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ABSTRACT

Accurate phase extraction from sinusoidal signals is a crucial task
in various signal processing applications. While prior research
predominantly addresses the case of asynchronous sampling with
unknown signal frequency, this study focuses on the more specific
situation where synchronous sampling is possible, and the signal’s
frequency is known. In this framework, a comprehensive analysis
of phase estimation accuracy in the presence of both additive and
phase noises is presented. A closed-form expression for the asymp-
totic Probability Density Function (PDF) of the resulting phase
estimator is validated by simulations depicting Root Mean Square
Error (RMSE) trends in different noise scenarios. This estimator
is asymptotically efficient, converging rapidly to its Cramèr-Rao
Lower Bound (CRLB). Three distinct RMSE behaviours were
identified based on SNR, sample count (N), and noise level: (i)
saturation towards a random guess at low Signal to Noise Ratio
(SNR), (ii) linear decrease with the square roots of N and SNR at
moderate noise levels, and (iii) saturation at high SNR towards
a noise floor dependent on the phase noise level. By quantifying
the impact of sample count, additive noise, and phase noise on
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phase estimation accuracy, this work provides valuable insights
for designing systems requiring precise phase extraction, such as
phase-based fluorescence assays or system identification.

Keywords: Spectral estimation, phase estimation, synchronous sampling, Fou-
rier analysis

1 Introduction

Spectral estimation plays a critical role in signal processing by characterising
a signal’s spectral attributes, including amplitudes and phase shifts. This topic
has gathered considerable research interest for decades due to its numerous
applications in various fields, such as telecommunications, radar, seismology,
and power grid analysis [23, 29, 33, 24]. In the general case, the frequencies
of interest fi of the signal under study are a priori unknown. Thus, it is
exceedingly unlikely that given a sampling frequency fs and a sampling length
N , the numbers fi·N/fs are integers. This condition—known as “asynchronous
sampling”—leads to the infamous picket fence and spectral leaking effects [12],
which may be mitigated by an appropriate windowing function choice [30], the
use of all-phase Discrete Fourier Transform (DFT) [38, 14], or both [34], for
example.

There are certain cases, however, for which the signal under study is purely
sinusoidal with a known frequency. This scenario arises when characterising
linear systems, which may be fed a sinusoidal excitation signal of known
frequency, amplitude, and phase, while recording their output. The analysis
of the attenuation and phase shift induced by the system at hand can then
yield useful information. For instance, in the context of frequency-based Dual
Lifetime Referencing (f-DLR) [17], the phase shift between a fluorescence
excitation signal of known frequency and the re-emitted one can be used to
accurately measure the concentration of a variety of analytes [37, 1, 32, 35].
In this situation—known as “synchronous sampling”—the number of samples
taken, as well as the sampling and excitation frequencies f and fs, can be
chosen so that f ·N/fs is an integer, which suppresses the above-mentioned
deleterious effects [12, 10].

Yet, as far as we are aware, no comprehensive study has been conducted to
characterise the achievable accuracy of phase estimation in such a synchronous
sampling scenario. In this paper, we present theoretical developments leading
to a closed-form expression of the asymptotic Probability Density Function
(PDF) of the phase estimate of a noisy sinusoidal signal in the presence of
both phase and additive noises. The presented derivations are supported
by simulations results, showing the resulting phase Root Mean Square Error
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(RMSE) at different noise levels. We then show that the derived phase
estimator is asymptotically efficient with a fast convergence. Finally, we
discuss its asymptotic behaviour in the case of very high or very low noise
levels and sample numbers.

2 Problem Formulation

In the remainder of this document, the objective is always to retrieve the
phase φ of a real discrete signal of length N defined as

sn = As· cos
(
2·π·f0·n

fs
+ φ+ pn

)
+ xn, with





xn
iid∼ N (0, σ2

x)

pn
iid∼ N (0, σ2

p)

n ∈ [[0;N − 1]]

(1)

with f0 the frequency of the signal itself, fs its sampling frequency—always
chosen such that fs > 2·f0, the Nyquist frequency—and As its amplitude.
The xn and pn random variables—of variances σ2

x and σ2
p—represent additive

measurement noise and sampling-induced phase noise, respectively. Of note, it
is also considered that As and φ, though unknown, remain constant throughout
the acquisition duration N/fs. A representative illustration of the issue at
hand, involving most of the parameters introduced above, may be seen in
Figure 1.

Typically, in an f-DLR sensing scheme, As and φ would correspond to:

1. the intensity of the collected light: a function of the quantum yield of the
involved fluorophores, of their concentrations, and of the illumination
and light collection parameters, and

2. the phase shift: function of the ratio of the different fluorophores species,
conveying the concentration of the analyte of interest.

Hence, it is of particular importance to accurately estimate φ, and to
characterise the influence of σp, σx, and N on its RMSE, since it will directly
influence the reachable accuracy on the measurement of a given analyte’s
concentration.

In the remainder of this article, we adopt the following notations: xn

refers to the n-th element of a given vector X, □⊺ is the transpose operator,
0N and 1N stand for the zero and unit vector in R

N , respectively, ℜ(z) and
ℑ(z) stand for the real and imaginary parts of a given complex number z,
while |z| and arg(z) stand for its modulus and argument. ≜ means “per
definition”, □ is the complex conjugate operator, N and CN stand for the
normal and complex normal distributions, respectively, and x ⊥⊥ y denotes
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Figure 1: Temporal representation of the problem: the objective is to estimate the phase
φ of an idealised sinusoidal signal of amplitude As ( ) from a noisy measurement of the
latter ( ). The noise originates from two distinct sources: (i) an additive noise xn which
makes the sampled signal depart from its ideal counterpart, and (ii) a phase noise pn, which
randomly shifts the sampling times ( ) in comparison to an ideal sampling at frequency fs
( ). The symbol ∝ denotes proportionality, not to be confused with the Greek letter alpha
(α), used later on in this paper.

the independence between two random variable x and y. Finally, the Signal to
Noise Ratio (SNR) of the measurement is defined as

SNR =
A2

s

2·σ2
x

and SNRdB = 10· log10(SNR) (2)

3 Characterisation of the DFT Distribution

This paper focuses on φ estimation through the study of the DFT of the
above-presented noisy signal. Indeed, we demonstrate in Section 4 that an
unbiased and efficient estimator of φ—denoted as φ̂—can be derived by taking
the argument of the signal’s DFT at frequency f0. In order to derive the PDF
of φ̂, the PDF of this DFT must thus be known first.

To this end, let us first consider the k-th index of the N -points DFT of
the above-mentioned signal [7], i.e. its DFT at frequency f0:

DN =

N−1∑

n=0

sn·e−i· 2·π·k·n
N (3)
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with k, N , f0 and fs chosen such that k
N = f0

fs
(synchronous sampling hypoth-

esis). Let α = 2·π·f0
fs

and

S =




s0
s1
...

sN−1


 , X =




x0

x1

...
xN−1


 , Z =




ei·p0

ei·p1

...
ei·pN−1


 , Uα =




1
e−i·α

...
e−i·α·(N−1)


 (4)

Then DN may be rewritten as

DN =

N−1∑

n=0

sn·e−i·α·n = U⊺
α·S (5)

Let also define S̃ as S = S̃ +X. Using Euler’s formula, each element s̃n of
S̃ may then be expressed as

s̃n = As·
ei·(

2·π·f0·n
fs

+φ+pn) + e−i·( 2·π·f0·n
fs

+φ+pn)

2

=
As

2
·
(
ei·(α·n+φ+pn) + e−i·(α·n+φ+pn)

) (6)

The remainder of this section is organised as follows: the expected value
and variance of DN are computed in Sections 3.1 and 3.2, respectively, while
its asymptotic PDF is derived in Section 3.3.

