA [159]
aligned the R and B channel modifications with the G channel and adaptively
distributes embedding capacity across all three channels.

For JPEG image steganography, the corresponding version of UNIWARD,
known as J-UNIWARD [56], achieved high security at that time. UED [46]
tried to ensure that embedding modifications are uniformly distributed across
discrete quantized DCT coefficients, minimizing the changes in first and
second-order statistics of image DCT coefficients after embedding. UERD
[47] comprehensively considered factors such as block complexity and DCT
coefficient mode to determine distortion, which further improves time complex-
ity compared to UED. Wang et al. [162] proposed a cost function combining
block fluctuation and quantization step. Wei et al. [168] proposed a cost
function combining block residuals and quantization step, and it can effectively
resist residual detection. J-MiPOD [19, 18] extended the MiPOD in spatial
domain for JPEG image. DCDT [139] employed a generalized Distortion Cost
Domain Transformation (DCDT) function to calculate the distortion cost.
When equipped with HILL, DCDT outperforms other JPEG steganographic
schemes such as UERD in resisting detection by GFR and SCA-GFR. Chen
et al. [16] enhanced the cost function of JPEG steganography by leveraging
microscale textures. Linear unsharp masking serves as the microscope, and
an inter-block spreading rule is introduced to further enhance security. BBC
[92] introduced non-additive JPEG steganography by suppressing block effects
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caused by inter-block modifications. BBM [158] enhanced existing additive
JPEG steganography methods by controlling modification directions at differ-
ent positions within DCT blocks to minimize the changes in DCT coefficients
to spatial pixel values, and combining with the BBC method further enhances
JPEG steganography. Wang et al. [161] adjusted the existing embedding cost
using DCT block similarity and channel similarity, resulting in a significant
improvement in security. Recently, Li et al. [90] first used a deblocking method
to construct an optimal polar map selection strategy, then design a modulation
method based on statistical models to better utilize the optimal polar map
in the quantized Gaussian embedding model. Butora et al. [8] introduced a
JPEG steganography method that utilizes side information to constrain the
boundary of the likelihood ratio test for a decompressed JPEG image. This
is achieved by minimizing the Kullback-Leibler divergence between the cover
and stego distributions.

Unlike the process as illustrated in Figure 7 , Chen et al. [13, 14] proposed
a method to minimize the residual distance between stego and cover images
through a stego post-processing strategy, thereby enhancing steganography
security. Additionally, Li et al. [89] proposed the ISteg algorithm based on
artificial immune systems and immune evolution models, employing intelligent
optimization search to post-process the cover-stego images generated by ex-
isting steganography algorithms to produce immune steganographic images
that minimize the distance to cover image features, Subsequently, Li et al.
[88] proposed an immune image steganography method that utilizes fuzzy
enhancement and artificial immune systems to achieve adaptive enhancement
of texture regions and edge regions. Ye et al. [192] presented a residual-guided
learning method for image steganography.

In Table 2, we provide a summary of representative handcrafted cost-based
image steganography methods.

Table 2: Summary of representative handcrafted cost-based image steganographic methods

Domain Method Year Highlight

Spatial

HUGO 2010 First method to adopt minimal
distortion framework

WOW 2012 Use the directional high-pass fil-
tering to design cost function

HILL 2014 A high-pass filter and two low-
pass filters to calculate the costs

JPEG

J-UNIWARD 2014 Modification of positions with
small perturbations in the dis-
tributional properties of JPEG
coefficients

UERD 2015 Block complexity and SCT co-
efficient mode to determine dis-
tortion

J-MiPOD 2020 Extend the MiPOD for JPEG
image
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3.2 Deep Learning-based Steganography

Recently, deep learning technology has significantly impacted various fields
of artificial intelligence, including image steganography. Positioned at the
intersection of image processing and pattern recognition, image steganography
has seamlessly integrated into this technological wave. Unlike traditional
handcrafted techniques, methods based on deep learning rely less on manual
expertise and more on data-driven processes, enabling autonomous derivation
of embedding cost functions. Consequently, steganography utilizing deep
learning has become the dominant research direction in this field, with some
modern methods surpassing traditional ones to achieve state-of-the-art security.
Currently, the derivation of cost functions primarily utilizes three approaches:
adversarial examples, GANs, and deep reinforcement learning, which will be
explored in subsequent sections. Finally, we will introduce some recent deep
learning-based information hiding techniques developed in recent years that
may be employed in image steganography to enhance security.

3.2.1 Steganography Based on Adversarial Examples

Currently, mainstream steganalysis methods rely on architectures based on
convolutional neural networks (CNNs). Effectively evading detection by these
CNN-based steganalyzers is key to enhancing the security of modern image
steganography algorithms. Szegedy et al. [141] discovered that making imper-
ceptible changes to input samples can lead neural networks to output incorrect
classification results with high confidence. These intentionally modified sam-
ples, aimed at attacking neural networks, are known as adversarial examples.
Numerous studies have indicated that adversarial examples have generalization
properties, meaning that an example generated for a specific neural network
(targeted network) can also affect other neural networks or machine learning
models that rely on manual features to some extent. Adversarial examples
expose the vulnerability of existing machine learning models and also provide
new avenues for enhancing the security of steganography methods by reducing
the discriminative ability of steganalysis tools. In the following, we first present
the basic framework of steganography based on adversarial examples, and then
highlight some typical works in this area.

Basic Framework: The basic framework for steganography using adversarial
samples is illustrated in Figure 8. This framework consists of two main steps:
pre-training a steganalyzer and adversarial adjustment. In step #1, we begin
by collecting a cover set Cp and then use an existing steganographic method
Sinit to obtain the original embedding cost set ρCp . Subsequently, we generate
the corresponding stego set Sp using STC. Based on the cover set Cp and
stego set Sp, we train a deep learning-based steganalyzer (also referred to as a
targeted steganalyzer). In step #2, for each cover image X (not included in Cp),
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we first extract the original embedding cost ρ using the existing steganography
method Sinit. We then use the resulting targeted steganalyzer in step #1 to
guide the adjustment of the embedding cost ρ, resulting in a modified cost ρ′.
Finally, the stego image Y can be generated using the adjusted embedding
cost. It is evident that steganography based on adversarial examples essentially
involves enhancing an existing steganographic method. This enhancement
is achieved by adjusting the existing embedding costs using a pre-trained
deep neural network steganalyzer. The main difference among most related
algorithms lies in the strategies used to adjust the embedding cost in the
second step. Additionally, the choice and number of targeted steganalyzers, as
well as the specific initial steganography method to be enhanced in the first
step, significantly impact the security of the final steganographic method.

Cover X Initial Cost 𝝆 Stego Y

𝑺𝒊𝒏𝒊𝒕(∙)

STC

Adjusted Cost 𝝆′

Step #2: Adversarial Adjustment

𝑺𝒊𝒏𝒊𝒕(∙)
Cover Set 𝐶𝑝 Stego Set 𝑆𝑝

STC

Targeted Steganalyzer

Step #1: Pre-Training a Steganalyzer
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Figure 8: Diagram of the basic framework for image steganography using adversarial
examples

It should be noted that due to the vulnerabilities inherent in deep neural net-
works, adjusting existing embedding costs can effectively counter the targeted
steganalyzer used in the first step. Therefore, when evaluating steganographic
methods based on adversarial examples, it is necessary to either retrain the
targeted steganalyzer or employ other steganalysis models to analyze the
security performance.

