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ABSTRACT
Human point cloud completion is a challenging yet indispensable
task, devoted to filling missing parts in the collected incomplete
point clouds. Existing methods overly rely on features extracted
from surface points, neglecting the intrinsic joints information
point clouds possess. To address this problem, we propose a new
network with an encoder-decoder framework, named JointFormer.
Firstly, we design a joint-enhanced encoder that provides more
prior guidance on the overall structure of the partial input. Then,
a generator is employed to generate sparse but complete point
clouds. Finally, a decoder refines the rough point clouds into
complete and dense human body point clouds in a coarse-to-fine
manner. Moreover, combining transformer with the Convolutional
Block Attention Module (CBAM), we design the Channel-Spatial
Attention Transformer (CSAT) to better capture point cloud spa-
tial relationships. Quantitative and qualitative evaluations demon-
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strate that JointFormer outperforms the state-of-the-art comple-
tion method on our two human body point cloud datasets.

Keywords: Point cloud completion, human point cloud, transformer, joints
estimation, spatial attention.

1 Introduction

Driven by the rapid development of 3D sensors, point clouds are emerging as
an efficient data format for representing objects. Nonetheless, real-world point
clouds often suffer from incompleteness and sparsity due to occlusion and sen-
sor limitations. Therefore, point cloud completion has garnered widespread
attention in computer vision and graphics, aiming to infer missing parts and
densify sparse point clouds. This process benefits downstream tasks like hu-
man body reconstruction, object recognition, and pose estimation [11, 9, 2].

Compared to typical point cloud completion tasks, human point cloud
completion poses more intricate challenges due to pose variability and compli-
cated geometric relationships. The diverse poses of the human body demand
highly adaptable algorithms to achieve coherent and realistic reconstruction
across different postures. Moreover, the geometric relationships in human
body point clouds, such as symmetry, are more nuanced than those in rigid
objects, complicating the task of precise detail preservation and completion.
In addition, the emergence of adversarial attack methods [3] for point cloud
completion models has raised expectations for the robustness and resistance
to interference of completion methods, which will enhance the security of
downstream tasks such as 3D recognition and segmentation.

In recent years, deep learning-based point cloud completion has been flour-
ishing. Some pioneering works on point cloud completion [20, 31, 4] directly
handle 3D point cloud coordinates with an encoder-decoder architecture to
generate complete point clouds. To avoid the information loss caused by max
pooling operations in this architecture, some methods [29, 34, 30] incorpo-
rate Transformers to obtain detailed global features. However, when tackling
non-rigid human point clouds with a body part such as a leg or arm severely
missing, the global features extracted by existing methods are insufficient to
infer the complete body parts.

Besides global features, another issue stems from the design of attention
mechanisms for point clouds. Attention mechanisms have proven effective for
point cloud analysis [33, 25]. Consequently, many recent methods have applied
Transformers to learn structural features and long-range relationships within
local regions of point clouds [34, 22, 30]. In these methods, the relationships
between 3D points are usually explicitly introduced through position encoding.
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However, spatial relationships introduced solely by position encoding seem
insufficient. This affects the establishment of semantic relationships between
points within local patches of the point cloud.

To address the aforementioned issues, we propose a novel human point
cloud completion network called JointFormer. Our encoder is designed with
a joint-enhanced strategy and consists of two branches: (i) encoding incom-
plete input to obtain local features and global features, (ii) encoding joints
predicted from incomplete input to derive prior guidance for the complete
point cloud. Secondly, we design a channel-spatial attention Transformer
(CSAT) to incorporate positional information of features into the computa-
tion of point attention scores, extending the original channel attention and
capturing more comprehensive local point cloud semantic information. Our
main contributions can be summarized as follows:

1. We design a dual-branch joint-enhanced encoder. It predicts joints and
further yields refined global features and local features, which introduces
human pose prior structural information for the subsequent decoding
phase.

2. We devise a channel-spatial attention Transformer (CSAT), which can
better extract regional point cloud semantic relationships during both
encoder and decoder in a simple yet effective way.

3. We evaluate our network on two self-crafted human point cloud datasets
and public dataset PCN, which demonstrates our method achieved ex-
cellent performance.