3.1 Expected Value of DN

The expected value of DN is given by

E[DN ] = E[U⊺
α·S̃] +E [U⊺

α·X] (7)

Regarding E[U⊺
α·S̃],

U⊺
α·S̃ =

As

2

(
ei·φ

N−1∑

n=0

ei·pn + e−i·φ·
N−1∑

n=0

e−2·i·α·n·e−i·pn

)

=
As

2
·
(
ei·φ·1⊺N ·Z + e−i·φ·

(
U2
α

)⊺ ·Z
) (8)

hence
E[U⊺

α·S̃] =
As

2
·
(
ei·φ·1⊺N ·E[Z] + e−i·φ·

(
U2
α

)⊺ ·E[Z]
)

(9)
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We thus need to compute E[Z]. For a given p amongst pn, let us consider
E[ei·p] first, and let

[
g : v 7→ ei·v

]
. Then

E[ei·p] = E[g(p)] =

� +∞

−∞
g(v)·fp(v)dv (10)

thanks to the Law Of The Unconscious Statistician (LOTUS) [31], wherein
fp is the probability density function of p—namely a centred normal distribu-
tion of variance σ2

p, see Equation 1—given by
[
fp : v 7→ 1

σp·
√
2·π

·e−
v2

2·σ2
p

]
(11)

We thus have

E[ei·p] =
� +∞

−∞

1

σp·
√
2·π

·e−
v2

2·σ2
p
+i·v

dv

=
e−

σ2
p
2

σp·
√
2·π

� +∞

−∞
e

(
i·v

σp·
√

2
+

σp√
2

)2

dv

(12)

Using the change of variable u = h(v) with
[
h : v 7→ i·v

σp·
√
2

+
σp√
2

]
(13)

we thus have du = i·dv
σp·

√
2

, with erfi being the imaginary error function,

E[ei·p] =
e−

σ2
p
2

σp·
√
2·π

· lim
v→+∞

� +h(v)

−h(v)

eu
2 ·σp·

√
2

i
du

=
e−

σ2
p
2

2·i · lim
v→+∞

2√
π

� +h(v)

−h(v)

eu
2

du

︸ ︷︷ ︸
=[erfi(u)]

+h(v)

−h(v)︸ ︷︷ ︸
=2·i

= e−
σ2
p
2 (14)

Back to E[U⊺
α·S̃], since

E[Z] = E[Z] = E[Z] = 1N ·e−
σ2
p
2 (15)

we thus have

E[U⊺
α·S̃] =

As

2
·
(
ei·φ·N ·e−

σ2
p
2 + e−i·φ·e−

σ2
p
2 ·

N−1∑

n=0

u2
α,n

)
(16)

https://web.archive.org/web/20221020124947/https://statproofbook.github.io/P/mean-lotus.html
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Noting that
∑N−1

n=0 u2
α,n = 0 because e−2·i·α is an N-th root of unity, comes

E[U⊺
α·S̃] =

As·N
2

·ei·φ·e−
σ2
p
2 (17)

Regarding E[U⊺
α·X],

E[U⊺
α·X] = U⊺

α·E[X]︸ ︷︷ ︸
=0N

= 0 (18)

Finally, the expected value of DN comes to be

E[DN ] =
As·N
2

·ei·φ·e−
σ2
p
2 (19)

3.2 Variance of DN

The variance of DN may also be calculated in a similar manner, starting
with

Var(DN ) = Var(U⊺
α·S̃) +Var (U⊺

α·X) (20)

Regarding Var(U⊺
α·S̃),

Var(U⊺
α·S̃) = Var

[
As

2
·
(
ei·φ·1⊺N ·Z + e−i·φ·

(
U2
α

)⊺ ·Z
)]

=
A2

s

4
·
(

N−1∑

n=0

Var(zn) +Var
(
zn

)) (21)

We thus need to compute Var(zn), i.e. Var(ei·pn).

Var(ei·p) = E
[∣∣ei·p

∣∣2
]
−
∣∣∣E
[
ei·p
] ∣∣∣

2

= 1− e−σ2
p = Var(e−i·p)

(22)

as E[e−i·p] = E[ei·p]. Thus

Var(U⊺
α·S̃) =

N ·A2
s

2
·
(
1− e−σ2

p

)
(23)

Regarding Var (U⊺
α·X),

Var (U⊺
α·X)=

N−1∑

n=0

Var (uα,nxn) =

N−1∑

n=0

(
E
[
|uα,nxn|2

]
−
∣∣E [uα,nxn]

∣∣2
)

=

N−1∑

n=0

E[x2
n] = N ·σ2

x

(24)



8 Dervieux et al.

Finally, the variance of DN comes to be

Var(DN ) = N ·
(
A2

s

2
·
(
1− e−σ2

p

)
+ σ2

x

)
(25)

3.3 Distribution of DN

Now that the expected value and variance of DN are known, the next step is
to study its PDF. To do so, we focus on a reduced version of DN—D̃N—defined
as D̃N = 2·DN

As·N , with

βp = e−
σ2
p
2

E[D̃N ] = βp·ei·φ

Var(D̃N ) = 2
N ·
(
1− β2

p + 1
SNR

) (26)

We then proceed in two steps: at first, the convergence in law of ℜ(D̃N ) and
ℑ(D̃N ) towards normal distributions is demonstrated. Then, the asymptotic
independence of the latter two quantities is shown. These two demonstrations
establish that D̃N converges in law1 towards a complex normal distribution
[18, pp. 540–559], which is a crucial requirement for the forthcoming develop-
ments (see Section 4). However, before delving any deeper into this two-step
demonstration, we can further simplify the issue at hand, observing that

D̃N =
2·U⊺

α·S̃
As·N︸ ︷︷ ︸
D̃s

+
2·U⊺

α·X
As·N︸ ︷︷ ︸
D̃x

(27)

Since X is stationary and ergodic, it readily follows that D̃x converges
in distribution toward a complex normal distribution [27, 4]. Since D̃s and
D̃x are independent, the two above-mentioned steps thus only have to be
performed for D̃s.

3.3.1 Convergence in Law Towards a Normal Distribution

Let us consider the real part of D̃s

ℜ(D̃s) =
2

N
·
N−1∑

n=0

cos (α·n) · cos (α·n+ φ+ pn)

=
2

N
·
N−1∑

n=0

Vn, with Vn = cos (α·n) · cos (α·n+ φ+ pn)

(28)

1Of note, convergence in law is sometimes also referred to as “convergence in distribution”
or “weak convergence” [36, p. 18].
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We will use Lyapunov’s Central Limit Theorem (L-CLT) to demonstrate
the convergence of

∑
Vn towards a normal distribution. To do so, we will first

show that there exists a positive δ such that

lim
N→+∞

1

s2+δ
N

N−1∑

n=0

E
[∣∣Vn −E[Vn]

∣∣2+δ
]

︸ ︷︷ ︸
γN

= 0 (29)

wherein s2N =
∑N−1

n=0 Var(Vn), and Var(Vn) = cos2(α·n)·Var(cos (tn + pn))︸ ︷︷ ︸
=E(...2)−E(... )2

,

with tn = α·n+ φ. Where

E(. . .2) =
1

2
+

e−2·σ2
p

2
· cos(2·tn), and E(. . . )2 = e−σ2

p ·1 + cos(2·tn)
2

(30)

and thus

Var(Vn) = cos2(α·n)·
[
1

2
+ e−σ2

p ·
(
cos(2·tn)

2
·e−σ2

p − 1 + cos(2·tn)
2

)]

=
cos2(α·n)

2
·
(
1− e−σ2

p

)
·
(
1− e−σ2

p · cos(2·tn)
)

≥ cos2(α·n)
2

·
(
1− e−σ2

p

)2

(31)

Back to sn,

s2n ≥

(
1− e−σ2

p

)2

2

=N/2(‡)︷ ︸︸ ︷
N−1∑

n=0

cos2(α·n) ≥
N ·
(
1− e−σ2

p

)2

4
(32)

wherein (‡) comes from the facts that cos2 x = 1+cos(2·x)
2 , and that e−2·i·α is

an N-th root of unity (see Equations 16–17). Then, ∀δ > 0

γN =
1

s2+δ
N

N−1∑

n=0

≤22+δ

︷ ︸︸ ︷
E
[∣∣Vn −E[Vn]

∣∣2+δ
]
≤ N ·22+δ

(
N
4 ·
(
1− e−σ2

p

)2)1+ δ
2

−−−−−→
N→+∞

0

(33)
Since Vn are independent and of finite variance, according to L-CLT, we thus
have

1

sN

N−1∑

n=0

(Vn −E[Vn])
d−−−−−→

N→+∞
N (0, 1) (34)

wherein d−→ denotes convergence in distribution.
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Hence, since ℜ(D̃s) =
2
N ·∑N−1

n=0 Vn,

ℜ(D̃s)
d−−−−−→

N→+∞
N
(

2

N
·
N−1∑

n=0

E[Vn],

(
2·sN
N

)2
)

(35)

A similar train of thought can be followed to also demonstrate the asymptotic
normality of ℑ(D̃s).

