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ABSTRACT
The increasing demand for medical imaging has surpassed the
capacity of available radiologists, leading to diagnostic delays and
potential misdiagnoses. Artificial intelligence (AI) techniques, par-
ticularly in automatic medical report generation (AMRG), offer a
promising solution to this dilemma. This review comprehensively
examines AMRG methods from 2021 to 2024. It (i) presents solu-
tions to primary challenges in this field, (ii) explores AMRG appli-
cations across various imaging modalities, (iii) introduces publicly
available datasets, (iv) outlines evaluation metrics, (v) identifies
techniques that significantly enhance model performance, and (vi)
discusses unresolved issues and potential future research directions.
This paper aims to provide a comprehensive understanding of the
existing literature and inspire valuable future research.

Keywords: Medical report generation, deep learning, artificial intelligence,
review

1 Introduction

Automatic medical report generation (AMRG) is an emerging research area in
artificial intelligence (AI) within the medical field [99, 55]. It utilizes computer
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vision (CV) and natural language processing (NLP) to interpret medical images
and generate descriptive, human-like reports. AMRG has been applied to
various imaging modalities, including X-rays, computed tomography (CT)
scans, magnetic resonance imaging (MRI), and ultrasound [47, 7, 2]. This
technology has the potential to streamline the diagnostic process, alleviate the
workload on radiologists, and enhance diagnostic accuracy.

Traditionally, the interpretation of medical images relies on trained ra-
diologists, a labor-intensive and error-prone process [14, 5, 138, 4]. In the
US and UK, the number of radiologists is insufficient to meet the growing
demand for imaging and diagnostics [106, 105]. In resource-poor regions, the
scarcity of radiology services is even more severe [48, 107]. This shortage of
radiologists leads to delays and backlogs in interpreting medical images. In
2015, approximately 330,000 patients in the UK waited more than 30 days for
radiology reports [88]. Due to delayed reports, some urgent images have to
be reviewed by emergency physicians. However, the discernible interpretation
differences between emergency physicians and trained radiologists can lead
to missed diagnoses and misdiagnoses [36]. Additionally, reports written by
professional radiologists exhibit a 3-5% error rate and approximately 35%
uncertainty rate [12, 114, 79]. As workloads increase, the probability of errors
by radiologists also rises [33, 62]. For instance, an American doctor was sued
after failing to detect a case of breast cancer due to reading too many X-rays
in one day [11]. AMRG addresses these issues by providing a systematic
approach to image interpretation, potentially improving diagnostic efficiency
and accuracy.

In recent years, deep learning has made significant progress in image anal-
ysis, with convolutional neural networks (CNNs) and Transformers excelling
in high-precision lesion detection and classification of medical conditions [115,
39, 64]. NLP techniques translate visual information from medical images into
natural language reports, covering imaging findings, diagnostic conclusions,
and recommendations, thereby achieving seamless image-to-text conversion [17,
111, 35]. Researchers have developed various AMRG methods by combining
CNNs, Transformers, and NLP in an encoder-decoder architecture [99, 3, 10].

Despite these advancements, this field still faces numerous challenges.
Firstly, bridging the modal gap between image input and text output is a
fundamental challenge for AMRG. Medical images contain complex informa-
tion that must be accurately interpreted and translated into coherent text,
requiring sophisticated algorithms to map visual patterns to medical terminol-
ogy. Secondly, medical images exhibit unique visual deviations: lesion areas
usually occupy a small portion of the image, leading to highly similar normal
and abnormal images, necessitating AMRG systems to be more sensitive to
fine-grained differences than general image captioning models [157, 13, 37].
Thirdly, medical reports are long texts with high clinical professionalism and
accuracy, placing higher standards on the quality of the generated texts, which
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demands advanced NLP techniques to handle detailed and precise medical
documentation [58, 1, 31]. Finally, medical datasets are limited and noisy;
datasets like MIMIC-CXR (0.22M) [56] and IU-Xray (4k) [27] are smaller than
image recognition datasets like ImageNet (14M) [28] and image captioning
datasets like Conceptual Captions (3.3M) [110], limiting model training effec-
tiveness. Furthermore, noise in medical reports, such as temporal information,
can confuse models and lead to inaccuracies or hallucinations [104, 9].

In this review, we comprehensively examine 112 papers on AMRG based,
predominantly from 2021 to 2024, and summarize various solutions proposed to
address the aforementioned challenges. Our scope extends beyond radiographic
report generation to include emerging applications in modalities such as
MRI, CT, and ultrasound. Additionally, we present the public datasets
and evaluation metrics used in this field. Through a comparative analysis
of state-of-the-art (SOTA) models on benchmark radiography datasets, we
identify techniques that significantly enhance evaluation metrics. Finally, we
discuss potential future directions for this field. The structure of this paper is
illustrated in Figure 1.

Figure 1: The content road map of this review paper. First, we present five types of solutions
to address the challenges of AMRG. Next, we explore the applications of AMRG across
different imaging modalities. Following this, we introduce various public datasets. Then, we
outline the evaluation metrics employed to assess model performance. By comparing the
performance of models on benchmark datasets, we identify six techniques that effectively
enhance model performance. Finally, we discuss future research directions in the field.

2 Problem Statement

The objective of AMRG is to train a model that can extract meaningful features
from medical images and generate descriptive text sequences that accurately
describe the medical conditions depicted in the images. The primary objective
function is the word-level cross-entropy loss, which measures the discrepancy
between the predicted word probabilities and the actual words in the ground
truth (GT) reports.