Typical Works: Ma et al. [110] introduced the adversarial example tech-
nique into image steganography. This method selectively modifies the flipping
direction of binary STC embedding units based on the gradients of the target
neural network with respect to the cover image, generating adversarial exam-
ples. Experimental results demonstrate that this method effectively deceives
the targeted steganalysis network, although it becomes ineffective once the tar-
geted network is retrained. Building on this, Ma et al. [109] further developed
the technique by modifying the softmax output probabilities to specific vector
values and adjusting the embedding cost of existing steganography methods
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based on the gradient of the cover image according to these vector values.
This expansion of the adversarial example technique applies to ternary STC
embedding. Zhang et al. [219] iteratively utilized adversarial example tech-
niques and controlled the intensity of adversarial noise to construct enhanced
cover images. These enhanced cover images using existing cost functions for
embedding, and possess higher security than the original cover images. CAAS
[105] is also a method for enhancing cover images against adversarial attacks.
It adaptively generates perturbations based on the texture information, gra-
dients, and image segmentation methods of the cover image, resulting in an
enhanced cover image and improving the security of steganography. Existing
adversarial example-based steganography methods enhance existing manually
crafted cost functions to achieve higher security than the original methods.
ADV-EMB [152] randomly divided embedding units and secret information
into two disjoint parts in the same proportion. After embedding partial secret
information into the first part of embedding units with original embedding
costs, it adjusts the embedding costs of the rest embedding units and facilitates
the embedding of the remaining secret information. The division ratio is an
important parameter in ADV-EMB, and the parameter is tested from small
to large until the generated cover image can deceive the targeted stegana-
lyzer. AEN [111] first removed the checkerboard pattern of the gradient of
the cover image and normalizes the processed gradient of the cover image,
thereby constructing an adaptive adversarial modification embedding cost
intensity based on this normalized cover gradient. However, this method
has limited improvement on spatial steganography security and cannot be
applied to JPEG image steganography. MAE [98] proposed to use a mixed
gradient of the cover image and its corresponding multiple stego images to
determine the modification direction of the embedding cost, and carefully select
the embedding cost to be modified based on the amplitude of the gradients
and the original embedding cost. This method can effectively enhance the
security performance of existing spatial steganography methods by modifying
less than 6% of the embedding cost. SGS [135] proposed a new adversarial
embedding framework for stego image generation and selection. This method
first generates multiple candidate stego images by randomly adjusting the
original embedding cost and then selects the final stego image by minimizing
the high-pass residual distance between the cover image and the stego im-
age. The method can enhance the security of spatial steganography methods.
USGS [99] proposed a stego image generation and selection method based
on the adversarial embedding framework. This method can generate more
diverse candidate stego images and simultaneously use high-level features (the
ability to deceive targeted models) and low-level features (minimizing residual
distance) of steganalysis to select the final stego image. USGS can enhance
both spatial steganography and JPEG steganography, and its enhancement
effect is much better than that of SGS. ESGS [82] improved the cover image
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selection method based on the SGS method. It selects the final stego image
by minimizing the steganalysis feature (i.e., SRM) distance between the stego
image and the cover image. This method can enhance the security of spatial
steganography. ITE-SYN [127] initially embedded using CMD, then randomly
selects a sub-image at each iteration to adversarially adjust the cost and
re-embed until the resulting stego image can successfully deceive the targeted
discriminator. Additionally, the strength of perturbation gradually increases
with each iteration, ensuring minimization of adversarial perturbation strength.
Backpack [4] iteratively attacks the targeted steganalyzer, updating embedding
cost using gradient descent and employing a min-max strategy to find the
optimal stego image during iterations. JAS [31] first computed joint costs and
adjusts costs based on joint gradients feedback from the targeted steganalyzer,
enhancing the security of existing steganography methods based on joint costs.
Xie et al. [178] mapped the original embedding costs to 0 and 1, thereby
dividing the cover image into embedding and non-embedding regions. They
further adjust the costs of embedding regions based on gradients, resulting in
new embedding costs. This method greatly enhances steganography security
while maintaining low computational complexity. GEAP [126] introduced the
adversarial embedding mechanism into color image steganography by changing
the adversarial loss of each sub-image color pixel vector, effectively resisting
targeted steganalyzers based on deep networks. Min-max [5, 3] proposed a
new adversarial embedding iterative strategy based on ADV-EMB. During
the iterative process, this method uses a min-max strategy to select the appro-
priate stego image, i.e., selecting the stego image that is the most difficult to
be detected under the strongest steganalyzer. JS-IAE [115] proposed a new
adversarial embedding iterative strategy. In each round, this method carefully
selects a portion of embedding cost to be modified, and the modification is
based on the embedding cost of the previous round rather than the original
embedding cost in each round as in ADV-EMB.

3.2.2 Steganography Based on GANs

Generative Adversarial Networks (GANs) [43] constitute an innovative deep
learning framework involving two neural networks: a generator and a discrim-
inator. These networks engage in a game-like scenario where the generator
aims to create fake data that appears real, and the discriminator strives to
distinguish between real and generated data. This adversarial interaction
enhances the quality of the generated outputs, making GANs highly effec-
tive for tasks like generating realistic images, enhancing photos, and creating
art. The adversarial game between the generator and discriminator in GANs
parallels the interaction between steganography and steganalysis. Modeling
steganography and steganalysis using neural networks could leverage the GAN
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mechanism to enhance the security performance of steganographic methods
(i.e., improving their ability to evade detection by steganalysis discriminators).
Unlike steganography based on adversarial examples, which heavily depends
on existing steganography methods, GANs offer a fresh perspective on im-
age steganography, capable of learning embedding probabilities from scratch.
Although research in GAN-based image steganography is still in its infancy
and limited, its potential has already garnered significant attention. In the
following sections, we will first outline the basic framework of steganography
utilizing GANs, and then explore some key works in this field.

Basic Framework: The basic framework for steganography using GANs is
illustrated in Figure 9. This framework includes two main components: a
steganographic generator and a steganalysis discriminator. The generator aims
to generate a simulated stego image Y from an input cover image X. It is
important to note that to minimize the steganography modifications and to
utilize STC for actual information embedding, the generator does not generate
the stego Y directly from the cover X. Instead, it employs a probabilistic
generation network, often structured like U-Net, to transform the cover X
into an embedding probability map P (rather than embedding cost ρ). This
map is then processed by an STC simulator, which simulates information
embedding to produce an embedding modification map M . This map M is
then superimposed on the input cover image X to form the stego image Y .
On the other side of the GAN, the discriminator is tasked with distinguishing
between the generator-produced stego image Y and the input cover image X.
Given the availability of numerous effective CNN-based steganalysis networks
in steganalysis, these networks are often adapted for and integrated directly
into the discriminator. Consequently, most research based on GANs focuses
on the design of the generator, especially the probabilistic generation network
aspect.
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Stego Y
U-Net Architecture
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Simulator
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Figure 9: Generative adversarial network-based image steganography framework in the
spatial domain.

Once the training of the GAN is complete, the trained generator is used
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to generate the probability map P for each input cover. This map P is then
transformed into the embedding cost ρ based on the following formula. Finally,
STC is used to embed the secret message, resulting in the final stego image.

ρ+i,j = ln(1/(p+i,j + ϵ)− 2),

ρ−i,j = ln(1/(p−i,j + ϵ)− 2),

ρ0i,j = 0.

(3)

where p+i,j and p−i,j (p+i,j = p−i,j = pi,j/2 for symmetric scenarios) denote the
embedding probabilities for modifications of ±1 at the (i, j)-th position of the
probability map P , respectively. Meanwhile, ρ+i,j , ρ

−
i,j , and ρ0i,j represent the

corresponding embedding costs for modifications by +1, -1, and 0. Additionally,
a small value, ϵ, is added to prevent division by zero, typically set to 10−5.

Typical Works: ASDL-GAN [154] is the first method to apply GANs to im-
age steganography in spatial domain. Its generator comprises a 5×5 high-pass
filter and 25 layers of 7×7 convolutional filters. The discriminator features
a 5×5 high-pass filter followed by the steganalyzer of Xu-Net [181]. Ex-
perimental results demonstrate that through iterative learning, ASDL-GAN
increasingly directs steganographic modifications towards areas of the image
with more complex textures. However, the security performance of the result-
ing stego images still does not match that of the traditional S-UNIWARD.
Expanding on ASDL-GAN, Yang et al. developed UT-GAN [187], which
incorporates a U-Net-based generator to produce embedding probability maps
and includes a TanH-simulator for approximating the STC embedding process.
Additionally, the use of multiple high-pass filters in the discriminator has
been implemented. Experimental results indicate that UT-GAN surpasses the
traditional S-UNIWARD in terms of security. Wu et al. [171] enhanced the
UT-GAN generator by integrating multiple intermediate feature maps into
the U-Net architecture and increasing the maximum feature channel count
to 256. This modification enables the creation of more complex embedding
probability maps, resulting in improved security performance over both ASDL-
GAN and the original UT-GAN. Li et al. [81] further refined the UT-GAN
generator by introducing cross-feedback channels between the upsampling and
downsampling segments of the network. This enhancement allows the detailed
information gradients to be better integrated throughout the model, enhancing
the quality and security of the steganography. Unlike previous methods that
utilize a single steganalyzer in the discriminator, Steg-GMAN [60] employed
multiple steganalyzers and adopts an adaptive strategy for updating model
parameters. During the training phase, each iteration focuses on updating
the weakest steganalyzer in the discriminator and utilizing the gradient from
the strongest steganalyzer to refine the generator. This approach strives
to maintain a balance between the generator and discriminator, enriching
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the gradient information supplied to the generator and significantly boosting
steganographic security. Building on Steg-GMAN, Huang et al. [61] introduced
a new architecture featuring an asymmetric dual-branch generator network,
along with an innovative adversarial loss function. This loss function prompts
the generator to incorporate features such as image residuals, embedding
probability graphs, and gradient symbols. The aim is to effectively target
textured regions within cover images and employ gradient symbols to confront
the discriminator, thus promoting asymmetric embedding cost learning and
achieving the highest level of security in the spatial domain. JS-GAN [188]
represented the first GAN-based steganography for JPEG images, facilitating
end-to-end training through the integration of an IDCT module and a sim-
ulated embedding module. However, its security performance is somewhat
inferior to traditional JPEG steganography methods. Building on JS-GAN,
JS-GAN (ESI) [185] employed a CNN network to estimate the original spatial
domain image, thereby acquiring estimated edge information. Utilizing this
information to tailor the learned embedding costs asymmetrically, it achieves
superior security compared to J-UNIWARD.