3.3.2 Asymptotic Independence

Demonstrating the complex normality of D̃s then only requires to demon-
strate that ℜ(D̃s) ⊥⊥ ℑ(D̃s). To do so, it suffices to show that [28, Th.
4.5-1]:

(i) ℜ(D̃s) and ℑ(D̃s) follow a bivariate normal distribution, and that

(ii) Cov(ℜ(D̃s),ℑ(D̃s)) = 0.

Bivariate normality
∀(a, b) ∈ R

2 let

T = a·ℜ(D̃s) + b·ℑ(D̃s)

=

N−1∑

n=0

a· cos (α·n) + b· sin (α·n)
N

· cos (α·n+ φ+ pn)
(36)

It can be shown—as was done in the previous section with ℜ(D̃s)—that
T also converges in law towards a normal distribution. Thus, by definition,
ℜ(D̃s) and ℑ(D̃s) follow a bivariate normal distribution.

Covariance
Let

C = Cov(ℜ(D̃s),ℑ(D̃s)) = E[ℜ(D̃s)·ℑ(D̃s)]︸ ︷︷ ︸
CL

−E[ℜ(D̃s)]·E[ℑ(D̃s)]︸ ︷︷ ︸
CR

(37)

and ∀n, Φn = φ+ pn. Then

CL = E

[(
N−1∑

l=0

cos (α·l) · cos (α·l +Φl)

N

)
·
(

N−1∑

l=0

sin (α·m) · cos (α·m+Φm)

N

)]

=

N−1∑

l,m=0

(
cos(α·l)· sin(α·m)

N2
·E [cos(α·l +Φl)· cos(α·m+Φm)]

)

(38)
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while

CR =

N−1∑

l,m=0

(
cos(α·l)· sin(α·m)

N2
·E [cos(α·l +Φl)] ·E [cos(α·m+Φm)]

)
(39)

Since (pn) are independent, (Φn) are also independent and ∀l ̸= m

E [cos(α·l +Φl)· cos(α·m+Φm)] = E [cos(α·l +Φl)] ·E [cos(α·m+Φm)]
(40)

The corresponding terms in CL and CR thus cancel out and

C =
1

N2

N−1∑

n=0

cos(α·n)· sin(α·n)·
[
E
[
cos2(α·n+Φn)

]
−E [cos(α·n+Φn)]

2
]

︸ ︷︷ ︸
=Var(cos(α·n+Φn))

(41)
Using Popoviciu’s inequality on variances to bound Var(cos(...)) yields

C ≤ 1

N2

N−1∑

n=0

|cos(α·n)|︸ ︷︷ ︸
≤1

· |sin(α·n)|︸ ︷︷ ︸
≤1

·Var(cos(...))︸ ︷︷ ︸
≤1

≤ 1

N
−−−−−→
N→+∞

0 (42)

Thus ℜ(D̃s) ⊥⊥ ℑ(D̃s) asymptotically, and we finally demonstrated that
D̃s—and thus D̃N—converges in law towards a complex normal distribution
with increasing values of N . This can be rephrased as




D̃N = x+ i·y
x ∼ N

(
µx = βp· cos(φ), σ2

)

y ∼ N
(
µy = βp· sin(φ), σ2

)

x ⊥⊥ y

wherein σ2 =
1

N
·
(
1− β2

p +
1

SNR

)
(43)

3.3.3 Convergence in Practice

While this convergence is theoretically proven for N → +∞, its practical
validity was studied for relatively small values of N . To do so, simulations were
performed for SNRdB= 0..30 dB, σp = 0.1..10°, N = 10..100. The multivariate
normality of ℜ(D̃N ) and ℑ(D̃N ) was tested using Henze-Zirkler test [13] on
2.103 D̃N outcomes. Their independence, was asserted using Hoeffding’s D
measures [11] between ℜ(D̃N ) and ℑ(D̃N ) using 105 D̃N outcomes. In the
case of the Henze-Zirkler test, simulations were repeated ten times, and their
p-values—adjusted using the Benjamini-Hochberg correction [2] and combined
with Fisher’s method. The outcomes of these simulations were as follows.
Henze-Zirkler multivariate test revealed no deviation from normality for N
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values above 20 using a significance level of 0.05. Hoeffding’s D measures
between ℜ(D̃N ) and ℑ(D̃N ), on their part, were found to be below 10−4 for
as little as N = 20 measurement points, clearly demonstrating the practical
independence of the two random variables. These two tests confirm that the
convergence of D̃N ) towards a complex normal distribution is observed in
practice across a wide range of conditions, even for relatively small N values.
Of note, this fast convergence is again demonstrated in Figure 3, further below,
for as little as 20 samples.

4 Phase Estimation from the DFT

The phase φ of the signal S may be estimated by φ̂ = arg(D̃N ). Of
paramount importance are thus the mean bias and RMSE of this estimator,
i.e. the two quantities

E[φ− φ̂] and
√
E [(φ− φ̂)2] (44)

In order to derive them, we can notice that φ̂ = arg(x+ i·y), and focus on
the joint probability function of (x, y), given by

f(x, y) =
1

2·π·σ2
·e− 1

2·σ2 ·((x−µx)
2+(y−µy)

2) (45)

Then—thanks to the LOTUS—φ̂’s mean bias (a = 1) and RMSE (a = 2)
may be computed using

E [(φ− φ̂)a] =

�
R2

arg (x+ i·y)a ·f(x, y) dxdy (46)

While direct numerical calculations are presented in Section 4.3, another
approach involving a switch to polar coordinates is first presented in the next
section, allowing an in-depth comprehension of the influence of noises by means
of meaningful illustrations.

4.1 Marginalisation in Polar Coordinates

A representation of the estimation of φ in the complex plane can be seen
in Figure 2. Naturally, different realisations of S would lead to different
D̃N values. Since D̃N follows a complex normal distribution, this translates
into the small black dots (·) whose repartition is characteristic of a bivariate
normal law, in the complex plane. This distribution is centred around its
mean—E[D̃N ]—of Cartesian coordinates (µx, µy)c, represented as a large
black dot (•). Interestingly, this centre is distinct from its position in the
noiseless case, represented as a large blue dot (•), due to the e−σ2

p term in
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x=<(D̃N )

y
=
=(

D̃
N
)

ϕ
ϕ̂

CN (E[D̃N ],Var(D̃N ))

E[D̃N ] :

(
µx

µy

)

c

,

(
βp

ϕ

)

p

ei·ϕ :

(
cosϕ
sinϕ

)

c

,

(
1
ϕ

)

p

D̃N :

(
x=r ·cos ϕ̂
y=r ·sin ϕ̂

)

c

,

(
r
ϕ̂

)

p

Figure 2: A representation of the estimation issue at hand in the complex plane. The (□)c
and (□)p subscripts denote Cartesian and polar coordinates, respectively. See the text for
further explanations.

E[D̃N ], which is dragging the D̃N distribution towards the origin. A given
D̃N realisation—depicted as a large red dot (•)—yields an estimation of φ,
namely φ̂.