Figure 2 illustrates the basic structure of the AMRG model. Given a
medical image, the image encoder extracts a sequence of image features I. The
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text decoder, which can be either an RNN or a Transformer model, generates
a sequence of words {w1, w2, ..., wT } to describe the medical image in an
autoregressive manner. At each time step t, the decoder generates the next
word wt based on the previous words {w1, w2, ..., wt−1} and image features
I. Assuming that the GT report is {w∗

1 , w
∗
2 , ..., w

∗
T }, the cross-entropy loss at

each time step t is given by:

LCE(t) = − logP (w∗
t |w∗

1 , ..., w
∗
t−1, I) (1)

The total loss for the entire sequence is the sum of the losses over all time
steps:

LCE =

T∑
t=1

LCE(t) = −
T∑

t=1

logP (w∗
t |w∗

1 , ..., w
∗
t−1, I) (2)

Figure 2: Schematic of the basic report generation model. An image encoder extracts
features I from the input image, which are then processed by a text decoder to generate
the predicted report {w1, w2, ..., wT }. The model is optimized using cross-entropy loss LCE

between the predicted and ground truth report {w∗
1 , w

∗
2 , ..., w

∗
T }.

3 Methods

In this section, we introduce various methods designed to address the aforemen-
tioned challenges. First, we discuss techniques for bridging the gap between
image-text modalities (Section 3.1). Next, we present lesion-focused image
encoding methods that enhance the model’s ability to detect and emphasize
clinically significant regions (Section 3.2). We then detail approaches for
enhancing the text decoder with additional information (Section 3.3) and
refining generated reports to ensure high-quality medical outputs (Section 3.4).
Finally, we cover strategies to mitigate dataset flaws, including methods to
handle noisy and limited datasets (Section 3.5). The four main challenges and
their corresponding solutions are shown in Figure 3. The following subsections
delve into these solutions in detail.
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Figure 3: Four challenges in automatic medical report generation (AMRG) and their
corresponding solutions.

3.1 Bridging the Gap Between Modalities

Bridging the gap between image and text modalities is crucial for medical
report generation. This section introduces three key methods to address this
challenge: (i) global alignment (Section 3.1.1), (ii) local alignment (Section
3.1.2), and (iii) intermediate matrix alignment (Section 3.1.3). Each method
offers a distinct strategy for aligning visual and textual data. Global alignment
focuses on aligning entire images with entire reports to maximize mutual
information and minimize discrepancies. Local alignment targets fine-grained
interactions by associating specific image regions with textual elements such as
sentences or words. Intermediate matrix alignment employs a shared learnable
matrix to capture the alignment between visual and textual features. Figure 4
presents simplified flowcharts of these three alignment methods. The following
subsections provide detailed explanations of each method.
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Figure 4: Flowcharts of three representative alignment methods. The left diagram illustrates
global alignment, which typically uses the [CLS] token to represent the global representation
of a modality. The middle diagram depicts local alignment, aligning image patches with
word tokens. The right diagram shows alignment via an intermediate matrix, where a shared
matrix represents the features of both modalities, ensuring they are in the same latent space.

3.1.1 Global Alignment

Global alignment is a method that aligns the entire image with the entire
report based on InfoNCE loss [96] and triplet loss [108]. InfoNCE loss is
well-suited for large datasets because it processes all negative pairs in a batch.
In contrast, triplet loss specializes in identifying fine-grained differences by
focusing on individual negative samples at a time.

The infoNCE loss function creates a joint embedding space by maximizing
the cosine similarity between positive image-text pairs and minimizing it for
negative pairs. This process closely aligns images and their corresponding
reports. The CLIP framework [103], which pioneers the use of InfoNCE
loss for visual representation learning under natural language supervision, is
particularly beneficial for report generation. This approach ensures that each
medical image is effectively supervised by its paired report. Several studies
have employed CLIP loss (InfoNCE loss) to successfully mitigate the modality
discrepancies between radiographic images and clinical reports [154, 9, 30, 86,
158]. Specifically, given a batch of N pairs of image embeddings {Ii} and text
embeddings {Ti}, the CLIP loss can be formulated as follows:

LI→T
IN (I, T ) = − 1

N

N∑
i=1

log
exp(S(Ii, Ti)/τ1)∑N
j=1 exp(S(Ii, Tj)/τ1)

LT→I
IN (I, T ) = − 1

N

N∑
i=1

log
exp(S(Ti, Ii)/τ1)∑N
j=1 exp(S(Ti, Ij)/τ1)

LCL(I, T ) =
1

2
(LI→T

IN (I, T ) + LT→I
IN (I, T )),

(3)

where τ1 is a temperature parameter that scales the logits and S(·, ·) denotes
cosine similarity.



Automatic Medical Report Generation: Methods and Applications 7

However, CLIP’s single-view supervision inadequately captures the intricate
semantic relationships between images and text. To address this limitation,
CXR-CLIP [149] employs a multi-view supervision (MVS) technique [74] that
enhances training efficacy by incorporating multiple views. For instance, each
chest X-ray study includes images from both the postero-anterior and lateral
views (denoted as I1, I2), along with two text descriptions, findings, and
impressions (denoted as T 1, T 2). The CLIP loss is expanded to MVS loss:

LMV S =
1

4
(LCL(I

1, T 1) + LCL(I
2, T 1) + LCL(I

1, T 2) + LCL(I
2, T 2)). (4)

Furthermore, the triplet loss, another significant contrastive loss function,
ensures that an anchor sample’s embedding is closer to a positive sample than
any negative sample by at least a predefined margin α. This loss function
has been particularly effective in the medical field, enhancing discrimination
between closely resembling reports and images [131, 75]. Based on the paired
image embeddings I and text embeddings T extracted by two unimodal
encoders, the hardest negative samples Ĩ, T̃ in the batch of N pairs are
selected by their highest similarity to the corresponding GT modality. The
triplet loss is optimized as follows:

Ltriplet =
1

N

N∑
i=1

[α− S(I, T ) + S(I, T̃ )]+ + [α− S(I, T ) + S(Ĩ , T )]+, (5)

where α is the margin value and [·]+ represents the positive part (i.e., max(0, ·)).
It is noteworthy that combining InfoNCE loss and triplet loss can yield
synergistic effects, enhancing model performance [53].