3.2.3 Steganography Based on Reinforcement Learning

Reinforcement learning (RL) is a distinct machine learning paradigm, differing
from supervised and unsupervised learning. Central to RL is an agent that
interacts with an environment to make decisions by observing its state, taking
action, and receiving a reward. This process repeats across multiple rounds,
allowing the agent to accumulate a sequence of rewards. The objective of
RL is to devise an optimal policy that maximizes the total reward obtained
from the environment. RL has demonstrated its effectiveness in exploring
policies through a trial-and-error approach and has been applied in various
fields, including gaming, robotics, and autonomous driving. Despite its rapid
advancement in these areas, the application of RL in steganography remains
relatively undeveloped. In this section, we begin by outlining the basic RL
framework applied to steganography, followed by a discussion of some typical
works in this field.

Basic Framework: The basic framework for steganography with RL is illus-
trated in Figure 10. In this framework, the agent represents the steganographer,
while the environment represents the steganalyst. The agent’s goal is to learn
the optimal policy for embedding secret messages to maximize the reward.
The environment assigns rewards based on the security performance of the gen-
erated stego image, linking the reward to factors such as the ability to counter
steganalyzers and preserve image texture. Under this RL framework, the
agent dynamically updates the steganographic policy through a trial-and-error
process until a secure steganographic embedding policy is achieved.
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Figure 10: Basic framework for image steganography using reinforcement learning.

Under this RL framework, two essential properties can be employed to
learn embedding costs. First, the non-differentiable mechanism can be utilized
to construct a sampling-based simulator. This simulator can replace the
neural network-based simulator in GANs, generating discrete modifications
during the feedforward process and propagating significant gradients during
the backpropagation process. In this context, the agent adopts a one-step
Markov Decision Process (MDP), with the policy being updated by policy
gradients [140]. Second, the framework facilitates the processing of sequential
signals. Notably, the one-step MDP can be extended to a multi-step MDP,
which is capable of formulating sequential signals. Here, the agent sequentially
modifies the embedding costs across multiple steps to achieve optimal security
performance. In this case, the Asynchronous Advantage Actor-Critic (A3C)
framework [114] is utilized to learn the policy.

Typical Works: Tang et al. [148] proposed a cost learning method called
SPAR-RL based on existing GAN-based steganography methods. This method
treats the steganographic generation network and steganalysis network in
GAN steganography as the policy network and environment network, and
replaces the neural network-based simulator in GAN with the sampling-based
simulator in RL. Experimental results show that this method can enhance the
security performance of existing GAN-based steganography methods. JoPoL
[150] utilized SPAR-RL to generate initial embedding probabilities, then
combines probabilities within neighbouring units with the attention module to
capture the correlation of embedding units within blocks, thus generating joint
embedding probabilities for non-additive steganography. Subsequently, Tang
et al. [149] extended the spatial SPAR-RL method to JPEG steganography,
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which can simultaneously extract both inter-block and intra-block features for
DCT coefficients. PICO-RL [91] directly learned embedding costs based on the
SPAR-RL structure and applies the optimal probability approximation module
to obtain embedding probabilities for different embedding rates, enabling
efficient end-to-end training and further improving the model universality.
RLAE [104] adjusted the embedding costs of existing steganography methods
based on reinforcement learning principles. Both the pre-trained steganalyzer
and image residuals are utilized to calculate the reward function. Mo et al.
[116] proposed MCTSteg, which formulates the process of adjusting embedding
costs for different embedding units as MDP, and adjusts their embedding
costs by Monte Carlo Tree Search. Subsequently, they propose an A3C-based
method called ReLOAD [117], wherein the asymmetric additive distortion is
optimized for minimizing the embedding effects on image textures. Results
show that this additive method can even outperform non-additive methods.

In Table 3, we provide a summary of representative deep learning-based
image steganography methods. Furthermore, we have provided a comparison
of the parameters and FLOPs (floating point operations) for typical deep
learning-based steganography methods, as shown in Table 4.

3.2.4 Other Related Methods

Unlike the basic framework shown in Figure 9, some other related works
utilizing GANs bypass learning embedding probabilities and instead directly
focus on learning information embedders and extractors. For instance, Hayes
et al. [50] first designed steganographic network models with steganographic
information encoders, steganographic information decoders, and steganalyzer,
allowing the network to perform multitask learning under the goal of accurately
reconstructing secret information and adversarial steganalysis, enabling the
network to directly output cover images and extract secret information. Zhu et
al. [226] also used a similar structure to implement image information hiding,
introducing noise layers during training to make secret information extraction
robust to operations such as Gaussian blur and JPEG compression. Zhang
et al. [213] proposed ISGAN, hiding grayscale images in color images and
generating steganographic images with semantic and color similarity to the
cover image and enhancing security through adversarial training. Zheng et al.
[221] proposed a composite perceptual steganography method, integrating rule-
based combination methods and generative adversarial networks to synthesize
more natural steganographic images and achieving better performance than
ISGAN. Zhang et al. [211] proposed SteganoGAN, a high-capacity steganogra-
phy based on GAN. The encoder proposed residual and dense structures to
improve the visual quality of the cover image and the accuracy of information
extraction. This method achieves a maximum embedding rate of 4.4 bpp,
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Table 3: Summary of representative deep learning-based image steganographic methods

Domain Method Year Highlight Categories

Spatial

ASDL-GAN 2017 The first method to apply
GANs to image steganog-
raphy

GAN

UT-GAN 2019 U-Net-based generator,
TanH-simulator and
multiple high-pass filters
in the discriminator

GAN

SPAR-RL 2020 Pixel-level rewards Reinforcement learning
MAE 2021 Mixed gradient of the

cover and stego
Adversarial example

Steg-
GMAN

2023 Multiple steganalyzers
and an adaptive update
strategy

GAN

asym Steg-
GMAN

2023 Asymmetric dual-branch
generator and an innova-
tive loss function

GAN

ReLOAD 2023 Minimizing the impact of
embedding on image tex-
ture

Reinforcement learning

JPEG

JS-GAN 2019 End-to-end training
through an IDCT and a
simulated embedding

GAN

JS-GAN
(ESI)

2021 Edge information estima-
tion with a CNN

GAN

JEC-RL 2021 Domain Transformation Reinforcement learning

Both

ADV-EMB 2019 Division ratio for dividing
the embedding units

Adversarial example

Min-max 2020 Min-max strategy to se-
lect the appropriate stego
image

Adversarial example

MCTSteg 2021 Monte carlo tree search Adversarial example
Backpack 2022 Update embedding cost

with gradient descent
Adversarial example

USGS 2022 Stego generation Adversarial example

and the visual quality and extraction accuracy of the cover image exhibit
certain generalization performance on different databases. Tan et al. [142]
introduced channel attention mechanisms into the generator and extractor
to guide embedding and extraction on important channels, improving the
quality and extraction accuracy of the cover image. Additionally, this method
introduces error correction codes to reduce the error rate. Yuan et al. [204]
adopted a structure similar to SteganoGAN and added an attack module to
generate adversarial perturbations using a pre-trained network and added
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Table 4: Summary of parameters and FLOPs for representative steganographic methods

Method Parameters FLOPs

ASDL-GAN 1.77×105 10.80×109

SPAR-RL 2.60×106 0.42×109

UT-GAN 2.60×106 0.42×109

MCTSteg 4.77×106 5.95×109

MAE 6.21×105 22.99×109

USGS 6.21×105 390.85×109

JoPoL 1.41×105 1090×109

ReLOAD 7.51×106 0.90×109

Steg-GMAN 7.64×106 208×109

Asym Steg-GMAN 1.83×107 535×109

them to the cover image to achieve the goal of adversarial attack. Additionally,
the cover image is embedded with secret information using a per-pixel depth
fusion method to improve the visual quality of the cover image. Based on
diffusion model, Peng et al. [118] proposed a generative image steganography
technique based on a denoising diffusion probability model to achieve large-
capacity and distribution-preserving secret data hiding, showing outstanding
performance in steganography capacity and extraction accuracy. Recently, Cui
et al introduced meta learning into deep image hiding and proposed MSM-DIH
[23]. Please note that all the methods mentioned above primarily function as
forms of information hiding technology. They mainly emphasize enhancing
the information embedding capacity and maintaining the visual quality of
the stego image, rather than guaranteeing the complete extraction of secret
information. Additionally, their security is generally considered weaker than
that of traditional steganographic methods under the same embedding payload.

4 Image Steganalysis

As described in Section 2.2, the task of image steganalysis is a specialized
binary classification problem aimed at distinguishing visually indistinguishable
cover and stego images. Steganalysis detection is based on the principle that
steganography inevitably disrupts the inherent statistical properties of the
cover image, even though the steganographic modifications to the image em-
bedding units are typically minor in scale and magnitude, thereby introducing
potentially detectable artifacts. As discussed in Section 3, different stegano-
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graphic methods vary significantly in their modes of modification, resulting
in distinct statistical artifacts. Early non-content adaptive steganographic
methods, such as those based on LSB replacement, introduced obvious tamper-
ing traces, enabling the design of effective specialized steganalysis techniques.
However, with the development of content-adaptive steganography under the
minimal distortion framework, the tampering traces have become relatively
weaker, making it challenging to develop effective dedicated detection methods.
Consequently, the features used in current steganalysis are often complex and
high-dimensional, and they are universal for exploring the artifacts introduced
by various steganography modifications. Regarding methodologies, steganaly-
sis mainly includes traditional handcrafted feature-based methods and deep
learning-based steganalysis methods. In the following, we will delve into an
introduction and summary of these methodologies.