Formally, the following change of variable from Cartesian to polar coordi-
nates may be performed:


F :

R
+ × [0; 2·π[ → R

2(
r
θ

)
7→
(
r· cos θ
r· sin θ

)

 and JF(r, θ) = r (47)

wherein JF is the Jacobian of F. Expressing f as a function of r and θ yields

f(r, θ) =
1

2·π·σ2
·e− 1

2·σ2 ·(r2−2·r·βp· cos(θ−φ)+β2
p)

=
1

2·π·σ2
·e−

(r−βp· cos(θ−φ))2+β2
p· sin2(θ−φ)

2·σ2

=
e−β2

p·
sin2(θ−φ)

2·σ2

2·π·σ2
·e− 1

2·σ2 ·(r−βp· cos(θ−φ))2

(48)

Applying the above-mentioned change of variables, taking care to replace
dxdy by JF(r, θ)drdθ in the integrand leads to the following expression for the
marginal density probability of θ under φ:�

(x,y)∈R2

f(x, y)dxdy =

�

r∈R+

θ∈[0;2·π[

f(r, θ)·r drdθ (49)
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and f can be marginalised with respect to r alone, leading to

gφ(θ) ≜
� +∞

0

f(θ, r)·r dr =
e−β2

p·
sin2(θ−φ)

2·σ2

2·π·σ2
·
+∞�

0

r·e−
(r−βp· cos(θ−φ))2

2·σ2 dr

︸ ︷︷ ︸
Gθ

(50)

Gθ can be further decomposed into Hθ and Kθ, following

Gθ =

Hθ︷ ︸︸ ︷
+∞�

0

(r − βp· cos(θ − φ)) ·e−
(r−βp· cos(θ−φ))2

2·σ2 dr

+βp· cos(θ − φ)·
+∞�

0

e−
1

2·σ2 ·(r−βp· cos(θ−φ))2dr

︸ ︷︷ ︸
Kθ

(51)

And Hθ and Kθ can be explicitly calculated using appropriate change of
variables as

Hθ =

+∞�

−βp· cos(θ−φ)

t·e− t2

2·σ2 dt = −σ2·
+∞�

−βp· cos(θ−φ)

d

dt

(
e−

t2

2·σ2

)
dt = σ2·e−β2

p·
cos2(θ−φ)

2·σ2 (52)

and

Kθ =

+∞�

−βp· cos(θ−φ)

e−
t2

2·σ2 dt =

+∞�

−βp· cos(θ−φ)

e
−
(

t√
2 ·σ

)2

dt = σ·
√
2 ·

+∞�

−βp· cos(θ−φ)

σ·
√

2

e−u2

du

= σ·
√

π

2
· 2√

π
·
+∞�

−βp· cos(θ−φ)

σ·
√

2

e−u2

du

︸ ︷︷ ︸
erfc(...)

= σ·
√

π

2
· erfc

(
−βp·

cos(θ − φ)

σ·
√
2

) (53)

and thus:

Gθ = σ2·e−β2
p

cos2(θ−φ)

2·σ2 + σ·βp·
√

π

2
· cos(θ − φ)· erfc

(
−βp·

cos(θ − φ)

σ·
√
2

)
(54)

Finally, putting it all together leads to

gφ(θ) =
e−

β2
p

2σ2

2·π +
βp· cos(θ − φ)·e−β2

p·
sin2(θ−φ)

2·σ2

2·
√
2·π ·σ

· erfc
(
−βp·

cos(θ − φ)

σ·
√
2

)
(55)
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gφ(θ) is represented in Figure 3, along with the histogram of simulated φ̂

values—i.e. arg(D̃N ) values, D̃N being computed from simulated S vectors.
gφ(θ) resembles a normal distribution which would have been wrapped around
the [0, 2·π] interval—although it is not a wrapped normal distribution nor
a von Mises distribution strictly speaking (for further information on these
distributions, see Collett et al. [6, 22, 21]). As could have been expected
intuitively, the shape of gφ(θ) narrows as N or SNRdB increase, or as σp

decreases, as emphasised in the inset of Figure 3.
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Figure 3: Normalised representations of gφ(θ) and of the histogram of simulated φ̂ values
(106 draws, φ=60°). Main picture: N = 20, SNRdB=-10 dB and σp = 5°. The magnifying
glass clearly shows how the histogram of simulated φ̂ is close to the analytic expression of
gφ(θ). Inset: N = 20, SNRdB=0 dB and σp = 1°.

4.2 Expressing the Error in the Polar Case

Since gφ(θ) is the probability density function to measure a phase shift
φ̂ = θ given a true phase shift φ, the mean bias and RMSE of the φ̂ estimator,
may be expressed as

E[φ− φ̂]
(bias)

=

� 2·π

0

errφ(θ)·gφ(θ)dθ, and

RMSE =

√� 2·π

0

err2φ(θ)·gφ(θ)dθ
(56)
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wherein errφ(θ) is the estimation error at a given polar angle θ, as represented
in Figure 4, and is defined as

errφ(θ) = min (d, 2·π − d) (57)

with d ≡ θ − φ (mod 2·π), that is

errφ(θ) = π − |π − θ| (58)

θ

ϕ

err

Figure 4: Illustration of err on the trigonometric circle: err always represent the minimum
angular distance between the true φ value and an angle θ.

It can also be demonstrated that the RMSE and bias are independent of
φ, as could have been expected intuitively. Only the RMSE case is detailed
below, but a similar train of thought can be followed for the bias. Since the
square root function is bijective on R

+, we only have to demonstrate that
∀(φ,φ′) ∈ [0, 2·π[2

� 2·π

0

err2φ(θ)·gφ(θ)dθ
︸ ︷︷ ︸

Jφ

=

� 2·π

0

err2φ′(θ)·gφ′(θ)dθ

︸ ︷︷ ︸
Jφ′

(59)

Then, with the change of variable t = θ − φ+ φ′,

Jφ =

� 2·π−φ+φ′

−φ+φ′
err2φ(t+ φ− φ′)·gφ(t+ φ− φ′)dθ (60)

Using the definitions of err and g comes

Jφ =

� 2·π−φ+φ′

−φ+φ′
err2φ′(t)·gφ′(t)dt

=

� 0

−φ+φ′
err2φ′(t)·gφ′(t)dt

︸ ︷︷ ︸
Mφ

+

� 2·π−φ+φ′

0

err2φ′(t)·gφ′(t)dt
(61)
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Using the change of variable u = t + 2·π, and since err and g are 2·π-
periodic,

Mφ =

� 2·π

2·π−φ+φ′
err2φ′(u− 2·π)·gφ′(u− 2·π)du =

� 2·π

2·π−φ+φ′
err2φ′(u)·gφ′(u)du

(62)
Leading to

Jφ =

� 2·π−φ+φ′

0

err2φ′(t)·gφ′(t)dt+

� 2·π

2·π−φ+φ′
err2φ′(u)·gφ′(u)du

=

� 2·π

0

err2φ′(t)·gφ′(t)dt = Jφ′

(63)

The RMSE is thus independent of φ, and taking φ = 0 leads to err(θ) = |θ|
∀θ ∈ [−π, π], yielding finally

RMSE =

√� +π

−π

θ2·g0(θ)dθ (64)

However, due to the complexity of g0(θ), we did not manage to derive a
closed-form expression of the RMSE in the general case, and used numerical
simulations to compute the latter as a function of σx—or, equivalently, the
SNR—σp, and N .

The bias, on the other hand, can be readily computed since it can be shown
similarly that:

E(φ̂− φ) =

� +π

−π

θ·g0(θ)dθ (65)

and since [θ 7→ θ·g0(θ)] is an odd function, it follows that the bias is null and
that φ̂ is an unbiased estimator of φ, which further justifies its choice as
φ estimator in the first place.

4.3 Numerical Calculation of the RMSE

Despite giving a better understanding of the issue at hand, and allowing
one to clearly visualize the influence of N , σp or σx on the probability density
function of φ̂—as demonstrated by Figures 2 and 3—the polar coordinates
considerations did not give a closed form expression for the RMSE of φ̂. The
latter may thus be calculated numerically using either Equation 46 (Cartesian
case) or Equation 64 (polar case):

RMSE =

√�
R2

arg (x+ i·y)2 ·f(x, y) dxdy =

√� +π

−π

θ2·g0(θ)dθ (66)
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While these two expression of the RMSE obviously yield the same quantity,
the Cartesian approach is much more computationally expensive than the
polar one, due to the double integration over the discretised, truncated R

2

plane. Thus, all the results below were obtained using the polar approach.
The influence of both the SNRdB—and thus σx—and the phase noise σp on
the RMSE is depicted in Figure 5. Simulated RMSE values were also added
to the latter figure, computed in a similar fashion to Figure 3. The closeness
between these simulated values and the theoretical predictions consolidates
the above-presented approach.