Moreover, recognizing the limitations of using two unimodal encoders for
distinguishing hard negative samples, Li et al. [69] recommend a multimodal
encoder strategy to explore more complex modal interactions. Specifically, the
image and text embeddings are jointly input into a multimodal encoder to
predict whether the image and text match. Further studies have validated
this approach, confirming the robustness of the multimodal encoder strategy
in medical report generation [72, 52]. Additionally, exploring the use of a
text decoder to generate image-text matching scores offers another avenue for
optimizing the overall model beyond just the encoders [127].

3.1.2 Local Alignment

Although global alignment is an effective and widely adopted method, con-
trasting the entire image with the entire report can result in overlooking fine-
grained interactions between different modalities. To address this limitation,
researchers have introduced two local alignment strategies: sentence-region
alignment and word-region alignment.
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Sentence-region alignment matches specific image regions to corresponding
sentences within a report. PhenotypeCLIP [125] employs cross-attention to
generate sentence-based local textual and visual representations, replacing the
global representations used in the InfoNCE loss (Equation 3) to enhance con-
trastive learning. Further refining this approach, PRIOR [24] replaces the soft-
max function in the cross-attention mechanism with a sigmoid function, which
generates a sparser matrix and enhances computational efficiency. Moreover,
PRIOR substitutes the InfoNCE loss, traditionally used in report-to-image
local alignment, with a loss function based on cosine similarity and asymmetri-
cal projection. This modification mitigates the risk of feature collapse, which
results from the misclassification of positive image regions as negative. Specifi-
cally, given a batch of N pairs of image embeddings I = {I1, I2, ..., IN} and
report embeddings T = {T1, T2, ..., TN}, each image embedding Ii is composed
of patches Ii = {I1i , I2i , ..., IVi }, and each report embedding Ti is composed
of sentences Ti = {T 1

i , T
2
i , ..., T

U
i }. Here, V and U represent the number of

image patches and sentences within a report, respectively. For each sentence
u, the attention-based visual representation is formulated as:

cui =

V∑
v=1

σ(
QITu

i ·KIIvi√
D

)V IIvi . (6)

Similarly, for each image region v, the attention-based textual representation
is formulated as:

cvi =

U∑
u=1

σ(
QRIvi ·KRTu

i√
D

)V RTu
i , (7)

where QI , KI , V I , QR, KR, V R are learnable matrices, σ(·) is the sigmoid
function, and D is the dimension of embeddings. The new report-to-image
local alignment loss is formulated as:

LT→I
l = − 1

NV

N∑
i=1

V∑
v=1

1

2
[S(h(Ivi ), SG(cvi )) + S(h(cvi ), SG(Ivi ))], (8)

where h is a MLP head and SG denotes the stop-gradient operation.
Considering that image embeddings Ii = {I1i , I2i , ..., IVi } and report embed-

dings Ti = {T 1
i , T

2
i , ..., T

U
i } still exhibit significant differences, Liu et al. [80]

introduce intermediate topics (anatomical entities) to further encode Ii and
Ti into topic features I∗i = {I∗1i , I∗2i , ..., I∗Mi } and T ∗

i = {T ∗1
i , T ∗2

i , ..., T ∗M
i },

where M is the number of topics, and use weighted summation to obtain the
local visual representation ci, which is then utilized for local alignment:

I∗i = Transformer(Ii), T
∗
i = softmax(l(Ti)) ∈ RM , ci =

M∑
m=1

T ∗m
i I∗mi , (9)

where l is the linear projection.
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Besides sentences, words also possess varying significance within a report.
For example, descriptions of abnormalities are more important than descrip-
tions of normal findings. Therefore, researchers have proposed word-region
alignment to capture more fine-grained multimodal interactions [45, 9, 26,
20]. GLoRIA [45] learns attention weights that prioritize different image
regions based on their relevance to a given word and implements local con-
trastive learning using attention-weighted image representations. Specifically,
given a pair of image embeddings I = {I1, I2, ..., IV } and word embeddings
W = {W1,W2, ...,WT }, where V and T represent the number of image patches
and words in a report, respectively. First, the word-region similarity s is
calculated using the dot product, then softmax normalization is applied to
obtain the attention weight atv. The attention-weighted sum then forms the
image representation ct for the word Wt:

s = ITW, atv =
exp(stv/τ2)∑V
k=1 exp(stk/τ2)

, ct =

V∑
v=1

atvIv, (10)

where stv denotes the similarity between the word Wt and image patch Iv,
and τ2 is a temperature parameter. Next, an aggregation function Z combines
the similarities between all words Wt and their corresponding weighted image
representations ct, replacing the cosine similarity in the InfoNCE loss (Equation
3):

Z(I,W ) = log(

T∑
t=1

exp(S(ct,Wt)/τ3))
τ3 , (11)

where τ3 is a temperature parameter. Dawidowicz et al. [26] modifies this
method by substituting the dot product in Equation 10 with element-wise
multiplication and using a self-attention weighted sum to aggregate the sim-
ilarities instead of a simple summation in Equation 11. This modification
achieves better results in various downstream tasks compared to GLoRIA.