4.1 Handcrafted Feature-based Steganalysis

Since there are no significant visual differences between cover images and stego
images (with visuals typically reflecting the mid-to-low frequency features of
an image), it can be inferred that the artifacts introduced by steganography
are predominantly manifested in the high-frequency components of the image.
Therefore, current handcrafted feature-based steganalysis primarily focuses on
extracting and analyzing these high-frequency components. The basic process
of this analysis is illustrated in Figure 11. Initially, various high-pass filters
(such as KV, KB, Sobel filters, etc.) transform the input image from the
spatial domain into the image residual domain. This transformation helps
suppress image content while retaining subtle steganographic signals, thereby
enhancing the signal-to-noise ratio required for steganalysis. Subsequently,
the image residuals often undergo quantization and truncation to constrain
the range of residual feature values, which helps control the dimensions of the
subsequent steganalysis features. The residual images are then subjected to
feature extraction for steganalysis, primarily using statistical methods such
as co-occurrence matrices, histograms, Markov chains, etc. Finally, machine
learning models are employed to classify the effectively extracted steganalysis
feature sets. Common classifiers include Fisher linear discriminant (FLD) [35],
support vector machine (SVM)[21], ensemble classifiers [66], and others, for
binary classification.

Subtractive Pixel Adjacency Matrix (SPAM) [119], introduced in 2010, is
a notable steganalysis technique. This method constructs a Markov transi-
tion probability matrix using adjacent pixel residuals and employs a SVM to
classify the extracted features. It has been particularly effective in detecting
LSB matching steganography. In 2012, Fridrich et al. first introduced the
spatial rich model (SRM) [37], which utilizes a plethora of different high-pass
filters to extract high-dimensional noise residual features. The feature space
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Figure 11: Flowchart of the general processing steps in handcrafted feature-based steganaly-
sis.

of SRM reaches up to 34,671 dimensions, significantly enhancing the diversity
and detection capability of features. The introduction of rich model features
has accelerated the development of steganalysis. Subsequently, numerous
steganalysis methods based on rich models and methods with similar design
principles have been proposed. Based on different embedding domains, manu-
ally crafted image steganalysis features are mainly divided into spatial domain
features and JPEG domain features. Holub et al. [52] proposed the Projection
Spatial Rich Model (PSRM), which locally and randomly projects elements
in adjacent noise residuals and then calculates their histograms, to reduce
the feature dimension. The standard LBP has demonstrated its versatility
in performing image classification tasks, including texture analysis, object
recognition, and steganalysis. Shi et al. [134] proposed LBP-based steganalysis
features. Denemark et al. [25] introduced the maxSRMd2, a rich model that
incorporates selection-channel knowledge. Tang et al. [153] proposed an adap-
tive steganalysis scheme for the WOW method, which focused on analyzing
regions with high embedding costs using SRM-based features. Subsequently,
they proposed an adaptive steganalysis scheme that assigns different weights
to pixels based on their embedding probabilities, focusing on likely modified
regions to improve detection accuracy. To address steganography based on
synchronizing embedding changes such as CMD [79] and Synch [26], Tan et al.
[147] proposed the pixel-decimation-assisted steganalysis feature set based on
maxSRMd2. It not only reduces the synchronization of embedding changes
in SEC (synchronize-Embedding-Changes) steganography but also improves
the accuracy of estimating embedding change probabilities. Li et al. [77]
proposed Threshold LBP (TLBP), which effectively extracts the traces left
during steganographic embedding in the binarization process. Zhou et al. [222]
introduced the αSRM steganalysis method, which uses KV high-pass filters
to enhance the estimated embedding change probability. This probability is
then weighted and combined with the quantized image residuals’ estimated
probability to compute co-occurrence features. Wang et al. [156] improved
TLBP and SRM by using the Fisher discriminant criterion to measure the
separability of spatial and frequency domain features. Ma et al. [112] addressed
the high dimensionality of rich model steganalysis features by transforming it
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into a feature subset reduction problem, proposing a selection method based
on decision rough sets that evaluates and retains features with high attribute
separability for dimensionality reduction.

In JPEG domain, a common approach is to first decompress the JPEG
image to the spatial domain and then use spatial rich models to extract and
classify noise residual features. A few methods combine features extracted
from both the spatial and JPEG domains for analysis. Kodovsky et al. [72]
proposed JPEG Rich Model (JRM) features. Subsequently, they combined
spatial and JPEG domain rich models to create the more performant JSRM.
Holub et al. [54] introduced Discrete Cosine Transform Residual (DCTR)
features, which extract residual features from JPEG images using 64 8×8
DCT bases. Later, Holub et al. [55] proposed the Phase Aware Projection
Model (PHARM), which projects residuals onto vectors to calculate statistical
features. Song et al. [136] introduced GFR, which use Gabor filters to obtain
noise residual features in multiple directions. Qiao et al. [123] proposed a
steganalysis algorithm based on an adaptive statistical model, building on the
DCT channel weighting strategy. Using hypothesis testing theory and the
distribution of quantized DCT coefficients, they developed a detector based on
statistical models. Feng et al. [32] proposed a JPEG steganalysis method based
on a cascade of diverse filters. To improve feature extraction speed, the cascade
filters with the maximum diversity (MD-CFR) were selected. These chosen
filters were convolved with decompressed JPEG images to obtain residuals that
capture subtle embedding traces. Despite the excellent detection performance
of JPEG phase-aware steganalysis features like DCTR and GFR against
adaptive steganography, they use fixed-size DCT or Gabor filters to extract
convolutional residuals, limiting their diversity. Xia et al. [177] introduced
JPEG phase-aware features from residual-difference images, using various
convolution filter sizes to generate residuals and calculating features from their
differences. They designed symmetry rules to reduce feature dimensionality
based on filter type, size, and residual, enhancing feature robustness.

Traditional handcrafted feature-based steganalysis heavily relies on em-
pirical knowledge for feature extraction. Moreover, the independent design
of feature extraction and classifiers complicates the synchronization of their
optimization. These limitations hinder traditional methods from achieving
higher detection performance, necessitating the development of new steganaly-
sis approaches. In Table 5, we provide a summary of representative handcrafted
feature-based image steganalysis methods.

4.2 Deap Learning-based Steganalysis

In recent years, the development of deep learning technologies has revolu-
tionized the field of steganalysis. Deep learning methods reduce the need for
excessive manual intervention typical in traditional steganalysis by leveraging
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Table 5: Summary of representative handcrafted feature-based image steganalysis methods

Domain Method Year Highlight

Spatial

SPAM 2010 Markov transition probability
matrix of adjacent pixel resid-
uals

SRM 2012 A plethora of different high-pass
filters

PHARM 2015 Project residuals onto vectors to
calculate statistical features

JPEG

JRM 2012 Correlation within and between
blocks of multiple JPEG coeffi-
cients

DCTR 2015 DCT transform based on real
JPEG spatial data

GFR 2015 Constructed based on 2D Gabor
filters

data-driven approaches. These methods automatically learn complex patterns
directly from data, integrating feature extraction and classification into a
seamless, end-to-end process. Consequently, modern deep learning-based ste-
ganalysis approaches have significantly surpassed traditional ones, becoming
the mainstream direction in steganalysis. This paradigm shift underscores
the efficiency and effectiveness of deep learning, particularly in handling large
volumes of high-dimensional data, positioning it as the preferred method for
tackling contemporary steganalysis challenges. In the following, we first provide
an overview of existing steganalysis architectures, and then explore various
strategies that can enhance the performance of deep steganalysis frameworks.

4.2.1 Network Architectures for Steganalysis

The existing deep steganalysis framework typically employs hybrid networks
that combine deep steganalysis networks with handcrafted features. This
approach is depicted in the design paradigm shown in Figure 12. Generally,
the paradigm includes three stages: a preprocessing module for extracting
noise residual features, a series of convolutional modules for further feature
extraction, and one or more fully connected layers for classification. In the
context of image steganalysis, it is advantageous to avoid downsampling in
the early stages of the feature extraction module to enhance residual feature
extraction and improve model performance.