−50 −40 −30 −20 −10 0 10 20 30 40 50
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10−1

100

101

102

N=1000, R2>0.9999

log10(RMSE)=−5.00 ·10−2 ·SNRdB +0.26

SNRdB (dB)

R
M

SE
(◦

)

0◦ 1◦

0.1◦ 5◦

0.5◦ 5◦ (sim.)

σp

Figure 5: The RMSE on φ estimation as a function of SNRdB for various σp values. In the
absence of phase noise—i.e. the black, continuous line ( )—a linear regression can be per-
formed for SNRdB ≥ −20 dB, yielding the displayed equation and associated determination
coefficient. As indicated, all calculations were performed taking N=1000 points. Simulated
values were computed using only 102 realisations so that some dispersion is perceivable.
Indeed, using 106 realisations as was done in Figure 3 led to marks indistinguishable from
the plain red line.

The evolution of the RMSE as a function of the SNRdB can be split into
three behaviours:

– At very low SNRdB values—i.e. below −30 dB—the RMSE saturates,
to reach approximately 100°. This corresponds to an exceedingly noisy
case, for which φ̂ is basically no more than a random guess on [0; 2·π[.
In this case, gφ(θ) converges towards a uniform distribution, and the
RMSE tends towards π/

√
3 rad (≈104°), as shown in Section 5.1.

– At higher SNRdB value and in the absence of phase noise—i.e. when
SNRdB > −20 dB and σp=0—the RMSE follows a linear relationship
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with the SNR (or a log-linear relationship with SNRdB, as indicates
the equation on the graphic). In this case, gφ(θ) converges towards a
normal distribution centred around φ, and the RMSE tends towards
1/

√
N ·SNR , as demonstrated in Section 5.2.

– Finally, when SNRdB ≥ −20 dB but the phase noise is significant—
typically above 0.5° in Figure 5—the RMSE becomes independent of
SNRdB at some point as SNRdB increases, and becomes a function of σp

alone. This latter case is developed in Section 5.3.

The influence of N on φ̂ RMSE is presented in Figure 6. Starting with
the left part of the figure, while the three above-mentioned behaviours can be
observed irrespective of N value, increasing N by a factor m has two main
effects. First, it shifts the saturation threshold in case of extreme noise—i.e.
for SNRdB values in the [-50,-20] dB range—by a factor 10· log10(m) (in dB)
to the left. Then, it divides the RMSE at higher SNRs—i.e. for SNRdB
values in the [-20,50] dB range—by a factor

√
m . Looking at the right part

of Figure 6, φ̂ RMSE appears to decrease linearly with increasing N values,
while increasing the SNR shifts the RMSE lines downwards.
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Figure 6: The RMSE on φ estimation as a function of SNRdB and N , with σp=1°.

Of note, the reader should bear in mind that the SNRdB thresholds given
above, as well as the numerical values given below, are of course dependent on
N and As. As a general rule, As is considered unitary in all our simulations, and
N=1000 unless otherwise stated. Still, the same above-described behaviours
would be observed with different N and As values, only the numerical values
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stated in our developments would be altered. Of note, σp values were also
deliberately chosen relatively high for the sake of illustration. In practice,
modern analogue-to-digital converters can feature phase noises in the [10−2–
10−3]° range [16, 3].

Finally, Figure 7 depicts the evolution of φ̂ RMSE with σp. Here, the
behaviour observed in Figure 5 can be examined from another perspective: at
low enough phase noise levels—i.e. when σp is below approximately 0.01°—the
RMSE is solely function of N and the SNR. However, as soon as σp increases, it
starts to act as a noise floor, and increases the RMSE progressively. This effect
is particularly pronounced at relatively high N and SNR values, potentially
ruining an otherwise excellent accuracy, as can be seen in the left part of the
figure for N = 105 and SNRdB = 50 dB.
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Figure 7: The RMSE on φ estimation as a function of σp, for various N and SNR values.

4.4 Estimation Efficiency

The efficiency of the performed estimation can be found by computing the
Cramér-Rao Lower Bound (CRLB) of φ̂. The likelihood L

(
φ̂|D̃N

)
of observing

D̃N under a given φ̂—hereafter noted L for the sake of conciseness—is given
by

L =
∏

z={x,y}

1√
2·π·σ2

·e−
(z−µz)2

2·σ2 (67)
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The log-likelihood is then

log (L) = − log
(
2·π·σ2

)
−

∑

z={x,y}

(z − µz)
2

2·σ2
(68)

and its first and second derivatives are given by

∂ log (L)
∂φ̂

=
1

σ2

∑

z={x,y}
(z − µz) ·

∂µz

∂φ̂
(69)

and
∂2 log (L)

∂φ̂2
=

1

σ2

∑

z={x,y}

[
(z − µz) ·

∂2µz

∂φ̂2
−
(
∂µz

∂φ̂

)2
]

(70)

The Fisher information I (φ̂) may then be derived as

I (φ̂) = −E

[
∂2 log (L)

∂φ̂2

]
=

1

σ2

∑

z={x,y}



(
∂µz

∂φ̂

)2

−E [z − µz]︸ ︷︷ ︸
=0

·∂
2µz

∂φ̂2




=
β2
p

σ2

(71)

Finally leading to

CRLB =
1

I (φ̂)
=

σ2

β2
p

(72)

The convergence of φ̂ towards its CRLB is illustrated in Figure 8. φ̂ appears
to be an asymptotically efficient estimator of φ with a fast convergence rate,
exhibiting 1−Efficiency values below 10−3 for as little as 1000 samples even in
the presence of strong noise (SNR=0 dB). As a remainder, the efficiency of an
unbiased estimator—which is the case for φ̂—is defined as [28, p. 279]

Efficiency =
CRLB
Var(φ̂)

=
CRLB
RMSE2 (73)

5 Asymptotical Behaviours of the RMSE

5.1 Saturation in Case of Excessive Additive Noise

For SNRdB values below approximately −30 dB, the RMSE appears to
be converging towards approximately 100°—see Figure 5. This phenomenon
corresponds to an extremely noisy case, wherein the estimated φ value is no
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Figure 8: Asymptotical efficiency of φ̂. σp was set to 1°.
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Figure 9: g0(θ) for different SNRdB values. For increasing SNRdB values, g0(θ) converges
towards a uniform distribution. N=1000, σp=0.

better than a random guess on the [0; 2·π[ interval. In this case, g0(θ) converges
toward a uniform distribution as SNRdB decreases, as illustrated in Figure 9.
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Indeed, as SNRdB decreases, σ increases and we can make the following
approximation

g0(θ) =
1

2·π · e−
β2
p

2σ2︸ ︷︷ ︸
−−−−−→
σ→+∞

1

+

−−−−−→
σ→+∞

0

︷ ︸︸ ︷

βp·
|...|≤1︷ ︸︸ ︷
cos(θ)

2·
√
2·π ·σ︸ ︷︷ ︸

−−−−−→
σ→+∞

0

· e−β2
p·

sin2(θ)

2·σ2︸ ︷︷ ︸
<1

· erfc
(
−βp·

cos(θ)

σ·
√
2︸ ︷︷ ︸

≈0

)

︸ ︷︷ ︸
−−−−−→
σ→+∞

1

g0(θ) −−−−−→
σ→+∞

1

2·π

(74)

In other words, g0(θ) can be approximated by a uniform distribution on
the [−π, π[ interval. The Kullback-Leibler divergence between g0(θ) and a
uniform distribution can also be computed, and is presented in Figure 10. As
expected, the divergence decreases steeply with a decreasing SNRdB, further
confirming the above-mentioned convergence phenomenon.
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Figure 10: The Kullback-Leibler divergence between g0(θ) and a uniform distribution as a
function of SNRdB. The inset shows the same data on a logarithmic scale. N=1000, σp=0.

Subsequently the RMSE becomes

RMSE =

√� π

−π

θ2· 1

2·πdθ =
π√
3

(75)
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hence the saturation behaviour observed for the RMSE at high σc values in
Figure 5. The 100° plateau value noted above simply comes from the radian to
degree conversion (π/

√
3 rad≈104°). That being said, contrary to the linear

case given in the next section, this saturation phenomenon is of little practical
interest since it corresponds to an extremely noisy case, which only yields
random guesses as phase estimation. It was thus only presented here for the
sake of completeness.