The aforementioned methods rely on a pre-defined patch size across images.
In medical image, lesions can exhibit a wide range of shapes and sizes. A fixed
partition of image patches may result in incomplete or ambiguous representa-
tions of the key imaging abnormalities. Chen et al. [20] propose a method that
splits an image into adaptive patches of variable sizes and aligns them with
words. This method uses additional Transformer blocks and fully connected
layers to predict the offset and new patch size for each adaptive patch. Then,
it uniformly resamples feature points within these adaptive patches from the
input image.
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3.1.3 Intermediate Matrix

In addition to contrastive learning, another method to bridge the modal gap
is the use of a learnable shared matrix to capture the alignment between
images and texts. Chen et al. [22] propose an approach that maps visual
features and textual features into a unified intermediate space. Specifically,
given an embedding I = {I1, I2, ..., IV } extracted from the image and an
embedding W = {W1,W2, ...,Wt−1} extracted from the generated report, these
embeddings are mapped to visual memory responses RI = {R1, R2, ..., RV }
and textual memory responses RW = {R1, R2, ..., Rt−1}. Both RI and RW

are derived from a shared memory matrix M . Subsequently, RI and RW are
fed into the text decoder to generate the next word at the time step t. The
effectiveness of this method has been verified by studies from Qin et al. [102]
and You et al. [148].

Wang et al. [121] further improve this mapping method. They concatenate
the embeddings of image-report pairs with the same disease label and apply
K-means clustering to initialize the memory matrix. Moreover, they integrate
both the image and text embeddings I and W , along with visual and textual
responses RI and RW , and feed them into the decoder to enrich the generated
content. Additionally, they incorporate triplet contrastive loss (Equation 5)
into the optimization process to enhance the alignment of the visual and
textual memory responses via explicit supervision signals. Similarly, Li et al.
[75] also employ triplet loss to align visual and textual features post-mapping
and utilize a dual-gate mechanism to more intricately fuse visual and textual
features both before and after mapping.

3.2 Lesion-Focused Image Encoding

This section outlines three methods for enhancing the image encoder to focus
on lesion areas and generate discriminative image representations: (i) using a
classification task for joint learning (Section 3.2.1), (ii) employing pre-trained
detection and segmentation networks as auxiliaries (Section 3.2.2), and (iii)
modifying the internal structure of the image encoder (Section 3.2.3). The
simplified flowcharts of these three methods are shown in Figure 5. The
following subsections detail these approaches, elucidating how each method
refines the encoder’s capacity to identify and concentrate on clinically significant
regions.

3.2.1 Disease Classification

Adopting the features extracted by the image encoder for multi-label disease
classification is an effective joint learning strategy to adapt the encoder for
the report generation task [147, 44, 141, 86, 55, 130, 123, 127, 153, 133]. This



Automatic Medical Report Generation: Methods and Applications 11

Figure 5: Flowcharts of three representative methods for enhancing image encoding: The
left diagram shows that the image features extracted by the image encoder (IE) are used
for disease classification, typically using only the [CLS] token instead of all image tokens.
The middle diagram illustrates that the image is first processed through a pre-trained
segmentation network (Seg Net) to segment meaningful areas (such as the left and right
lungs), and only these areas are then input into the image encoder to eliminate background
interference. The right diagram demonstrates that with cross-attention, the image features
are used as keys and values, while the disease tags are used as queries. This method
encourages the model to focus on image areas related to disease tags. TE represents text
encoder.

strategy enables the image encoder to focus on regions where diseases are
likely to occur and refine its ability to extract discriminative features, which
helps decode accurate text. As a result, it enhances the encoder’s sensitivity to
medically relevant areas and clinically significant details indicative of various
diseases.

Nevertheless, due to the distinct operational mechanisms of CNNs and
Transformers, their implementation approaches exhibit slight variations. For
CNN-based image encoders, all features from the last convolutional layer are
used for classification [147, 44, 55], often coupled with average pooling to
achieve a global representation [141, 86]. This approach may result in image
features that contain only high-level information for classification, while losing
the low-level information necessary for generating descriptive text. Conversely,
Transformer-based image encoders utilize an independent [CLS] token to
extract global features by interacting with other image patch tokens [130,
123, 127]. Only the [CLS] token is used for classification, which prevents the
image tokens from being encoded too abstractly. Additionally, feeding the
classification results into the text decoder improves the quality of the generated
reports. [147, 44, 86, 130, 123, 54, 133].

A single [CLS] token may not accurately cover all diseases, similar to how
a general practitioner’s diagnosis may not be as precise as that of a specialist.
METransformer [128] addresses this by concatenating multiple expert tokens
in the image encoder and using orthogonal loss to minimize overlap among
these tokens, thereby encouraging them to capture complementary information.
The model generates a report based on each expert token and selects the best
report through a voting strategy.
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3.2.2 Detection and Segmentation

In addition to using classification tasks to guide the image encoder towards clin-
ically relevant areas, researchers have proposed using pre-trained segmentation
or detection networks to explicitly assist the encoder in targeting anatomical
regions [158, 156, 126, 116]. One approach employs SAM [61] to segment
meaningful anatomical regions (e.g., the left and right lungs) from chest X-ray
images before inputting them into the image encoder [158]. This method
eliminates background interference, thereby enhancing the encoder’s focus
on relevant regions. Other researchers combine global features extracted by
the image encoder with regional features from the detection or segmentation
network, inputting both into the decoder to enrich the information it receives
[156, 126]. In addition, because lesions typically occupy a small portion of
medical images, Tanida et al. [116] propose a framework that compels the
model to focus on the critical regions. This framework involves cropping
multiple anatomical regions from the input image using a detection network,
followed by multiple binary classification networks to evaluate whether each
region is critical for report generation. The text decoder processes only the
critical regions, thereby preventing it from being overwhelmed by the numerous
normal regions.

3.2.3 Internal Structure of Image Encoder

In addition to adopting a joint learning strategy and using pre-trained auxiliary
networks, modifying the internal structure of the image encoder can also
enhance its focus on lesion areas. Two effective and widely used methods are
cross-attention and high-order attention.