In 2014, Tan and Li [144] first discussed the similarities between deep
neural networks and traditional handcrafted-based steganalysis features. They
proposed a deep steganalysis architecture based on Stacked Convolutional
Auto-Encoders (SCAE), which preprocesses images using 40 5×5 high-pass fil-
ters, and achieves detection results comparable to SPAM. This model marked
the first application of deep learning to the field of steganalysis. Qian et
al. [122] introduced a convolutional neural network with Gaussian activation
functions, named GNCNN, which utilizes fixed KV high-pass filters for pre-
processing images. Its performance surpassed that of the SCAE and SRM.
Xu et al. [181] designed an absolute value layer for the feature from the first
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Figure 12: Flowchart of the general processing steps in mainstream deep learning-based
steganalysis models.

convolutional layer and proposed a spatial domain steganalysis model based
on CNN called XuNet. To prevent overfitting, the authors employed Tanh
activation functions in the early layers of the network to constrain the values of
the feature maps. Ye et al. [191] proposed the use of Thresholded Linear Units
(TLU) as activation functions to better capture stego signals and initialized the
first layer with 30 5×5 SRM high-pass filters. Yedroudj et al. [194] proposed
Yedroudj-Net, a CNN-based spatial domain steganalysis model, with the first
layer of SRM filters. Li et al. [80] proposed a CNN architecture incorporating
diverse activation modules, which vary the activation of convolution outputs
and then concatenate their outputs for the subsequent layers. Boroumand
et al.[6] broke new ground in deep learning steganalysis models by proposing
an end-to-end approach SRNet based on deep residual networks [51]. The
model consists of three parts: the first part extracts noise residuals without
pooling operations, the second part performs feature map compactification
and dimensionality reduction, and the third part handles classification. Un-
like previous deep steganalysis models, this network does not rely on any
handcrafted high-pass filters or heuristically initialized preprocessing layer
for feature extraction; instead, it fully leverages deep networks for automatic
feature learning. The network demonstrates superior detection performance in
both spatial and JPEG domain steganalysis tasks compared to all previous
models. Deng et al. [28] introduced second-order global covariance pooling [84]
into deep steganalysis models for spatial domain called CovNet. Subsequently,
they introduced 32 additional Gabor filters and shortcut connections into
CovNet. This modification ensured better performance in both spatial and
JPEG domains [27]. Zhang et al. [214] proposed a deep residual multi-scale
convolutional network for spatial steganalysis, called DRMCN. To extract
features of different dimensions, the authors designed three different scale
convolutions, thereby enhancing the detection performance of convolutional
neural network-based steganalysis models. Wu et al. [174] introduced shared
normalization, a novel technique addressing the challenge of generalization in
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well-trained CNN models with multiple batch normalization layers by sharing
consistent statistics across training samples. Zhang et al. [212] introduced
ZhuNet, which employs SRM-initialized preprocessing layer with trainable
weights during training. They replaced traditional convolutional layers with
depthwise separable convolutions and utilized Spatial Pyramid Pooling (SPP)
for multi-level feature aggregation. You et al. [195] introduced a novel deep
steganalysis model based on Siamese CNN, called SiaStegNet, capable of han-
dling images of arbitrary sizes without retraining. The model consists of two
symmetric subnetworks sharing parameters and weights, aggregating at the
end to compute feature similarity and output results. Liu et al. [97] introduced
a feature enhancement passing module facilitate the transfer of shallow features
to deeper layers and an attention downsampling module to perform attention
to downsample features while preserving information through the integration
of channel attention. Weng et al. [169] proposed LWENet, a lightweight
deep steganalysis network with less than 400,000 parameters, which enhances
performance and reduces parameter count by incorporating lightweight bottle-
neck residual blocks, depthwise separable convolution layers, and multi-view
global pooling. Besides the aforementioned models, researchers have also
proposed deep steganalysis models that incorporate self-attention mechanisms
to enhance feature extraction capabilities. Luo et al. [103] introduced a
Convolutional Vision Transformer [172] for spatial steganalysis (CVTStegNet),
marking the first application of transformer architecture to grayscale image
steganalysis tasks, and achieved performance competitive with SRNet. Weng
et al. [170] proposed a Swin Transformer-based [101] steganalysis network
(SwT-SN) to enhance detection accuracy for arbitrary-sized images. which
introduced directional difference adaptive combination (DDAC) [157] followed
by a three-layer residual structure, convolutional spatial pyramid pooling
equipped with size-independent detector (SID) [155] (CSPP-SID). Xie et al.
[179] proposed ERANet, integrating an enhanced residual block from Res2Net
[41] and an Enhanced Low-level Feature Representation Module (ELLFRM)
based on self-attention. This module not only enhances the extraction of com-
plex features but also can serves as a plug-and-play to boost the performance
of other steganalysis networks. Li et al. [83] proposed IMCoatNet, leveraging
CoatNet [24] as the backbone, suitable for spatial and JPEG domains. They
incorporated the SKAttention structure [94] for fine-grained feature extraction,
followed by a combination of MBConv, Transformer, and PSA layers [208] to
extract multi-scale features. Similar to [103], CVTStego-Net [7] incorporates
a Convolutional Vision Transformer (CVT) module before the classification
stage. Additionally, a bifurcation of trainable and untrainable SRM is em-
ployed in the preprocessing stage of CVTStego-Net. From the design of the
above models, we can infer that current deep steganalysis networks based
on attention are typically combinations of convolutional modules in shallow
layers and Transformer modules in deep layers. However, developing a fully
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attention-based network remains a significant challenge. There is evidence
showing that CNNs can effectively utilize locally detectable embedding arti-
facts [196]. Effective extraction of noise residual features in the shallow layers
of the network significantly improves the signal-to-noise ratio of the stego
signal to image content, laying the groundwork for successful global feature
extraction using attention modules later on.

Given that JPEG images are the predominant image format in social
networks, developing deep steganalysis models tailored for JPEG images is
of great significance. Apart from the aforementioned SRNet, US-CovNet and
IMCoatNet, which can be applied for JPEG steganalysis directily, researchers
have also delved into analyzing the characteristics of JPEG images and the
statistical perturbations caused by JPEG steganography. This exploration
has led to the development of specialized deep steganalysis models for JPEG
domain. In 2017, Xu [182] proposed a JPEG steganalysis network, J-XuNet,
consisting of 20 layers of deep residual convolutions and initialized the prepro-
cessing layer with fixed 16 4×4 DCT kernels. Inspired by DenseNet, Yang et
al. [184] proposed a 32-layer CNNs for JPEG image steganalysis, with feature
reuse by concatenating all features from preceding layers. This approach
facilitates gradient and information propagation, and the shared features and
bottleneck layers in the proposed CNN model further reduce the number of
model parameters. Zheng et al. [220] analyzed the impact of using different
high-pass filters in the preprocessing layer of J-XuNet, including DCT filters
and Gabor filters. They found that both Gabor and DCT filters exhibited
good performance, regardless of whether the filters in the preprocessing layer
were fixed or trainable. However, Gabor filters showed superior performance
compared to DCT filters. Performance was further improved when the param-
eters of the preprocessing layer were trainable rather than fixed. Additionally,
the authors observed that removing the absolute value layer from J-XuNet
effectively enhanced the model’s detection performance. Zeng et al. pro-
posed a hybrid deep learning framework for JPEG steganalysis [205], called
Zeng-Net. The model initializes the preprocessing layer with 25 5×5 DCT
base filters, integrates quantization and truncation into deep steganalysis,
and then employs a compound deep neural network consisting of multiple
subnets. Specifically, the authors validated the effectiveness of this model
on a dataset established from ImageNet. Su et al. [137] introduced a CNN
architecture for JPEG steganalysis, named RXGNet, which employs Gauss
partial derivative (GPD) filters as the preprocessing layer and constructs a
deep residual network based on ResNeXt [180] blocks. Yousfi and Fridrich
[199] introduced one-hot encoding into CNN-based deep learning networks to
flexibly compute higher-order statistics of DCT coefficients, thereby enhancing
the performance of deep steganalysis networks based on the JPEG domain.
Butora et al. [11] introduced a novel JPEG steganalysis method called reverse
JPEG compatibility attack (RJCA), which involves introducing the statitic



36 Luo et al.

of the rounding error in the spatial domain after decompressing the JPEG
image. This method is applicable to both color and grayscale JPEG images
saved with QF 99 and 100. Subsequently, Butora et al. [9] extended the RJCA
method by analyzing the logits from CNN detectors on cover images, enabling
the establishment of accurate cover logit distributions to determine theoretical
thresholds for any desired false positive rate, thus facilitating steganalysis
across images of varying sizes without CNN retraining.

For color images, Zeng et al. [206] proposed WISERNet, which follows
a strategy of feature separation and aggregation. The authors theoretically
demonstrated that the summation operation in conventional convolutions acts
as a Linear Collusion Attack, preserving strongly correlated patterns while
suppressing unrelated noise. At the bottom layers of the network, independent
convolutional layers are applied to each color channel to extract features
and suppress irrelevant image content. At the higher layers, all channels
are aggregated to enhance the information extracted from the bottom layers
through convolution operations. Wei et al. [167] proposed a universal deep
steganalysis network for color images applicable to both spatial and JPEG
domains. It initializes a fixed preprocessing layer with 30 SRM kernels and 32
Gabor kernels, separately preprocessing the three color channels of the color
image to obtain 186-dimensional noise residual features. At the higher layers
of the network, it combines residual convolutions with depthwise separable
convolutions, resulting in a steganalysis network with fewer parameters and
high performance. Then, Wei et al. [166] introduced a Transformer module and
global covariance pooling (GCP) into the UCNet, resulting in an effective color
spatial steganalysis network. Furthermore, Wei et al. [165] introduced a multi-
stage neural network for color image steganalysis. It’s worth mentioning that in
the KAGGLE ALASKA II competition [17], a large number of computer vision
deep networks pretrained on the ImageNet dataset have been transferred to
color JPEG image steganalysis tasks. Researchers have gradually realized the
good transferability of large-scale pretrained models on datasets like ImageNet
or JIN in the steganalysis field. These models such as EfficientNet [143],
enabling models to converge quickly on more complex steganalysis tasks and
achieve quite impressive performance [198, 12]. Introducing certain domain
knowledge into these models, such as setting the convolutional stride of the
stem layer to one, can further enhance the performance of the network [197].