5.2 Linear Relationship With the SNR

The observed linear relationship between the RMSE and the SNR can be
explained by the fact that, for increasing SNR values, g0(θ) converges towards
a normal distribution, as illustrated in Figure 11.
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Figure 11: Normalised probability density functions: g0(θ) is plotted with its associated
simplified Gaussian model. For SNRdB above −10 dB, g0(θ) becomes indistinguishable from
its Gaussian approximation. N=1000, σp=0.

Indeed, taking φ = 0 and high SNRdB values leads to an extremely narrow
g0(θ) function—as was already noted above in Figure 3—which is non-negligible
only for very small θ deviations from zero. More formally:

Var(D̃N ) −−−−−−−−→
SNRdB→+∞

0 (∗)

(∗) =⇒ D̃N
L2−−−−−−−−→

SNRdB→+∞
E[D̃N ]

(∗) =⇒ θ = arg(D̃N )− φ
P−−−−−−−−→

SNRdB→+∞
0

(76)
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wherein L2−−→ and P−→ denote convergence in mean square and convergence
in probability, respectively. By definition of the latter convergence, g0(θ) is
thus non-negligible only for very small deviations from zero with a non-null
probability. Under these conditions, and in the absence of phase noise, βp = 1
and σ tends towards zero as SNRdB tends towards infinity. We can then make
the following approximation:

g0(θ) =
e−

β2
p

2σ2

2·π︸ ︷︷ ︸
≈0

+
βp

2·
√
2·π ·σ

· cos(θ)︸ ︷︷ ︸
≈1

·e−β2
p·

≈θ2︷ ︸︸ ︷
sin2(θ)

2·σ2 · erfc
(
−βp·

≈1︷ ︸︸ ︷
cos(θ)

σ·
√
2︸ ︷︷ ︸

≪−1

)

︸ ︷︷ ︸
≈2

≈ 1√
2·π ·σ

·e− θ2

2·σ2

(77)

Thus, for high enough SNR values, g0(θ) can be reasonably well approxi-
mated by a simple normal distribution of null mean, and variance σ2. The
fast convergence towards this approximation is further illustrated in Figure 12,
wherein the Kullback-Leibler divergence and Bhattacharyya distance between
g0(θ) and its Gaussian approximation are represented as a function of SNRdB.
It appears that for SNRdB values above −10 dB, this distance becomes virtually
null (≈ 10−5).
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Figure 12: The Kullback-Leibler divergence (KL) and Bhattacharyya distance (Bhat.)
between g0(θ) and its Gaussian approximation as a function of SNRdB. The inset shows
the same data on a logarithmic scale. N=1000, σp=0.
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As a reminder, the Bhattacharya distance quantifies the closeness between
two distributions. Given two random variables P and Q with probability
density function p(x) and q(x) the Bhattacharya distance and Kullback-Leibler
divergence are defined as follows [15]:

(i) Bhattacharya distance:

dB(P∥Q) = − log

(�
p(x)·q(x) dx

)
(78)

(ii) Kullback-Leibler divergence:

dKL(P∥Q) =

�
p(x)· log

(
p(x)

q(x)

)
dx (79)

One may notice that the division by q(x) in dKL may be problematic
in case of numerical applications if q(x) is near zero. Such an issue can be
observed in Figure 12 for SNRdB values above roughly −8 dB: dKL cannot
be computed even using 64-bits double-precision floats, because the Gaussian
probability density function tends towards zero extremely fast as soon as θ
deviates from zero. This is the reason why the Bhattacharya distance was
introduced in the first place, so as to better cover the case of high SNRdB
values.

Subsequently the RMSE becomes

RMSE =

√� π

−π

θ2· 1√
2·π ·σ

·e− θ2

2·σ2 dθ = σ =
1√

N ·SNR
(80)

hence the linear relationship observed in Figure 6 between log10(RMSE) on
the one hand, and SNRdB and N on the other hand. This result is especially
interesting for practical applications. Indeed, a SNRdB above −10 dB can
easily be reached in practice, ensuring the validity of the above-mentioned
Gaussian approximation for g0(θ), and the ensuing conclusions on the RMSE.
Of particular interest, if this condition is fulfilled, the expected RMSE
on the phase estimation can be directly inferred from N and the
SNR, using Equation 80. Still, one should bear in mind that this conclusions
holds only if βp ≈ 1, otherwise the developments presented in the next section
should apply.
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5.3 Saturation in the Presence of Phase Noise

When some amount of phase noise is present—i.e. βp ∈]0; 1[—and for
high enough SNR, the following approximation can be made, as was done in
Equation 77:

g0(θ) ≈
βp√
2·π ·σ

·e−
β2
p·θ2

2·σ2 (81)

Again, g0(θ) can be approximated by a simple normal distribution, but of
variance σ2/β2

p , instead of σ2 alone in the previous section. The convergence
towards a Gaussian is nearly identical with that presented in Section 5.2
and thus Figures 11 and 12 were not reproduced for the sake of conciseness.
Similarly to Equation 80 comes

RMSE =
σ

βp
=

√
1

β2
p ·N

·
(
1− β2

p +
1

SNR

)
(82)

which, in case of high enough SNR—i.e. 1− β2
p ≫ 1/SNR—becomes

RMSE ≈
√

1

N
·
(

1

β2
p

− 1

)
(83)

This result is also interesting because it provides a lower limit for the RMSE,
even at exceedingly large SNR values: the RMSE is ultimately limited by
the phase noise, which acts as a noise floor. This explains the saturations
observed on the right part of Figure 5 and 6: the lower limits reached by the
different curves with non-zero phase noises directly depend on their respective
σp values, following Equation 83. Most interestingly, Equation 82 gives a
generic expression for the RMSE at reasonably high SNR values taking into
account the joint influences of: (i) the number of points N , (ii) the amplitude
of the phase noise—through βp—and (iii) that of the additive noise—through
the SNR.

6 Conclusion

This article presents a thorough analysis of the influence of additive and
phase noises on the accuracy of the phase measurement of a known-frequency
sinusoidal signal. More specifically, we focused on synchronous detection, a
measurement scheme for which the number of collected samples N on the
one hand, and the sampling and probing frequency fs and f0 on the other
hand can be chosen so that f0·N/fs is an integer. In this particular case, a
closed-form expression of the PDF of the phase estimate φ̂ could be derived,
depending on N and on the levels of additive and phase noises—σx and σp,
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respectively. φ̂ was also shown to be asymptotically efficient, with a fast
convergence towards its CRLB, even using a limited number of samples in the
presence of substantial noise levels.

When using the above-mentioned PDF to compute φ̂ RMSE, three main
behaviours could be identified: (i) in case of excessive noise, the RMSE
saturates towards the random guess situation, (ii) as the SNR increases, the
RMSE decreases linearly with the square roots of the SNR and N, and (iii) as
the SNR further decreases, the RMSE saturates again, reaching a noise floor
caused by phase noise. While (i) is of little practical interest, (ii) and (iii) are
of major importance in practical scenarios, since they can tell the experimenter
whether lowering the RMSE should be achieved by taking more samples or by
increasing the SNR—e.g. by increasing the emission power. Indeed, in case
(iii), increasing the SNR is no use once the phase noise floor is reached, and
only taking more samples can yield lower RMSE values.

In addition to its theoretical significance, this paper is thus also of practical
value, allowing for informed decision-making when designing a phase-measuring
apparatus. In particular, in the context of f-DLR mentioned in introduction,
a compromise often has to be made between reducing the number of samples
and the illumination power—which preserves the involved dyes from photo-
bleaching, and saves power in case of battery-powered devices—and reducing
the RMSE by increasing the two latter parameters—at the expense of power
consumption, computing costs, and dye photobleaching. Of particular impor-
tance, we recently published a short communication demonstrating a real-world
implementation of f-DLR applied to Carbon dioxide (CO2) sensing [9]. In the
latter work, we validated the theoretical results derived in the present paper
in the case of a low phase noise and a relatively high SNR—i.e. Equation 80.