The cross-attention mechanism [118] assigns weights to image regions based
on their relevance to disease tags, thereby emphasizing the features of regions
containing lesions. This method does not require disease annotations for each
image, but rather a set of all disease tags [16, 147, 83]. Specifically, the disease
tag set is used as the query, and the image is used as the key and value. The
dot product in the cross-attention mechanism can select disease tags related
to the image content and enhance the features of regions containing these
diseases.

Recently, several studies have attempted to replace traditional first-order
attention with X-linear attention [98] in Transformer-based image encoders
[130, 128, 137, 124]. X-linear attention captures complex high-order interac-
tions within medical images, leading to a more nuanced and comprehensive
understanding of the images and more accurate localization of abnormalities.
In detail, given a query Q ∈ RDq , a set of keys K = {ki}Ni=1 and a set of values
V = {vi}Ni=1, where ki ∈ RDk and vi ∈ RDv , low-rank bilinear pooling [59] is
performed to obtain the joint bilinear query-key Bk and query-value Bv:
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Bk
i = σ(Wkki)⊙ σ(W k

q Q), Bv
i = σ(Wvvi)⊙ σ(W v

q Q), (12)

where Wk ∈ RDB×Dk , Wv ∈ RDB×Dv , and W k
q ,W

v
q ∈ RDB×Dq are learnable

matrices, σ denotes ReLU unit, and ⊙ represents element-wise multiplication.
Then, the spatial attention βs

i and channel-wise attention βc are computed as
follows:

B
′k
i = σ(W k

BB
k
i ), βs

i = softmax(WsB
′k
i )

B̄ =
1

N

N∑
i=1

B
′k
i , βc = sigmoid(WcB̄),

(13)

where W k
B ∈ RDc×DB , Ws ∈ R1×Dc , and Wc ∈ RDB×Dc are learnable matrices.

Finally, the output of the X-linear attention mechanism is given by:

v̂ = FX−linear(K,V,Q) = βc ⊙
N∑
i=1

βs
iB

v
i (14)

3.3 Enhancing Text Decoder With Supplementary Information

This section presents three approaches for augmenting the text decoder with
supplementary information: (i) retrieving similarity reports (Section 3.3.1),
(ii) leveraging memory (Section 3.3.2), and (iii) integrating knowledge graphs
(Section 3.3.3). Each approach addresses specific challenges, such as ensuring
clinical consistency, alleviating privacy concerns, and building medical knowl-
edge for better model comprehension. Figure 6 shows the flowcharts of the
three methods.

Figure 6: Flowcharts of three representative methods for augmenting the text decoder with
supplementary information. The left diagram shows a retrieval-based approach. Reports
similar to the input image are found from the corpus (consisting of training reports) based
on cosine similarity and are input into the text decoder as reference information. The middle
diagram illustrates replacing the corpus with a learnable memory to avoid leakage of training
data. The right diagram demonstrates replacing the memory with a knowledge graph to
store the clinical information used to generate the report in a structured manner. IE and
TE represent image encoder and text encoder, respectively.
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3.3.1 Retrieve Similarity Reports

Given the limited diversity of diagnoses in medical reports, a large retrieval
corpus can adequately cover the potential diagnoses of input images. Some
researchers have proposed using a retrieval-based approach to generate new
reports, with the primary advantage being the clinical consistency of the
generated reports with manually written ones [30, 52]. To elaborate, image
and text encoders are trained using the CLIP method, which produces higher
similarity scores for paired image-text examples and lower scores for unpaired
ones. A corpus is then constructed using the reports in the training set.
During inference, the model retrieves the top K reports from the corpus with
the highest similarity scores to the input image and combines them into the
predicted report. However, since candidate selection is based on maximizing
similarity scores, the predicted report is prone to repeating information.

PPKED [83] improves the basic retrieval-based approach by modifying the
retrieval process and using a text decoder to generate reports instead of merely
combining retrieved candidates. The corpus is constructed using image-text
pairs from the training set. During inference, the system retrieves the top K
images in the corpus that are most similar to the input image and uses their
corresponding reports to enhance the image features. Finally, the text decoder
generates the final report based on the enhanced image features, ensuring
coherence and the absence of redundant content.

3.3.2 Memory

However, retrieving training data during inference raises concerns regarding
the privacy of medical data. Some researchers have proposed a solution by
employing learnable memory to replace the corpus [141, 24]. The memory
stores features derived from the training data, rather than the training data
itself, thereby mitigating the risk of data leakage. Yang et al. [141] use cross-
attention to update the memory during training and to enhance image features
during inference. Cheng et al. [24] adopt a more explicit approach to update
the sentence-prototype memory. During training, the sentence prototype most
similar to the input sentence is selected using cosine similarity, and the memory
is updated based on the L1 loss between the prototype and the input sentence.

Furthermore, integrating memory into the text decoder is another method
to enhance the quality of the generated reports [85, 130, 23, 125]. This
memory records fine-grained medical knowledge and historical information
from previous generation processes, which is valuable for generating lengthy
texts. One approach involves using the memory matrices to augment the keys
and values of the Transformer-based decoder [85, 130]. Specifically, given
a key K and value V , the memory-augment key and value are defined as
K̂ = [K,Mk] and V̂ = [V,Mv], where Mk and Mv are learnable matrices, and
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[·, ·] denotes concatenation. Another approach utilizes a gate mechanism to
update the memory and map it to the scale and offset parameters in layer
normalization, thereby injecting the memory into the decoder [23, 125].