2 Related Work

2.1 Point Cloud Completion and Reconstruction

Early works [13, 19, 18] convert irregular point clouds into 3D voxels and
then perform point cloud completion based on 3D convolutions. However, this
conversion requires significant computational resources and inevitably leads
to geometric information loss. Consequently, in recent years, approaches that
directly operate on point clouds have become mainstream. With the success
of Transformer in Natural Language Processing (NLP), there has also been
a surge of research exploring the potential of Transformer in point clouds.
Therefore, we categorize related works into two groups: Non-Transformer-
based methods and Transformer-based methods.



4 Zhou et al.

2.1.1 Non-Transformer-based Method

PointNet [16] and its successor, PointNet++ [17] have pioneered the appli-
cation of deep learning directly on point clouds. In point cloud completion,
PCN [31] firstly proposes using an encoder-decoder architecture, demonstrat-
ing that point-based completion methods have higher generalization perfor-
mance and robustness compared to voxel-based methods. Pf-net [4] combines
GAN with a hierarchical decoding strategy to predict missing parts. Moreover,
Pmp-net [21] simulates the movement of points during completion and con-
strains the total distance of points to obtain a point-wise unique motion path.
HyperCD [8] proposes measuring point cloud distances in hyperbolic space
instead of Euclidean space, which can alleviate the vulnerability of CD to out-
liers. Flattening-Net [32] converts irregular 3D point clouds into regular 2D
point geometry images, serving as a versatile representation for reconstruction
and other tasks, and providing a novel perspective on point cloud completion.

2.1.2 Transformer-based Method

PoinTr [29] explicitly models the local geometric relationships of point clouds
with Transformer, better learning and preserving structural information of
point cloud. SnowflakeNet [26] leverages skip-transformer mechanism to in-
fer the splitting patterns of the current layer from those of preceding layers
within the SPD process. Seedformer [34] introduces patch seeds and extends
Transformer to point generation operation, completing point cloud in a coarse-
to-fine manner. Pmp-net++ [22] enhances the learning of point features with
Transformer. Cross-PCC [24] explores the unsupervised method assisted by
single-view images, and also leverages Transformer to capturing point rela-
tionships in 3D feature extraction, which provides valuable insights for point
cloud completion without a large labeled dataset. ProxyFormer [6] introduces
point proxy representation and design a missing part-sensitive Transformer,
enabling the network to better predict missing parts. However, when ap-
plied to human point clouds with severe deficiencies, the performance of these
methods seems mediocre due to the lack of internal structural relationship
exploration.

2.2 Deep Learning on Human Point Cloud

In recent years, there has been a growing body of research on human point
clouds. Some methods [35, 7, 23, 1, 11] propose modeling the complex surface
structure directly from point clouds and then achieving an accurate action
recognition and pose estimation of the human body. There are also methods
dedicated to addressing the challenges of human reconstruction starting from
point clouds. The previous method [5] extracts and maps skeleton features
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with PointNet++ [17], then regresses to obtain SMPL [10] parameters for
human shape reconstruction. VoteHMR [9] is proposed to recover human
mesh from point clouds, which can effectively encode human body geometric
information and has strong robustness to noisy inputs with self-occlusion and
missing areas. It is evident that human point clouds play a crucial role in pose
estimation and reconstruction. Human point clouds are clearly vital for pose
estimation and reconstruction. Consequently, our research aims to address
the issue of incomplete human point clouds to improve performance in these
downstream tasks mentioned above.

3 Proposed Method

3.1 Overview

The overall architecture of JointFormer is illustrated in Figure 1, which con-
sists of three parts: joint-enhanced encoder, generator, and decoder.
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Figure 1: The overall architecture of JointFormer. The dual-branch Joint-enhanced encoder
is applied to predict joints from partial input and derive fine-grained features. Then the
generator produces sparse yet complete point clouds. Finally, the decoder gradually up-
sample to obtain dense and detailed output. Our devised CSAT is applied in those purple
parts within the whole framework.