Finally, one possible limitation of this work resides in its simplified modelling
of phase noise. Indeed, phase noise—studied through its influence on the
power spectral density of a clock signal in the frequency domain [19], or by the
distribution of the jitter it induces in the time domain [26]—can result from
several phenomena that can be either purely random or partially deterministic
[8, Chap. 2–4]. While a thorough review on the origins and statistical properties
of phase noise is clearly out of the scope of this paper, and although some
oscillators do exhibit Gaussian phase jitters in practice [20, 25, 5], this may
not be the case in general [26]. As a result, future research could focus on
extending our work to address non-Gaussian and/or non-i.i.d. phase noise.

Acknowledgments

We are grateful to Yoshitate Takakura for his valuable insights in spectral
estimation, and to Morgan Madec for his meticulous early review of this work.



Accuracy of Phase Extraction from a Known-Frequency Noisy Sinusoidal Signal 29

References

[1] D. Atamanchuk, A. Tengberg, P. J. Thomas, J. Hovdenes, A. Apostolidis,
C. Huber, and P. O. Hall, “Performance of a Lifetime-Based Optode
for Measuring Partial Pressure of Carbon Dioxide in Natural Waters”,
Limnology and Oceanography: Methods, 12(2), 2014, 63–73, doi: 10.4319/
lom.2014.12.63.

[2] Y. Benjamini and Y. Hochberg, “Controlling the False Discovery Rate:
A Practical and Powerful Approach to Multiple Testing”, Journal of the
Royal Statistical Society. Series B (Methodological), 57(1), 1995, 289–300,
issn: 00359246, http://www.jstor.org/stable/2346101.

[3] C. E. Calosso, A. C. C. Olaya, and E. Rubiola, “Phase-Noise and
Amplitude-Noise Measurement of DACs and DDSs”, in 2019 Joint Con-
ference of the IEEE International Frequency Control Symposium and
European Frequency and Time Forum (EFTF/IFC), 2019 Joint Con-
ference of the IEEE International Frequency Control Symposium and
European Frequency and Time Forum (EFTF/IFC), 2019, 431–9, doi:
10.1109/FCS.2019.8856100.

[4] C. Cerovecki and S. Hörmann, “On the CLT for Discrete Fourier Trans-
forms of Functional Time Series”, Journal of Multivariate Analysis, 154
(February), February 2017, 282–95, issn: 0047-259X, https ://www.
sciencedirect.com/science/article/pii/S0047259X16301592.

[5] G. Ciarpi, D. Monda, M. Mestice, D. Rossi, and S. Saponara, “Asym-
metric 5.5 GHz Three-Stage Voltage-Controlled Ring-Oscillator in 65
nm CMOS Technology”, Electronics, 12(3), 2023, issn: 2079-9292, doi:
10.3390/electronics12030778.

[6] D. Collett and T. Lewis, “Discriminating Between the Von Mises and
Wrapped Normal Distributions”, Australian Journal of Statistics, 23(1),
March 1981, 73–9, issn: 0004-9581, doi: 10.1111/j.1467-842X.1981.
tb00763.x, https://doi.org/10.1111/j.1467-842X.1981.tb00763.x.

[7] J. Cooley, P. Lewis, and P. Welch, “The Finite Fourier Transform”, IEEE
Transactions on Audio and Electroacoustics, 17(2), 1969, 77–85, doi:
10.1109/TAU.1969.1162036.

[8] N. Da Dalt and A. Sheikholeslami, Understanding Jitter and Phase Noise:
A Circuits and Systems Perspective, Cambridge: Cambridge University
Press, 2018, isbn: 9781107188570, doi: 10.1017/9781316981238.

[9] E. Dervieux and W. Uhring, “Dual Lifetime Referencing for Accurate
CO2 Sensing: An Experimental in vitro Validation”, in 2024 22nd IEEE
Interregional NEWCAS Conference (NEWCAS), 2024 22nd IEEE Inter-
regional NEWCAS Conference (NEWCAS), 2024, 253–7, doi: 10.1109/
NewCAS58973.2024.10666315.

https://doi.org/10.4319/lom.2014.12.63
https://doi.org/10.4319/lom.2014.12.63
http://www.jstor.org/stable/2346101
https://doi.org/10.1109/FCS.2019.8856100
https://www.sciencedirect.com/science/article/pii/S0047259X16301592
https://www.sciencedirect.com/science/article/pii/S0047259X16301592
https://doi.org/10.3390/electronics12030778
https://doi.org/10.1111/j.1467-842X.1981.tb00763.x
https://doi.org/10.1111/j.1467-842X.1981.tb00763.x
https://doi.org/10.1111/j.1467-842X.1981.tb00763.x
https://doi.org/10.1109/TAU.1969.1162036
https://doi.org/10.1017/9781316981238
https://doi.org/10.1109/NewCAS58973.2024.10666315
https://doi.org/10.1109/NewCAS58973.2024.10666315


30 Dervieux et al.

[10] A. Ferrero and R. Ottoboni, “High-Accuracy Fourier Analysis Based
on Synchronous Sampling Techniques”, IEEE Transactions on Instru-
mentation and Measurement, 41(6), 1992, 780–5, issn: 1557-9662, doi:
10.1109/19.199406, https://doi.org/10.1109/19.199406.

[11] A. Fujita, J. R. Sato, M. A. A. Demasi, M. C. Sogayar, C. E. Ferreira, and
S. Miyano, “Comparing Pearson, Spearman and Hoeffding’s D Measure
for Gene Expression Association Analysis”, Journal of Bioinformatics
and Computational Biology, 07(04), August 2009, 663–84, issn: 0219-
7200, doi: 10 .1142/S0219720009004230, https ://doi .org/10 .1142/
S0219720009004230.

[12] A. A. Girgis and F. M. Ham, “A Quantitative Study of Pitfalls in the
FFT”, IEEE Transactions on Aerospace and Electronic Systems, AES-
16(4), 1980, 434–9, issn: 1557-9603, doi: 10.1109/TAES.1980.308971,
https://doi.org/10.1109/TAES.1980.308971.

[13] N. Henze and B. Zirkler, “A Class of Invariant Consistent Tests for
Multivariate Normality”, Communications in Statistics - Theory and
Methods, 19(10), January 1990, 3595–617, issn: 0361-0926, doi: 10.1080/
03610929008830400, https://doi.org/10.1080/03610929008830400.

[14] X. Huang, Z. Wang, L. Ren, Y. Zeng, and X. Ruan, “A Novel High-
Accuracy Digitalized Measuring Phase Method”, in 2008 9th International
Conference on Signal Processing, 2008 9th International Conference on
Signal Processing, 2008, 120–3, doi: 10.1109/ICOSP.2008.4697084.

[15] T. Kailath, “The Divergence and Bhattacharyya Distance Measures in
Signal Selection”, IEEE Transactions on Communication Technology,
15(1), 1967, 52–60, doi: 10.1109/TCOM.1967.1089532.

[16] W. Kester, “Converting Oscillator Phase Noise to Time Jitter”, tech. rep.
No. MT-008, Analog Devices, 2010.

[17] I. Klimant, C. Huber, G. Liebsch, G. Neurauter, A. Stangelmayer, and
O. S. Wolfbeis, “Dual Lifetime Referencing (DLR) — A New Scheme for
Converting Fluorescence Intensity into a Frequency-Domain or Time-
Domain Information”, in, New Trends in Fluorescence Spectroscopy:
Applications to Chemical and Life Sciences, Berlin, Heidelberg: Springer
Berlin Heidelberg, 2001, 257–74, isbn: 978-3-642-56853-4, doi: 10.1007/
978-3-642-56853-4\_13.

[18] A. Lapidoth, A Foundation in Digital Communication, 2nd ed., Cam-
bridge: Cambridge University Press, 2017, isbn: 9781107177321, doi:
10.1017/9781316822708.

[19] D. B. Leeson, “Oscillator Phase Noise: A 50-Year Review”, IEEE Trans-
actions on Ultrasonics, Ferroelectrics, and Frequency Control, 63(8),
2016, 1208–25, issn: 1525-8955, doi: 10.1109/TUFFC.2016.2562663.