3.3.3 Knowledge Graph

A more structured memory, in the form of a medical knowledge graph, can group
diseases according to organs or body parts. This is because abnormalities in the
same body part often exhibit strong correlations and common features. Initially,
a medical graph is designed based on prior knowledge from chest findings to
cover common abnormalities and their relationships [153]. In this graph, disease
keywords serve as nodes (V ) and their relationships as edges (E), denoted as
G = {V,E}. Graph convolution [60] is used to propagate information within
the graph, thereby enhancing the model’s capacity to comprehend medical
knowledge. This pre-constructed graph has been adopted by several studies,
which further distill the knowledge graph during the decoding stage to enrich
the information received by the decoder [152, 46, 83].

However, a fixed graph may not contain all the necessary knowledge about
the input image, thereby limiting its effectiveness. Li et al. [72] design a
dynamic graph that uses the nodes from the pre-constructed graph [153] as
initial nodes and models relationships with an adjacency matrix. In this
matrix, 1 represents a connection between two nodes, while 0 indicates no
relationship. The dynamic update process is as follows: during training, the
model retrieves the top three most similar reports from a corpus for each input
image. Then, RadGraph [51] is applied to extract specific knowledge triplets
from these reports, formatted as {subject entity, relation, object entity}. If
only the subject or object entity is present in the graph, the other entity in
the triplet is added as an additional node, and their relation is set to 1 in the
adjacency matrix, indicating a link between the two nodes.

In addition to learning the relationships between entities, MGSK [142]
uses more explicit and accurate relationships that are manually annotated.
The model comprises two graphs: a general graph and a specific graph. The
general graph is independent of the input image and is manually constructed
by radiologists from 500 radiology reports in the MIMIC-CXR dataset [51].
The general knowledge is stored in the triplet, {subject entity, relation,
object entity}, where relations include ‘suggestive of,’ ‘modify,’ and ‘located
at’. The specific knowledge is retrieved from the corpus by finding the top
ten images most similar to the input image and extracting triplets from their
corresponding reports using RadGraph. The general and specific knowledge
graphs are fused with image features to enrich the input of the text decoder.
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3.4 Refining Generated Reports

This section outlines methods designed to refine the accuracy and semantic
coherence of generated medical reports. In particular, these techniques are
designed to guarantee that the generated content accurately reflects essential
medical insights that are critical for clinical reliability. Two pivotal approaches
will be discussed: (i) the traceback mechanism (Section 3.4.1) , which evalu-
ates semantic fidelity, and (ii) reinforcement learning (Section 3.4.2), which
correlates training goals with evaluative metrics.

3.4.1 Traceback Mechanism

Most medical report generation methods construct loss functions that evaluate
the discrepancy between generated and GT reports at the word level (for
further details, please refer to Equation 2). Consequently, models tend to
predict frequently observed words in order to achieve a high overlap rate [41],
which may result in the generation of clinically flawed reports. A high-quality
generated report should also be semantically similar to the GT. To achieve
this, some researchers propose a traceback mechanism to control the semantic
validity of generated content through self-assessment [131, 65, 145, 20]. This
approach involves inputting the generated report T into a text encoder to
extract semantic features xt, and optimizing the model to ensure that xt is
similar to the semantic features xt∗ of the GT report T ∗. The process of the
traceback mechanism is shown in Figure 7.

Figure 7: The GT report T ∗ is input into the text encoder to obtain semantic features xt∗

(text representation). The visual representation extracted by the image encoder is then fed
into the text decoder after contrastive learning, producing the generated report T . The
traceback mechanism begins by inputting this generated report T back into the text encoder
to extract the semantic features xt. The difference between xt∗ and xt, termed the semantic
loss, serves as the objective function of the traceback mechanism. This mechanism aims to
reduce the discrepancy between the generated report T and the GT report T ∗ at the feature
level.

A variety of techniques exist for measuring semantic loss, including calcu-
lating the L2-norm distance [131] and the cosine similarity [65] between xt
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and xt∗ , as well as using a classifier to ensure that the disease classifications
based on xt and xt∗ are the consistent [145]. Classifying diseases based on the
semantic features is a preferable approach because it encourages the model to
correct generated words that influence disease classification, which is the most
critical aspect of medical reports. A more complex approach involves having
the model synthesize a medical image I based on the generated report T and
comparing I with the input image I∗ [20]. Moreover, to reduce significant
gradient fluctuations during the initial training stages, it is advantageous to
assign a smaller weight to the traceback semantic loss at the beginning [145].

3.4.2 Reinforcement Learning

In contrast to indirect semantic loss, some researchers use reinforcement learn-
ing with NLP metrics as rewards to align training goals with final evaluation
criteria [77, 131, 130, 25, 102, 80]. Specifically, the text decoder is treated
as “agent” that interacts with an external “environment” (visual and textual
features). The network parameters, θ, define a “policy” pθ, that results in
an “action” (the prediction of the next word). The CIDEr score is used as
a reward r, which is calculated by comparing the generated sequence to the
corresponding GT sequence. The objective of training is to minimize the
negative expected reward:

L(θ) = −Ews∼pθ
[r(ws)], (15)

where ws = (ws
1, ..., w

s
T ) and ws

t represents the word sampled from the model
at the time step t. The expected gradient of the non-differentiable reward
function can be approximated using a Monte-Carlo sample ws = (ws

1, ..., w
s
T )

from pθ:
∇θL(θ) ≈ −(r(ws)− r(ŵ))∇θ log pθ(w

s), (16)

where r(ŵ) is the reward obtained by the current model under the inference
algorithm at test time, and ŵ is generated by greedy decoding:

ŵt = argmax
wt

p(wt|ŵ0, ..., ŵt−1, I), (17)

where ŵ0, ..., ŵt−1 are the previous generated words and I is the image repre-
sentation. As a result, samples ws from the model that yield a higher reward
than ŵ increase their probability during the learning process, whereas samples
resulting in a lower reward are suppressed. The process of implementing
reinforcement learning is shown in Figure 8.