Our joint-enhanced encoder consists of a surface point encoding branch
and a joint encoding branch. Given an incomplete input P , the former branch
extracts global features Fg, local features Fp, and corresponding patch center
Pp. In the joint encoding branch, with generated point-wise votes {si, oi, fi},
where i represents the i-th point, aggregating those with the same semantic
scores si, the human joints J are produced. Afterward, clustering partial input
in terms of obtained joints, an ordered point patch sequence is obtained and
fed into the Transformer block to extract joint features Fjoints. Concatenating
Fjoints with the global features Fg mentioned above, we obtain fine-grained
global features Fg

∗ ∈ R2×Ng×1.
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In generator, we feed Pp, Fp and F∗
g into UpTrans-CSAT, while CSAT is

applied to better capture the relationships among features. After a few MLPs,
a rough yet complete seed point Psd can be generated.

The decoder is devoted to recovering the complete point cloud reliably
with fine details. We combine the upsampling process [34] and CSAT, named
UpLayer-CSAT. Specifically, each layer interpolates seed points with seed fea-
tures to obtain upsampled point cloud through CSAT. During all three layers,
a finer point cloud Pi( i = 1, 2, 3) is generated while the previous output serves
as its input. Notably, to better preserve the detail in input and fully utilize
predicted joint information, the entire decoder takes P0 ∈ RN0×3 as input,
which is obtained by concatenating P , J , and Psd.

3.2 Joint-enhanced Encoder

3.2.1 Joint Prediction

For input incomplete human point cloud P ∈ RN×3, the joint prediction
module generates human joints J ∈ RNk×3, adhering to SMPL (Bogo et al.,
2016), where Nk is 24.

Specifically, as shown in Figure 2(a), we employ PointNet++ [17] as the
backbone to extract joint feature fjoint.
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Figure 2: Modules in the Joint-enhanced Encoder: Detailed illustrations of the prediction
of joints (a) with votes and the architecture of the joint encoder (b) for handling human
joints around the partial input.

We leverage voting module [15, 9] to generate point-wise votes {si, oi, fi}
due to its success on predicting offset coordinates and features for each seed
point, which will benefit the joints discovery even with severe noises, missed
areas, and occlusions.

The module consists of MLPs, followed by independent heads for body
part segmentation, joint regression, and feature updating respectively. si is
formed by the action of an FC layer and softmax. The joint regression head
adopts an FC layer to output offsets oi ∈ R3 for each point pi, and also
aggregates more reasonable contextual information to define joint positions.
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The feature updating head uses residual connections to update vote features
fi = fjointi + ∆fi, i = 1, , N . ∆fi is extracted from a shared MLP with an
FC layer.

Once we have obtained the point-wise votes, we can proceed to the group
and aggregate them to obtain joints. Specifically, the coordinates jk of each
joint can be represented as:

jk =
1∑N

i=1 (si)
k

N∑
i=1

(pi + oi)(si)
k, k = 1, , 24 (1)

Where si represents semantic content indicating the body part, pi represents
each point of the partial input.

Throughout joint estimation, the point-wise labels yi can provide auxiliary
support. Practically, we set all labels to a specific value. This ensures that
the generated points align with the input human point cloud in the same
coordinate system while also promoting model convergence. Moreover, the
predicted joint coordinates are regularized against the ground truth with L2
loss during training.

3.2.2 Joint Encoder

As shown in Figure 2(b), given input incomplete point cloud P ∈ RN×3 and
predicted joint J ∈ RNk×3, firstly, we partition input incomplete point cloud
with KNN to obtain the neighbors of each joint Jneigh ∈ RNk×K×3. Then, we
compute the distances among joints, followed by sorting to determine the order
of joints. Finally, iterating through all 24 joints, the index tensor Jidx labeled
with joint order information is generated, while also sorting Jneigh ∈ RNk×K×3

accordingly.
Having obtained the ordered joint coordinates J and the ordered joint

neighbors Jneigh, we first encode Jneigh using PointNet [16] to derive the
features of joint neighbors. Then, we perform attention calculation on this
ordered sequence of point features with a dual masking strategy, which masks
some previous tokens of the current token. It can be represented as follows:

SelfAttention(T ) = softmax

(
QKT

√
D

−
(
1−Md

)
· ∞

)
V (2)

where Q, K, and V are obtained by encoding T with different weights along
the channel dimension D. The masked positions Md are set to 0 if masked,
and 1 otherwise.