In Table 6, we provide a summary of representative deep learning-based
image steganalysis architectures. In addition, we have provided a comparison
of the parameters and FLOPs for typical deep learning-based steganalysis
methods, as shown in Table 7. For the sake of fair comparison, we do not
present a comprehensive comparison of the performance numbers of various
steganalysis methods, due to different studies may use different datasets or
adopt different partitioning methods on the same dataset, etc.
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Table 6: Summary of representative deep learning-based image steganalysis architecutures

Domain Method Year Highlight Filter used

Spatial

SCAE 2014 Stacked Convolutional Auto-
Encoders

SRM

GNCNN 2015 Gaussian activation layer KV
XuNet 2016 Absolute value layer, TanH ac-

tivation layer
KV

YeNet 2017 Thresholded Linear Units SRM
Yedroudj-Net 2018 Clever fusion of effective mod-

ules
SRM

Rest-Net 2018 Diverse activation SRM&Gabor
DRMCN 2019 Deep residual multi-scale CNN SRM
WISERNet 2019 Separation-reunion for color im-

age
SRM

CovNet 2019 Global covariance pooling layer SRM
ZhuNet 2020 Separable convolution, spatial

pyramid pooling
SRM

SiaStegNet 2021 Siamese CNN SRM
FPNet 2022 Feature enhancement passing,

attention downsampling
SRM

CVTStegNet 2022 Convolutional Vision Trans-
former

SRM

JPEG

J-XuNet 2017 DCT Kernels DCT
ZengNet 2018 A compound deep neural net-

work consisting of multiple sub-
nets

DCT

Yang et al., 2018 Feature reuse DCT
RXGNet 2021 ResNeXt, Gauss partial deriva-

tive filters
Gauss partial derivative

One-hot 2020 One-hot encoding Random

Both

SRNet 2019 Clean end-to-end design None
UCNet 2022 Universal deep steganalysis net-

work for color images
SRM&Gabor

4.2.2 Improving Performance of Deep Steganalysis Architectures

In addition to designing effective network architectures for steganalysis, im-
plementing appropriate model optimization, data augmentation, and channel
awareness strategies is essential for enhancing the performance of deep ste-
ganalysis models. In the following, we will describe some related works on
these topics.

Model Optimization: In the pursuit of higher accuracy, neural network
tend to evolve into increasingly intricate structures, leading to concerns about
excessive model size and redundancy. To mitigate model redundancy without
significantly impacting performance, compressing deep steganalysis models
emerges as a straightforward solution.
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Table 7: Summary of parameters and FLOPs for representative steganalysis methods

Method Parameters FLOPs

XuNet 0.03×106 0.16×109

YeNet 0.11×106 3.87×109

Yedrouj-Net 0.54×106 6.63×109

SRNet 4.78×106 12.10×109

CovNet 0.68×106 6.70×109

ZhuNet 2.87×106 2.42×109

SiaStegNet 0.71×106 14.40×109

UCNet 1.12×106 14.3×109

CALPA-Net 0.07×106 3.94×109

Li et al. [86] first introduced non-structured pruning method (weight
level) for deep steganalysis networks. This method significantly sparsified
the model weights with minimal accuracy loss following the traditional three-
stage model pruning process: training, pruning, and fine-tuning. However,
non-structured pruning methods typically require specialized algorithms or
hardware for accelerating network inference, imposing certain constraints on
achieving acceleration. To overcome the limitations of non-structured network
pruning methods, Tan et al. [146] combined proposed a structured pruning
methods (channel level) for deep residual steganalysis network, named CALPA-
NET. This approach significantly reduces the model’s parameter count and
floating-point operations while maintaining performance comparable to the
original model. Subsequently, Tan et al. [145] proposed STD-NET based on
tensor decomposition for compressing steganalysis models. In comparison to
CALPA-NET, this method is not constrained by residual connections and
achieves better compression results.

With the advancement of neural architecture search (NAS) techniques
across various research domains, researchers have integrated the characteristics
of existing state-of-the-art deep learning-based steganalysis networks to propose
a series of image steganalysis methods based on neural architecture search.
Yang et al. [186] first introduced neural architecture search algorithm for
JPEG image steganalysis, termed JS-NAG. They proposed a Q-learning-
based [163] approach where an agent is trained to continuously select high-
performance structures to generate the architecture. This method integrates
multiple searched networks to address the issue of unstable performance in
individual network. Deng et al. [29] proposed a NAS method for spatial image
steganalysis based on PC-DARTS [183], which primarily focuses on exploring
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suitable architectures from a cell-based search space, and achieves competitive
performance with SRNet.

Data Augmentation: An ideal deep steganalysis framework relies not only on
the design of the network architecture, but also on a suitable data augmentation
strategy. Existing data augmentation methods for image steganalysis can be
categorized into augmentation before and after steganographic embedding.
We refer to them as ‘pre-embedding’ and ‘post-embedding’ repectively, as
summarized in Table 8. A common and easy-to-implement data augmentation
method for steganalysis is flips and rotations (D4) [198]. But this method is not
sufficient to improve the generalization of deep steganalysis models. Yedroudj
et al. [193] proposed a data augmentation method called pixels-off, which
randomly selects a small number of pixels from the cover and sets them to zero
to obtain a new cover. However, this approach inevitably alters the original
cover distribution from the perspective of steganalysis. Subsequently, they
further introduced adaptive-pixels-off by combining embedding probability.
Yu et al. [201] proposed Bitmix, which mixes random patches in a cover and
stego image pair and generates a soft label with the ratio of the number of
modified pixels in the swapped patch. Itzhaki et al. [65] explored various
data augmentation techniques for JPEG steganalysis and concluded that
StegoSampling and Dropout-style augmentations are beneficial for JPEG
steganalysis. Zhang et al. [210] proposed a cover augmentation network based
on the principle of preserving data distribution, which automatically adds noise
to the original cover images to generate new covers. Subsequently, the authors
proposed a differentiable augmentation network trained adversarially with
steganalyzer to augment cover and stego images by intelligently adding noises
[209]. This method not only improves the performance of existing steganalysis
networks but also further enhances performance when combined with existing
cover enrichment methods.

Table 8: Summary of data augmentation methods for image steganalysis

Method Category Domain

D4 [198] post-embedding Spatial&JPEG

Pixels-off [193] pre-embedding Spatial

BitMix [201] post-embedding Spatial

StegoSampling [65] post-embedding JPEG

DPAA [210] pre-embedding Spatial

AAS [209] post-embedding Spatial&JPEG
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Selection Channel awareness: Content-adaptive steganography adaptively
embeds information into the cover image, guided by embedding probabilities.
These probabilities can also be utilized by the steganalyzer as a selection
channel, thereby enhancing the capability of existing steganalysis networks.
For instance, Huang et al. [63] extended YeNet to the JPEG domain and
proposed a selection-channel-aware CNN for JPEG steganalysis. Ren et al.
[129] proposed a method that incorporates selection channel awareness. This
approach consists of two main components: a selection channel network and a
steganalysis network. These networks are trained concurrently; the selection
channel network learns and outputs selection channels for the steganalysis
network, which then uses these learned channels to predict whether digital
media contains hidden messages. To fully utilize the embedding probability,
Li et al. [85] proposed an embedding probability guided module to adaptively
enhance the feature extraction capability at different depths of the network.
Han et al. [49] introduced non-local operations and multi-channel convolution
modules after the preprocessing layer to enhance noise residual features. Wu
et al. [175] proposed a method for deep learning-based image steganalysis that
automatically learns selection channels in a progressive manner and integrates
them into a steganalysis network, significantly improving detection accuracy
without requiring prior knowledge. Wei et al. [164] proposed a residual
guided coordinate attention for selection channel aware image steganalysis,
and achieves better performance with CovNet and J-YeNet. Zhang et al.
[216] proposed a dual attention fusion network, incorporating a Sobel spatial
attention module and a channel attention module based on DCT coefficients.

4.3 Exploring Steganalysis for Real-world Scenarios

In this section, we will explore how steganalysis methods have adapted to
address the challenges posed by real-world scenarios. Specifically, we will divide
our discussions into two main parts: research on mismatched steganalysis
scenarios and adversarially robust steganalysis. The former focuses on the
challenges posed by mismatched data sources, while the latter addresses the
vulnerability of deep steganalysis models to image steganography based on
adversarial examples. Through these discussions, we aim to provide insights
into the ongoing efforts to develop steganalysis methods that are both effective
and adaptable to real-world challenges.