However, using only one NLP metric (e.g. CIDEr) as a reward may lead to
partial optimization rather than overall optimization, as long text generation
tasks cannot rely on a single metric to evaluate performance. Xu et al. [137]
test seven NLP metrics with different combinations as rewards and find that
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Figure 8: Implementation of reinforcement learning involves several key elements. I rep-
resents the image representation, while BOS is a special token denoting the beginning of
the sequence. ws is the sequence obtained by sampling, ŵ is the sequence obtained by the
argmax operation, and w∗ is the GT sequence. By calculating the CIDEr scores for ws and
w∗, as well as for ŵ and w∗, the rewards r(ws) and r(ŵ) are obtained. The gradient of the
objective function, highlighted in the red box, is then computed based on these rewards.
TE represents text decoder.

using BLEU-4, METEOR, and CIDEr together achieves the best results. Miura
et al. [89] design the factual completeness and consistency rewards that are
more suitable for medical reports. These special rewards serve to ascertain
whether the generated report and the GT report contain the same anatomical
entities and whether the sentences containing these entities contradict the
corresponding sentences in the GT report.

3.5 Dataset Limitations

Medical image-text paired datasets are constrained by two fundamental limita-
tions: noise and limited size. Noise arises from temporal information and false
negatives, which can distort the training data and lead to inaccurate model
predictions. Temporal information noise occurs when reports reference earlier
images, which introduces inconsistencies that models struggle to interpret
correctly. False negatives, on the other hand, arise in contrastive learning
when similar reports are incorrectly treated as negative samples, confusing the
model. Additionally, the limited size of these medical datasets presents another
challenge, as insufficient data hinders the model’s capacity to generalize and
perform effectively. The following subsubsections present innovative methods
to address these issues: (i) removing temporal noise and mitigating false
negatives in contrastive learning (Section 3.5.1), (ii) using LLM to improve
model performance on limited datasets (Section 3.5.2), and (iii) expanding
training datasets through semi-supervised and unsupervised learning (Section
3.5.3).
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3.5.1 Eliminating Noise

Although medical image-report datasets authorized by professionals are gener-
ally more accurate than general image-text datasets in terms of annotation,
they still exhibit inherent noise, including temporal information and false
negatives. Temporal information noise can be attributed to reports that refer-
ence earlier images. For instance, in a report, “Comparison made to prior
study, there is again seen moderate congestive heart failure with increased
vascular cephalization, stable. There are large bilateral pleural effusions but
decreased since previous”, the bolded words relate to earlier images, yet
the current image paired with the report does not contain this comparative
information. Such references to previous data introduce temporal noise, which
may lead trained models to generate hallucinations about non-existent priors.
False negatives occur in contrastive learning when negative or unpaired texts
(reports from other patients) describe identical symptoms as the paired reports.
Simply treating the other reports as negative samples introduces noise into
the supervision process, thereby confusing the model.

To eliminate temporal noise, Ramesh et al. [104] propose two approaches:
rewriting medical reports using GPT-3 and designing a token classifier to
delete word tokens associated with prior studies. The latter method is more
accurate and cost-effective. In contrast to eliminating temporal information,
some methods effectively integrate it into the learning process [9, 43]. For
example, the BioViL-T framework [9] assumes that a patient has a current
image Ic, a current report Tc, and a previous image Ip. The images Ic and
Ip are processed through a CNN to generate features Pc and Pp, respectively.
These features are then fed into Transformer blocks to extract difference
features Pd. Subsequently, Pc and Pd are input together into the text decoder.
If the model’s input includes only the current image Ic, Pd is substituted with
a learnable feature Pm.

To address false negatives within contrastive learning, ALBEF [69] utilizes
momentum distillation to mitigate the impact of such noise in general image
captioning datasets. The momentum encoder, functioning as a teacher, pro-
duces a stable set of pseudo-labels for the input image. These pseudo-labels
serve as training targets for the student encoder to account for the potential
positives in the negative pairs. Research has shown that this momentum dis-
tillation can be seamlessly adapted to medical datasets [72, 52]. Furthermore,
MedCLIP [132] decouples medical image-text pairs and employs semantic sim-
ilarity to create pseudo-labels. This approach entails extracting entities from
the reports as textual labels and utilizing disease labels as image labels. The
cosine similarity between these image and text labels serves as pseudo-labels
in contrastive learning.
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3.5.2 Large Language Model

To address the issue of the limited size of medical image-report datasets, a
feasible approach is to utilize a pre-trained large language model (LLM) as a
text decoder. This method leverages the LLM’s robust language generation
and zero-shot transfer capabilities, thereby reducing the number of parameters
that need to be trained from scratch. Li et al. [67] propose a trainable mapping
module, Q-Former, to bridge the gap between a frozen image encoder and a
frozen LLM. Specifically, they employ a pre-trained Vision Transformer (ViT)
as an image encoder to extract image features, which are then mapped to the
text feature space by Q-Former. Subsequently, the frozen LLM serves as a text
decoder to generate reports. MSMedCap [156] demonstrates that Q-Former is
effective for handling limited medical image-report data.

Nevertheless, utilising a frozen LLM as a text decoder concurrently with a
frozen image encoder is not the optimal approach. Research indicates that fine-
tuning both the image encoder and the mapping module when the LLM decoder
is frozen can enhance the quality of the generated reports [129]. Additionally,
freezing the LLM may not be the most effective strategy, as an LLM pre-trained
on general data may not be suitable for the medical domain. It is therefore
generally recommended to fine-tune the LLM on task-specific data. However,
it should be noted that fine-tuning an LLM requires a substantial amount of
data, so directly fine-tuning an LLM with limited medical data may result in
suboptimal performance.