Eventually, our joint encoder is composed entirely of transformer decoder
blocks with a dual masking strategy, obtaining joint feature Fjoints.
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3.3 Channel-Spatial Attention Transformer

CSAT complements the point attention mechanism by excavating relation-
ships within attention weights in both channel and spatial dimensions.

Given seed points Psd ∈ RNsd×3 and corresponding seed features Fsd ∈
RNsd×D, the query vector Q are generated by concatenating them and passing
through a MLP. The key vector K in UpLayer-CSAT is composed of output
features from the previous layer to retain features from input. Then, the
value vector V are composed of concatenated Q and K, as shown in Figure
3(a). CSAT calculates channel-wise attention weights âij after subtracting
each point from its k nearest neighbors N (i) as follows:

âij = α(β (Q)− γ (K) + δ), j ∈ N (i) (3)

where α, β, and γ are feature mapping functions MLP and linear layers.
Q,K ∈ RDh×Nl×K represents fused features of joint-wise and point-wise fea-
tures.
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Figure 3: The architecture of CSAT and spatial attention. The orange part in (a)CSAT
denotes our spatial attention (b) insert in point vector attention mechanism.

Then, as shown in Figure 3(b), two pooling operations is utilized to
generate average-pooled features Favg ∈ R1×H×W and max-pooled features
Fmax ∈ R1×H×W across the channel in âij , which are then concatenated and
fed into a convolution layer. We compute point attention weights â∗ij as fol-
lows:

â∗ij = σ
(
f7×7Cat (Avg (âij) ,Max (âij)) ∗ âij

)
(4)

where σ denote sigmoid function and f7×7 represents a convolution oper-
ation with the filter size of 7× 7.

Through elemental-wise multiplication of computed attention weights αij

and value vector, we obtain the features hi of new points around each seed
point.
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hi =
∑

j∈N (i)

exp (âij) ∗ (ψ (V ) + δ) (5)

where ψ is a feature mapping function. exp() denotes softmax function used
to normalize the computed weights âij . V ∈ RDh×Nl×K represents point-wise
features.

The aggregated features of the K-nearest neighbors of all seed points gen-
erate the upsampled features, doubling as the key vectors for the subsequent
iteration in the skip connection. Finally, a set of point offsets is obtained us-
ing a shared multi-layer perceptron based on the generated new point features.
Adding these offsets to the replicated original points results in the generation
of new upsampling points.

3.4 Loss Function

We propose a combined loss of Chamfer Distance (CD) and joint L2 loss in
our end-to-end human point cloud completion network, defined as:

L = λcdLCD + λjointLJoint (6)

where λcd, λjoint represent the weights of hierarchical CD loss and joint esti-
mation loss respectively. In this paper, we set λcd to 1 and λjoint to 0.5.

Specifically, generated point clouds at multiple stages of point cloud com-
pletion process are supervised, denoted as P ∈ {Pseed,P1,P2,P3}, referred to
as hierarchical CD loss LCD. Ground truth Pgt ∈ RNt×3 is aligned with the
generated point cloud in resolution with Farthest Point Sampling (FPS). The
LCD can be expressed as:

LCD =
∑
Pi∈P

CD(Pi,FPS(Pgt)) (7)

Additionally, to better utilize joint features obtained based on joint esti-
mation, we incorporate joint loss into the network to supervise the output of
the joint estimation module. The joint estimation loss LJoint is formulated
as:

LJoint =
1

N
∥pred− gt∥22 (8)

4 Experiments

4.1 Evaluation Metrics and Implementation Details

We utilize widely adopted metrics including Chamfer Distance (CD), Chamfer
Distance with L1 norm (CD-ℓ1), and F-score.
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CD evaluates the overall distribution, which ensures generated point cloud
represents the surface of the target. To alleviate the sensitivity of the L2
norm to individual outliers, CD-ℓ1 is adopted as a more balanced metric.
Additionally, the F-Score assesses the similarity between the generated and
the the target.

In the joint-enhanced encoder module, we set the point-wise labels yi to
be 0.001, the value of k in KNN to be 32, and the groups of KNN Nk to be
24. We conducted extensive experiments on several NVIDIA RTX4090 GPUs.
We trained our JointFormer end-to-end on PyTorch for 400 epochs. We used
the Adam optimizer with β1 = 0.9 and β2 = 0.999.