4.3.1 Research on Mismatched Steganalysis Scenarios

In practice, mismatched data sources are often encountered, where the detector
is usually unaware of the origin of the target under examination. Discrepancies
in the feature distributions between training and testing sets can significantly
degrade the performance of steganalysis. As shown in Figure 13, the typical
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(demosaicking, noise 
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Figure 13: Flowchart of the image processing pipeline using a standard digital camera to
convert real-world visuals into JPEG format.

process of capturing an image involves capturing a raw image from the physical
world through the lens and sensor, followed by performing pre-processing (also
called Bayer processing, such as demosaicking, noise reduction, white balance)
to produce full-color images. Image processing steps like sharpening and
resizing are then applied. Finally, for the sake of convenient transmission
and storage, the image may undergo JPEG compression. Each step of this
process affects the distribution of the final image, which is the main reason for
encountering cover source mismatches (CSM) issues in the real world. CSM
exist both in the spatial and JPEG domains. Enhancing the similarity between
the feature distributions of the training and testing sets is a highly effective
approach to address the mismatch problem.

In 2014, Kodovský et al. [74] proposed two simple strategies to mitigate
this problem: training a single classifier on a mixture of sources and training a
bank of detectors on multiple different sources and then testing on the one
with the closest source. Hu et al. [57] investigated the interaction between
CSM and texture complexity. They proposed a texture complexity measuring
method based on average filter and introduced two-way analysis of variance
to analyze the interaction between the two factors. To address the problem
of detecting diversified stego sources, where the steganalyst is unaware of the
steganographic method used by the steganographer, Butora et al. [10] found
that the multi-class detector was the most effective approach. Zhang et al.
[217] proposed J-Net, where the features of the source and target are aligned by
minimizing the JMMD [102] distance at the fully connected layer. Quentin et al.
[128] conducted a study on the impact of various source attributes (including
camera, ISO, processing pipeline, and content) on deep learning methods and
observed that the holistic strategy leverages the good generalization properties
of deep learning to mitigate the CSM with a relatively small number of
training samples. To address payload mismatch, Yu et al. [202] proposed an
adaptive multi-teacher softened relational knowledge distillation framework.
Subsequently, they [203] introduced the RCDD (Reliable Steganalysis Labeling-
based Contrastive Domain Discrepancy) method to generate reliable labeled
target images, thereby achieving domain alignment. Megias et al. [113]
introduced a “directionality” property arising from subsequent embedding,
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indicating that additional data embeddings distort the image features in
the same direction in the feature space. Through theoretical analysis and
experimentation, they demonstrated that this strategy effectively enhances the
detection performance of steganalysis models in scenarios with mismatched
data sources.

For JPEG mismatched steganalysis, Jia et al. [69] proposed the THFSL
(transferable heterogeneous feature subspace learning) algorithm that captures
local information by imposing low-rank constraints on domain-independent
features and avoids negative transfer with a sparse matrix for domain-related
features. Yang et al. [189] proposed a transfer subspace learning method
based on structure preservation, which learns a discriminant projection matrix
to map training and test data into a common low-dimensional subspace. To
address the CSM issue caused by JPEG quality variations, Yousfi et al. [200]
found that CNN-based detectors trained on mixed quality factors do not
significantly lose performance compared to those trained for specific quality
factors. Additionally, under the same strategy, CNN-based detectors show
better robustness than feature-based detectors. Jia et al. [68] proposed an
effective imbalanced JPEG steganalysis scheme based on adaptive cost-sensitive
feature learning. Subsequently, they [67] proposed MPSA (multiperspective
progressive structure adaptation) scheme based on active progressive learning
for JPEG mismatched steganalysis.

4.3.2 Adversarially Robust Steganalysis

In recent years, deep learning steganalyzers have advanced rapidly. However,
similar to how deep learning models are vulnerable to adversarial attacks, deep
steganalysis models struggle to detect adversarial steganography. In image clas-
sification tasks, common methods for defending against adversarial examples
include preprocessing [45, 95] and adversarial retraining [44, 131]. However,
these methods are not suitable for defending against adversarial steganography.
Preprocessing methods, such as transformations[45] or denoising[95], can easily
disrupt the information in stego images, while adversarial retraining methods,
which augment the training set with adversarial stego images, are not always
effective in practice. Consequently, researchers have proposed a series of new
methods to address this issue. A naive defense against adversarial steganog-
raphy is to train the model with adversarial steganographic images included
in the training set. The limitation of this approach is that it always fails to
address unseen and more sophisticated adversarial steganography. Qin et al.
[125] proposed Patch Steganalysis, a method that samples image patches based
on predicted modification probabilities, followed by deep feature extraction
and ensemble classification to enhance the robustness of deep steganalysis.
However, sampling small patches is not sufficiently effective, as such patches
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may not contain enough information. Subsequently, they introduced an adver-
sarial training method to filter out adversarial steganography by combining
handcrafted steganalysis features [124]. Hu et al. [58] proposed TStegNet, a
two-stream CNN steganalysis network against adversarial steganography. This
method integrates a confidence loss function to capture the gradient stream
that amplify the confidence artifacts, and uses the feature similarity function
to reduce the impact of adversarial perturbation.

5 Challenges and Future Research Prospects

In Sections 3 and 4, we categorized and provided an overview of current image
steganographic and steganalysis methods, and briefly touched on the core
concepts of some pivotal algorithms. In this section, our aim is to analyze
the limitations of current research and highlight the gaps between theoretical
advancements and real-world applications. Subsequently, we will identify
several prevalent future directions in the field of image steganography and
steganalysis.

5.1 Challenges

Currently, the majority of research in steganography and steganalysis is con-
ducted under controlled laboratory conditions. While these studies demonstrate
promising performance in academic papers, applying these research outcomes
directly to real-world environments poses various challenges, so that existing
methods may encounter significant algorithmic performance degradation or
even failure. The main challenges primarily include:

• Regarding steganographic issues: Steganographic research currently
faces challenges in three main areas: security assessment of stegano-
graphic methods, robustness within social media environments, and the
types of covers used. 1) Security Assessment. The security perfor-
mance of current steganographic methods is primarily evaluated using
existing steganalysis techniques. This evaluation mechanism lacks scien-
tific rigor for two reasons. First, the security of steganographic methods
against unknown, more advanced steganalysis techniques cannot be
directly inferred from existing technologies, posing significant security
risks. Second, performing security analysis (i.e., detection error rates in
steganalysis) on different image databases reveals considerable variations,
leading to inconsistent security performance across the same stegano-
graphic methods; 2) Robustness. When transmitting image data on
social media, it often undergoes lossy operations such as image scaling,
lossy compression, and the addition of visible watermarks. However, as
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described in Section 2.1, current models assume a lossless transmission
channel, which renders these methods ineffective at ensuring correct
extraction of secret information even with minor losses. Although some
efforts have been made to explore “robust steganography,” these methods
often do not prioritize resistance to sophisticated steganalysis techniques
as their primary criterion. Instead, they focus on robustness metrics
such as the rate of accurate secret information extraction following at-
tacks. Developing models and evaluation metrics tailored to real-world
scenarios, departing from the traditional passive-warden model, requires
more thorough investigation; 3) Types of covers. On various social
media platforms, most images are color JPEGs, while grayscale images
are increasingly rare. However, current steganographic and steganalysis
research predominantly focuses on grayscale images in the spatial domain.
Due to significant statistical differences between grayscale and color im-
ages, and between spatial and DCT embedding domains, most existing
steganographic techniques are ineffective when applied to color JPEG
images. This mismatch highlights the need for more targeted research
into how modifications within different color channels and JPEG’s lossy
compression affect the security of steganography.

• Regarding steganalysis issues: Steganalysis research currently faces
two major challenges: significant performance drop in real, uncontrolled
scenarios and the inability to detect small-capacity steganographic em-
bedding. 1) Uncontrolled scenarios. In current steganalysis research,
experimental setups often require that the training data and test data
follow relatively consistent distributions. This consistency is not only re-
flected in the image processing history of image databases, as mentioned
earlier, but also in various important factors related to data embed-
ding, such as the steganography algorithm used and the embedding rate.
Although current steganalysis methods, particularly data-driven deep
learning methods, can model standardized databases well and achieve
relatively optimal test performance, this is largely due to our unrealistic
experimental setups. In real-world scenarios, however, it is difficult or
impossible to predict these factors for a suspected image. As a result,
the assumed consistency between training data and test data cannot
be guaranteed. Therefore, steganalysis models trained on laboratory
data often struggle to effectively handle the diversity of images encoun-
tered in practical scenarios. Existing research has shown that under
mismatched conditions, the performance of current steganalysis methods
can significantly degrade or even drop to the level of random guessing. 2)
Small-capacity Embedding. With the rapid increase in internet speed,
the transmission of large-capacity carriers has become commonplace and
inexpensive. Existing research indicates that even with other factors
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being equal, reducing the embedding payload significantly degrades the
performance of steganalysis methods. Therefore, a simple and effective
way to enhance steganographic security is by trading bandwidth for
security, reducing the embedding rate to a level that current steganalysis
methods find difficult to detect—for example, 0.01bpp/bpnzac or less.
Based on the above analysis, achieving practical steganalysis remains a
challenge that requires more research efforts.