[20] P. Lesage and C. Audoin, “Characterization of Frequency Stability:
Uncertainty due to the Finite Number of Measurements”, IEEE Trans-

https://doi.org/10.1109/19.199406
https://doi.org/10.1109/19.199406
https://doi.org/10.1142/S0219720009004230
https://doi.org/10.1142/S0219720009004230
https://doi.org/10.1142/S0219720009004230
https://doi.org/10.1109/TAES.1980.308971
https://doi.org/10.1109/TAES.1980.308971
https://doi.org/10.1080/03610929008830400
https://doi.org/10.1080/03610929008830400
https://doi.org/10.1080/03610929008830400
https://doi.org/10.1109/ICOSP.2008.4697084
https://doi.org/10.1109/TCOM.1967.1089532
https://doi.org/10.1007/978-3-642-56853-4\_13
https://doi.org/10.1007/978-3-642-56853-4\_13
https://doi.org/10.1017/9781316822708
https://doi.org/10.1109/TUFFC.2016.2562663


Accuracy of Phase Extraction from a Known-Frequency Noisy Sinusoidal Signal 31

actions on Instrumentation and Measurement, 22(2), 1973, 157–61, issn:
1557-9662, doi: 10.1109/TIM.1973.4314128.

[21] C. Ley and T. Verdebout, Modern Directional Statistics, Chapman and
Hall / CRC, 2017, isbn: 9781315119472, doi: 10.1201/9781315119472.

[22] K. V. Mardia and P. E. Jupp, Directional Statistics, Wiley Online Library,
1999, isbn: 978-0-471-95333-3.

[23] S. L. Marple, “A Tutorial Overview of Modern Spectral Estimation”, in
International Conference on Acoustics, Speech, and Signal Processing,
International Conference on Acoustics, Speech, and Signal Processing,
1989, 2152–2157 vol.4, doi: 10.1109/ICASSP.1989.266889.

[24] S. Marple, Digital Spectral Analysis: Second Edition, Dover Books on
Electrical Engineering, Dover Publications, 2019, isbn: 9780486780528.

[25] C. Nazareth, P. Kaufmann, A. Alves Ferreira Júnior, M. Paiva, and
J. W. Swart, “New Jitter Measurement Technique Using TDC Principle
in a FPGA Component”, Seminário Internacional de Metrologia Elétrica
– VIII SEMETRO, 2009.

[26] C.-K. Ong, D. Hong, K.-T. T. Cheng, and L.-C. Wang, “Random Jitter
Extraction Technique in a Multi-Gigahertz Signal”, in Proceedings De-
sign, Automation and Test in Europe Conference and Exhibition, Vol. 1,
Proceedings Design, Automation and Test in Europe Conference and
Exhibition, 2004, 286–91, doi: 10.1109/DATE.2004.1268862.

[27] V. M. Panaretos and S. Tavakoli, “Fourier Analysis of Stationary Time
Series in Function Space”, The Annals of Statistics, 41(2), April 2013, 568–
603, doi: 10.1214/13-AOS1086, https://doi.org/10.1214/13-AOS1086.

[28] D. Z. Robert V. Hogg Elliot Tanis, Probability and Statistical Inference,
9th, Pearson, 2014, isbn: 9781292062358.

[29] L. Scharf and C. Demeure, Statistical Signal Processing: Detection, Esti-
mation, and Time Series Analysis, Addison-Wesley series in electrical
and computer engineering, Addison-Wesley Publishing Company, 1991,
isbn: 9780201190380.

[30] S. Schuster, S. Scheiblhofer, and A. Stelzer, “The Influence of Windowing
on Bias and Variance of DFT-Based Frequency and Phase Estimation”,
IEEE Transactions on Instrumentation and Measurement, 58(6), 2009,
1975–90, issn: 1557-9662, doi: 10 . 1109/TIM.2008 . 2006131, https :
//doi.org/10.1109/TIM.2008.2006131.

[31] J. Soch, T. J. Faulkenberry, K. Petrykowski, and C. Allefeld, The Book
of Statistical Proofs, version 2020, December 2020, doi: 10.5281/zenodo.
4305950.

[32] C. Staudinger, M. Strobl, J. P. Fischer, R. Thar, T. Mayr, D. Aigner, B. J.
Müller, B. Müller, P. Lehner, G. Mistlberger, E. Fritzsche, J. Ehgartner,
P. W. Zach, J. S. Clarke, F. Geißler, A. Mutzberg, J. D. Müller, E. P.
Achterberg, S. M. Borisov, and I. Klimant, “A Versatile Optode System
for Oxygen, Carbon Dioxide, and pH Measurements in Seawater With

https://doi.org/10.1109/TIM.1973.4314128
https://doi.org/10.1201/9781315119472
https://doi.org/10.1109/ICASSP.1989.266889
https://doi.org/10.1109/DATE.2004.1268862
https://doi.org/10.1214/13-AOS1086
https://doi.org/10.1214/13-AOS1086
https://doi.org/10.1109/TIM.2008.2006131
https://doi.org/10.1109/TIM.2008.2006131
https://doi.org/10.1109/TIM.2008.2006131
https://doi.org/10.5281/zenodo.4305950
https://doi.org/10.5281/zenodo.4305950


32 Dervieux et al.

Integrated Battery and Logger”, Limnology and Oceanography: Methods,
16(7), 2018, 459–73, doi: 10.1002/lom3.10260.

[33] P. Stoica and R. Moses, Spectral Analysis of Signals, Pearson Prentice
Hall, 2005, isbn: 9780131139565.

[34] T. Su, M. Yang, T. Jin, and R. C. C. Flesch, “Power Harmonic and
Interharmonic Detection Method in Renewable Power Based on Nut-
tall Double-Window All-Phase FFT Algorithm”, IET Renewable Power
Generation, 12(8), June 2018, 953–61, issn: 1752-1416, doi: 10.1049/iet-
rpg.2017.0115, https://doi.org/10.1049/iet-rpg.2017.0115.

[35] T. B. Tufan and U. Guler, “A Miniaturized Transcutaneous Carbon
Dioxide Monitor Based on Dual Lifetime Referencing”, in 2022 IEEE
Biomedical Circuits and Systems Conference (BioCAS), 2022, 144–8,
doi: 10.1109/BioCAS54905.2022.9948600.

[36] A. van der Vaart and J. Wellner, Weak Convergence and Empirical
Processes: With Applications to Statistics, Springer Series in Statistics,
Springer, 1996, isbn: 9780387946405.

[37] C. von Bültzingslöwen, A. McEvoy, C. Mcdonagh, B. Maccraith, I. Kli-
mant, C. Krause, and O. Wolfbeis, “Sol-gel Based Optical Carbon Dioxide
Sensor Employing Dual Luminophore Referencing for Application in
Food Packaging Technology”, The Analyst, 127 (December), December
2002, 1478–83, doi: 10.1039/B207438A.

[38] H. Xiaohong, W. Zhaohua, and C. Guoqiang, “New Method of Esti-
mation of Phase, Amplitude, and Frequency Based on all Phase FFT
Spectrum Analysis”, in 2007 International Symposium on Intelligent
Signal Processing and Communication Systems, 2007 International Sym-
posium on Intelligent Signal Processing and Communication Systems,
2007, 284–7, doi: 10.1109/ISPACS.2007.4445879.

https://doi.org/10.1002/lom3.10260
https://doi.org/10.1049/iet-rpg.2017.0115
https://doi.org/10.1049/iet-rpg.2017.0115
https://doi.org/10.1049/iet-rpg.2017.0115
https://doi.org/10.1109/BioCAS54905.2022.9948600
https://doi.org/10.1039/B207438A
https://doi.org/10.1109/ISPACS.2007.4445879

	Introduction
	Problem Formulation
	Characterisation of the DFT Distribution
	Expected Value of DN
	Variance of DN
	Distribution of DN
	Convergence in Law Towards a Normal Distribution
	Asymptotic Independence
	Convergence in Practice


	Phase Estimation from the DFT
	Marginalisation in Polar Coordinates
	Expressing the Error in the Polar Case
	Numerical Calculation of the RMSE
	Estimation Efficiency

	Asymptotical Behaviours of the RMSE
	Saturation in Case of Excessive Additive Noise
	Linear Relationship With the SNR
	Saturation in the Presence of Phase Noise

	Conclusion