4.2 Datasets for Human Point Cloud Completion

Given the absence of a publicly available dataset of partial human body point
clouds, we referred to [14] to create two high-quality multi-view incomplete
human body point cloud datasets: THuman2.0 [28] and AMASS [12].

THuman2.0: To simulate the scenarios of incompleteness and sparsity
that occur in the real world, we first rendered 10 depth images from differ-
ent random viewpoints based on the model. Subsequently, transforming the
generated depth images into the world coordinate system, we obtain partial
point cloud data. Figure 4 shows an example of point cloud data obtained
with a focal length of 100.

Finally, the THuman2.0 dataset consists of 4200 training data, 530 valida-
tion data, and 530 test data. Each ground truth point cloud is generated by
evenly sampling 16384 points from the model surface. During experiments,
the batch size is 8, and the initial learning rate is 0.001 and decays by 0.1
every 100 epochs.

AMASS-part: Considering the limited variety of human models and
poses in the THuman2.0 dataset, we further developed a new, more diverse
dataset from part of AMASS [12], named AMASS-part. AMASS encompasses
a rich collection of human motion sequences stored as SMPL parameters.
Therefore, we first convert the SMPL parameters into 3D human models and
then generate point cloud data using the same approach as in THuman2.0
mentioned above.

Finally, AMASS-part consists of 4489 human models. After sampling from
10 random viewpoints, the training set contains 43,830 samples, while the test
set and the validation set each have 5,530 samples. We raised the batch size
to 48; the initial learning rate is 0.0005.

4.3 Evaluation on THuman2.0 dataset

We compared our JointFormer with several baseline methods on our THu-
man2.0 dataset. For fairness, we retrained these methods with their optimal
parameters respectively.
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（a) （b) （c) （d) （e) （ground_truth)

（f) （g) （h) （i) （j) （joints)

Figure 4: Example of our THUman2.0 dataset. (a)-(j) respectively represent partial human
point clouds sampled from 10 random viewpoints. The resolution of ground_truth is 16384.
The joints are extracted from SMPL parameters.

4.3.1 Quantitative Results

As shown in Table 1, we report Chamfer Distance, Chamfer Distance with L1
norm, and F-Score with several previous methods. Generally, lower Cham-
fer Distance indicates more accurate reconstructive shape. Compared to the
second-ranked AdaPoinTr, JointFormer reduces CD-ℓ1 by 0.48, which is 8.6%
lower, while CD is 10.0% lower and F-Score is 4.5% higher. As indicated by
results, the global guidance introduced through joint information in human
poses and the exploration of spatial relationships indeed assist in the comple-
tion of incomplete human point clouds. Our JointFormer, through its novel
designs, surpasses them by a significant margin.

4.3.2 Qualitative results

As shown in Figure 5, we can visually compare with several previous meth-
ods. The 1st column displays incomplete point clouds with varying degrees
of missing data. The 1st point cloud lost data on the back and left leg due to
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Table 1: Results on THuman2.0 in terms of Chamfer Distance Œ1000(lower is better), L1
Chamfer Distance Œ1000 (lower is better) and F-Score@1% (higher is better).

Methods CD ↓ CD-ℓ1 ↓ F1 ↑

FoldingNet [27] 4.00 33.68 0.16
PCN [31] 0.37 9.55 0.66

PoinTr [29] 0.31 9.23 0.66
SnowflakeNet [26] 0.17 6.77 0.83
PMPNet++ [22] 0.30 8.74 0.70
Seedformer [34] 0.12 5.91 0.88
AdaPoinTr [30] 0.10 5.57 0.89