• Regarding standardized databases: Currently, the databases com-
monly used in digital image steganography and steganalysis exhibit two
major issues that result in a significant gap between their utility and
real-world application scenarios: 1) Volume and Diversity. Digital
image steganography and steganalysis primarily target internet applica-
tions, where image data is abundant and shows vast variations in content,
resolution, and quality. However, as indicated in Table 1, the largest
datasets available for these fields contain no more than 210,000 cover
samples. This number is markedly small compared to the vast scale
of the internet. Additionally, this quantity is typically inadequate for
training advanced neural networks, which necessitate large-scale datasets
to avoid overfitting and guarantee consistent, robust performance. As
a result, while models may perform well on controlled datasets, these
performances do not necessarily translate to effectiveness in practical,
varied internet environments; 2) Uniformity in Artifacts. As discussed
in Section 2.3, the construction of image databases for research typically
involves standardized post-processing steps applied to raw data from
cameras. These steps include image demosaicking, conversion to 8-bit
grayscale, downsampling, and center-cropping, all of which standardize
the image resolution. This uniform processing introduces specific statis-
tical characteristics to the images, potentially undermining the diversity
needed for real-world applications. Crucially, data-driven deep learning
approaches may end up modeling and learning these artificial statistical
features, rather than the inherent statistical characteristics of the image
content. Consequently, this can lead to algorithms that perform well on
processed datasets but falter with the more diverse and varied images
encountered in real internet scenarios.

5.2 Future Research Prospects

To address the current limitations in steganography and steganalysis,
and to align research more closely with practical application scenarios,
the subsequent research should first focus on expanding the existing
databases. This expansion should not merely increase the quantity of
images, but also enhance their diversity to more closely mirror real-world
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scenarios. Based on the construction of a large and diverse image dataset,
the following research directions merit further in-depth exploration and
study:

• Exploring more effective generative deep learning for steganog-
raphy: Driven by big data, generative deep learning offers a promising
new avenue for enhancing the security of existing steganographic methods
and improving robustness in social media contexts. Although various gen-
erative deep learning techniques, such as variational autoencoders, GANs,
and diffusion models, have shown exceptional performance in fields like
image generation, enhancement, and style transfer, their application
in image steganography is still nascent with only a few related works.
Image steganography is markedly different from other image processing
tasks. It involves embedding information into an image through subtle
modifications to its embedding units, ensuring that these alterations do
not compromise the image’s visual quality. Additionally, these modifica-
tions must remain undetectable to steganalysis techniques and robust
against post-processing on social networks. Due to these specialized
requirements, existing generative models cannot be directly applied to
steganography. As deep learning technologies continue to evolve, the
development of more effective models for various tasks including steganog-
raphy is anticipated. This raises the significant challenge of how to adapt
these advanced models to meet the requirements of practical stegano-
graphic scenarios. This adaptation involves a thorough analysis of the
core frameworks of existing models, comparing the application scenarios
of these technologies with those required for steganography, and mak-
ing targeted adjustments to their network architectures. Furthermore,
special processing measures tailored for steganography might be neces-
sary. These could include designing differentiable simulated embedding
functions and adapting to the lossy processes typical on social networks.
Additionally, the design of loss functions should prioritize enhancing
steganographic security over improving the visual quality, which is a
common focus in most conventional image processing tasks. Moreover,
proposing effective update strategies to ensure model convergence and
stability during steganographic training is essential.

• Exploring more promising deep steganalysis models: The next
generation of deep learning steganalysis models should be able to adapt
well to real, uncontrolled scenarios, as well as effectively detect small-
capacity steganographic embeddings. With the rapid development of deep
learning, a variety of innovative modules and structures have emerged,
demonstrating effectiveness across different fields. It is therefore essential
to explore how these advancements can be adapted and integrated into
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steganalysis tasks. For instance, recent research has developed CNN-
Transformer hybrid architectures that have shown good performance
in spatial steganalysis tasks by leveraging the local pattern recognition
capabilities of CNNs combined with the global context understanding of
Transformers. These hybrid models have demonstrated potential, but
there remains significant room for improvement and innovation. Given
the unique nature of steganalysis modifications, which typically occur
in complex image textures while simpler areas remain unchanged, it
is essential to incorporate corresponding deep modules to better trace
these steganographic artifacts. For instance, attention mechanisms can
be particularly effective, as they enable steganalyzers to focus on subtle
irregularities indicative of steganographic activities. These mechanisms
enhance the model’s sensitivity to minimize anomalies in textured regions,
where steganographic content is likely hidden. Additionally, incorpo-
rating Graph Neural Networks (GNNs) [173] can enrich the model’s
understanding of data structures by capturing the relationships and
interactions between different image regions, essential for identifying
complex and dispersed steganographic patterns. Capsule Networks [130]
also play a significant role by preserving hierarchical relationships within
the image data, thus recognizing both simple and intricate patterns
effectively. Green Steganalyzer [227] aims to explore a novel learning so-
lution to image steganalysis based on the green learning paradigm, which
has lower computational complexity and smaller model size. Explor-
ing these advanced modules, experimenting with various combinations,
optimizing their interactions, and validating their effectiveness across
diverse datasets and steganographic techniques are key steps towards
developing more proficient and robust steganalysis models. Addressing
these challenges will enable the creation of advanced systems capable of
detecting small-capacity steganographic embeddings in real, uncontrolled
scenarios.

• Exploring effective utilization of large models in steganaography
and steganalysis: Existing literature demonstrates that large pre-
trained models for artificial intelligence-generated content (AIGC), such
as ChatGPT and Stable Diffusion, are effective in various downstream
tasks. However, there are currently no reported successful applications
of these models in the fields of steganography and steganalysis. The
primary reasons for this are the complexity of large models and the
significant differences between their original training domains and the
specialized requirements of steganography and steganalysis tasks. To
overcome these challenges, innovative techniques such as prompt-tuning,
side networks, and adaptors have been developed as essential tools
in the fine-tuning process, effectively bridging the gap between the
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models’ initial training domains (e.g., language understanding and image
generation) and the specific needs of steganographic and steganalysis
applications. Compared to existing deep learning methods that utilize
smaller models, the potential benefits of employing large AIGC models
in steganography and steganalysis are immense. These models have
the capacity to learn extensive general knowledge and features during
their pre-training on vast datasets, which enables them to discern and
understand complex patterns and relationships. This adaptability makes
them well-suited for fine-tuning to specific tasks across various domains.
Harnessing this deep understanding could significantly enhance both the
embedding of secret information in steganography and the detection of
covert channels in steganalysis, potentially leading to groundbreaking
advancements in both fields. For example, large models could be used to
generate or identify image regions with enhanced security and robustness
for steganography. In steganalysis, these models could help address
the performance degradation often seen in deep learning models under
mismatched conditions and improve the detection capabilities against
low embedding rate steganography in high-capacity carriers.

• Exploring open-set adversarial learning framework for steganog-
raphy and steganalysis: The current state of adversarial interactions
between steganography and steganalysis techniques remains largely con-
fined within a rather simplistic, closed set environment. This limitation
has significant implications for the performance and adaptability of
steganalysis models. Specifically, models trained within this restricted
environment tend to exhibit substantial performance degradation when
confronted with common real-world challenges. Similarly, steganography
models, developed through adversarial training with steganalysis models
within this closed set environment, often suffer from overfitting. They
become overly specialized to counter the specific steganalysis models
they were trained against. Addressing this issue is a significant challenge,
and the academic community has yet to propose an effective solution.
One potential approach under consideration involves constructing an
adversarial learning and gaming framework for image steganography and
steganalysis within an open set environment. This framework would
incorporate third-party steganalysis attacks, enabling the steganography
and steganalysis parties to engage in iterative optimization at the pixel
level. The hope is that this approach will overcome the performance
limitations of deep learning steganography and steganalysis models in
real-world settings, thereby enhancing their robustness. By stepping
outside the confines of the closed set environment and embracing a more
open and realistic adversarial context, it is expected that both steganog-
raphy and steganalysis models can better adapt to the complexities
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and unpredictability of real-world scenarios. For steganography, it can
therefore avoid overfitting to specific steganalysis techniques and specific
training cover datasets, enhancing the resistance to unknown steganal-
ysis techniques. For steganalysis, it can therefore effectively learn the
universal intrinsic features of steganalysis that are not highly coupled
with a specific benchmark database, steganographic algorithm, or em-
bedding capacity, enabling the model to adapt to the rapidly evolving
steganalysis detection tasks in real-world application scenarios, achieving
a significant step forward in the field by providing reliable and resilient
tools for secure data communication.

6 Conclusion

This survey provides a detailed overview of the development and current state
of steganography and steganalysis in digital communications, emphasizing
their vital roles in the secure transmission of covert information. It starts
with the passive-warden scenario, examining its importance and foundational
concepts, and progresses to the evolution from traditional handcrafted methods
to sophisticated deep learning techniques that have emerged over the past
two decades. The survey categorizes existing technologies, describes the main
ideas and performance of typical algorithms within each category, and offers a
summary of these findings. Finally, the survey identifies existing challenges in
the fields of steganography and steganalysis and suggests promising directions
for future in-depth research.
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