Ours 0.09 5.09 0.93

Seedformer Ours GTPartial input SnowflakeNet PMPNet++PCN AdaPoinTr

Figure 5: Four visual examples of completion results on the THuman2.0 dataset using
various methods. Each row shows results generated by feeding the model with data from
different camera angles: the 1st and 4th rows represent data captured from above the
human, the 2nd row represents data from the front, and the 3rd row represents data from
behind the human.
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self-occlusion. The 2nd and 3rd point clouds miss back and front respectively.
The 4th point cloud suffers significant data loss in the body and legs. Each
row shows the results of different methods for completing the point clouds for
each partial data. In the 1st and 2nd rows, our method has finer details on
the right hand and neck of the human body, with a more even distribution
of surface and fewer outliers. Especially, it can be observed that our Joint-
Former has the smoothest surface and provides a more detailed and credible
completion of the left leg in the 1st row. In the 3rd row, facing the severely
missing on the neck of the human body, our method has a more reasonable
edge, while Seedformer and AdaPoinTr introduce some outliers at the toes
and uneven distribution of the right arm. In the 4th row, where the legs are
almost entirely missing, JointFormer performs better at detecting the pres-
ence of the right foot compared to other methods. Meanwhile, SnowflakeNet
and AdaPoinTr, despite having fewer outliers, prematurely halt the comple-
tion process. In conclusion, our JointFormer has a stronger ability to restore
details of human body parts and smooth surface points.

4.3.3 Comparison Under Different Levels of Difficulty

As shown in Table 2, we conduct experiments under different difficulty lev-
els to further evaluate the performance of JointFormer. CD1-S, CD1-M, and
CD1-H represent CD-ℓ1 when the viewpoint focal length is set to 100, 150,
and 200. Considering that training data was generated at a focal length of 100,
as the focal length increases, the discrepancy between the input and training
data grows. Consequently, the difficulty of model inference increases. How-
ever, compared to previous methods, our model performs well at all levels and
averages, except for slightly higher than PoinTr in hard level (focal length is
200). Compared to the second-ranked Seedformer, JointFormer decreased by
8.2% on CD-ℓ1 Avg. This indicates that our method exhibits superior gener-
alization performance when applied to data not encountered during training.

Table 2: Results on THuman2.0 under Simple, Medium, Hard in terms of L1 Chamfer
Distance Œ1000 (lower is better).

Methods CD1-H↓ CD1-M↓ CD1-S↓ CD1-Avg↓

FoldingNet [27] 33.10 33.21 33.68 33.33
PCN [31] 15.39 11.55 9.55 12.16

PoinTr [29] 8.96 8.79 8.99 8.91
PMPNet++ [22] 14.11 9.41 8.70 10.74
Seedformer [34] 10.12 6.92 5.91 7.65

Ours 9.89 6.09 5.09 7.02
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4.4 Evaluation on AMASS-part dataset

On the AMASS-part dataset, we also conduct experiments for our method and
other five state-of-the-art methods. Compared to THuman2.0, the AMASS-
part is sampled from human motion sequences and includes more complicated
human postures, making the completion task significantly more challenging.

The results are shown in Table 3. We see our method also achieves the best
performance in this more challenging dataset. Compared with Seedformer,
not only the CD-ℓ1 performance drop of our method is up to 2.8, but also
the CD and F1 performance much better. We also visualize the results in
Figure 6 to show the excellent performance of our method on human motion
sequences. Compared with Seedformer, in the 1-st row, our model delivers a
more complete point cloud of the human head. In the 2-nd row, it provides
a more accurate and reliable point cloud of the hands. In the 3-rd row, it
produces a finer and more detailed point cloud of the left side of the body.

Table 3: Results on AMASS-part in terms of Chamfer Distance Œ1000 (lower is better),
L1 Chamfer Distance Œ1000(lower is better)and F-Score@1% (higher is better).

Methods CD ↓ CD-ℓ1 ↓ F1 ↑

FoldingNet [27] 3.26 31.16 0.11
PCN [31] 1.92 23.13 0.21

PoinTr [29] 2.46 25.12 0.28
PMPNet++ [22] 1.69 18.69 0.31
Seedformer [34] 1.79 16.92 0.49

Ours 1.19 14.10 0.56

4.5 Ablation Study

4.5.1 Analysis of joint-enhanced encoder

The evaluation results of the joint-enhanced encoder are shown in Table 4.
The baseline model A is the basic point transformer for point cloud comple-
tion, which uses encoder-decoder architecture with point Transformer. In this
model, we extract local and global features with SA layers, while the decoder
consists of point transformer without spatial attention. We then add the joint
encoding branch in the encoder (model B). We see the joint encoding branch
improves the baseline by 0.13 in Chamfer Distance with L1-norm. Further-
more, we incorporate the joint regularization loss (model C) to investigate its
impact on the completion results. It can be seen the addition of regulariza-
tion loss slightly improves the completion performance. That is, the human
joints predicted by a joint encoding branch can indeed provide reliable global
information for guiding completion tasks, particularly when the input point
cloud has substantial gaps or severe missing regions.
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Seedformer Ours

Figure 6: Three visual examples of human point cloud completion results on the AMASS-
part dataset. The first two images in each group are side views, and the last one is the top
view, which can provide a more intuitive evaluation of the completion results of the model.

Table 4: Ablation studies on the THuman2.0 dataset. We investigate the impact of CSAT
and joint-enhanced encoder (joint-enc.) design on network performance.

Model joint-enc. joint-loss CSAT CD-ℓ1↓ F-Score@1% ↑
Seedformer 5.91 0.88

A 5.29 0.92
B 3 5.16 0.93
C 3 3 5.15 0.93
D 3 5.14 0.93
E 3 3 3 5.09 0.93

4.5.2 Analysis of CSAT

To verify the effectiveness of our CSAT (Channel-Spatial Attention Trans-
former), we conducted ablation experiments as shown in Table 4. Model E
represents our JointFormer. For comparison, we create model D by remov-
ing the joint encoding branch from the encoder. Notably, even without the
joint encoding branch, model D still integrates CSAT into the surface point
encoding branch, as well as into the upsampling Transformer blocks within
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the generator and decoder. This leads to a decrease in the CD-ℓ1 score to 5.14
compared to model A (lower is better). The results confirm the effectiveness
of our joint-enhanced encoder.

Additionally, we evaluated CSAT on the public dataset PCN. As shown in
Table 5, our model performs better than previous methods in all 8 categories
except for lamp. This indicates that the introduction of additional spatial
attention does not bring good improvement effects for objects with the shape
of a lamp. However, on average, the CSAT can better assist Transformers
in capturing neighboring relationships in unordered and structurally irregular
point clouds, which is crucial for point cloud completion tasks. Comparing
Seedformer and Mode D, we can be seen that CSAT only introduces a slight
improvement (0.03) on the PCN dataset, while there is a 13% improvement
on the human point cloud dataset. This further validates the effectiveness of
our CSAT.

Table 5: Analysis of Channel-Spatial Attention Transformer on the PCN dataset in terms
of L1 Chamfer Distance Œ1000 (lower is better).

Methods Av
er

ag
e

Pl
an

e

Ca
rb

in
et

Ca
r

Ch
air

La
m

p

Co
uc

h

Ta
bl

e

Bo
at

FoldingNet 14.31 9.49 15.80 12.61 15.55 16.41 15.97 13.65 14.99
PCN 9.64 5.50 22.70 10.63 8.70 11.00 11.34 11.68 8.59

GRNet 8.83 6.45 10.37 9.45 9.41 7.96 10.51 8.44 8.04
PMP-Net 8.73 5.65 11.24 9.64 9.51 6.95 10.83 8.72 7.25

PoinTr 8.38 4.75 10.47 8.68 9.39 7.75 10.93 7.78 7.29
SnowflakeNet 7.21 4.29 9.16 8.08 7.89 6.07 9.23 6.55 6.40
Seedformer 6.74 3.85 9.05 8.06 7.06 5.21 8.85 6.05 5.85

Ours 6.71 3.83 9.04 8.02 7.01 5.26 8.76 6.00 5.82

5 Conclusion

In this paper, we propose JointFormer, a novel method for point cloud com-
pletion in non-rigid objects, particularly focusing on the human body. By
fully leveraging self-attention mechanisms, our method effectively captures
both local and long-range structural relationships among unordered points.
In cases of severe missing situations, the joint encoding branch plays a cru-
cial role in guiding the inference process. Extensive comparisons and ablation
studies underscore the superiority of JointFormer, demonstrating its capabil-
ity to outperform state-of-the-art methods. Additionally, we have introduced
two new, and more challenging datasets specifically designed for human point
cloud completion. Further exploration of our architecture in other 3D human
reconstruction tasks could present an exciting direction for future research.
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