Liu et al. [81] propose a coarse-to-fine decoding strategy to fine-tune an
LLM on limited medical datasets in a bootstrapping manner. They initially
employ MiniGPT-4 [159] to generate a coarse report and then use the coarse
report as a prompt, along with the image features, to input into the decoder
of MiniGPT-4 again to generate the final refined report. Additionally, pseudo
self-attention [160] is another method for fine-tuning an LLM on medical
data [116, 4]. This approach introduces new parameters solely within the
self-attention block, while other parameters of the Transformer are initialized
with pre-trained values. Given an image feature X and a hidden state Y , the
pseudo self-attention is formulated as follows:

PSA(X,Y ) = softmax((YWq)

[
XUk

YWk

]T
)

[
XUv

YWv

]
, (18)

where Uk, Uv are new parameters, and Wq, Wk, Wv are parameters from
pre-trained model. Fine-tuning an LLM with pseudo self-attention results in
minimal changes to the pre-trained LLM’s parameters, thereby maintaining
its text generation capabilities [160].
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3.5.3 Semi-Supervised and Unsupervised Learning

To address the limited size of medical image-text paired datasets, some re-
searchers have explored semi-supervised and unsupervised learning methods
to expand the training dataset. The RAMT model [152] employs a student-
teacher network to train in a semi-supervised manner using 25% paired data
and 75% unpaired image data. The student and teacher networks share the
same structure but have distinct parameters. During the training phase, the
teacher network parameters are updated by the exponential moving average
(EMA) of the student network parameters. Different noises are added to
the input images, which are then fed into the student and teacher networks,
respectively. The output of the teacher network serves as supervision for the
student network.

However, the semi-supervised method still requires some images with
corresponding reports. KGAE [85] addresses this limitation by utilizing unsu-
pervised learning. The model employs a pre-constructed knowledge graph G as
a shared latent space to bridge the gap between image and text representations.
Given an input image I and an input report R, the graph G maps them into the
same latent space, GI and GR. For unsupervised learning, the image encoder
and text decoder are trained separately. To train the image encoder, GI and
GR jointly implement disease classification, ensuring they form a common
latent space. To train the text decoder, the report R is reconstructed from
GR, following the process R → GR → R. Additionally, KGAE can be applied
in semi-supervised and supervised settings. In these settings, as well as for
inference, the pipeline follows I → GI → R.

In a more recent study, Hirsch et al. [40] refine the unsupervised method,
achieving higher accuracy than KGAE. The method employs cycle consistency
to ensure that cross-modal mappings retain information. Cross-modal map-
pings include image-to-report (I2R) and report-to-image (R2I). The objective
of cycle consistency is to minimise the differences between zi and R2I(I2R(zi)),
as well as zr and I2R(R2I(zr)), where zi and zr represent image and text
representations, respectively. To ensure that the image encoder extracts rele-
vant semantic information (e.g., diseases and organs), they employ contrastive
learning to align the image representations (output by the image encoder)
with the text representations of pseudo-reports. These pseudo-reports are
constructed based on the disease labels of images. To train the text decoder,
they also adopt a report reconstruction task and add adversarial learning
to ensure that the text decoder receives similar features during training and
inference.
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4 Applications

In this section, we introduce the applications of AMRG across various medi-
cal imaging modalities, including chest radiography, computed tomography
(CT), magnetic resonance imaging (MRI), ultrasound, ophthalmic imaging,
endoscopy, surgical scene, and pathological imaging. These modalities are
crucial for diagnosing a broad spectrum of medical conditions.

Chest Radiography: In recent years, a significant amount of research
focused on chest radiography report generation (refer to Table 1). This is
largely due to the availability of large and publicly accessible datasets such
as MIMIC-CXR [56] and IU X-ray [27], which contain extensive collections
of annotated images and paired reports. The availability of these datasets
enables the models to effectively learn the intricate relationships between visual
features and textual descriptions.

Table 1: Comparison of radiographic report generation models (2021–2024) on benchmark
datasets. The ‘Code’ column shows if the code is publicly accessible, and the ‘Method’
column lists the techniques used. Techniques mentioned in Section 3 follow the names in
Figure 2, while others retain their original names (e.g., curriculum learning). The highest and
second-highest values in each column are bolded and underlined, respectively. Abbreviations:
BL-4 (BLEU-4), MTR (METEOR), RG-L (ROUGE-L), CD (CIDEr), P (Precision), R
(Recall), and F (F1 Score).

Model Year Code MIMIC-CXR IU-Xray Method Dataset

BL-4 MTR RG-L CD P R F BL-4 MTR RG-L CD

[83] 2021 0.106 0.149 0.284 – – – – 0.168 – 0.376 0.351

Encoder structure,
retrieve similarity
reports, knowledge
graph

MIMIC-
CXR,

IU-Xray

[139] 2021 0.107 0.144 0.274 – 0.385 0.274 0.294 – – – – Global alignment

MIMIC-
CXR,

MIMIC-
ABM

[84] 2021 0.109 0.151 0.283 – 0.352 0.298 0.303 0.169 0.193 0.381 – Contrastive attention
MIMIC-
CXR,

IU-Xray

[147] 2021 0.112 0.158 0.283 – – – – 0.173 0.204 0.379 – Disease classification,
encoder structure

MIMIC-
CXR,

IU-Xray

[89] 2021 ✓ 0.114 – – 0.509 0.503 0.651 0.567 0.131 – – 1.034 Reinforcement
learning

MIMIC-
CXR,

IU-Xray

[85] 2021 0.118 0.153 0.295 – 0.389 0.362 0.355 0.179 0.195 0.383 –

Disease classification,
memory, knowledge
graph, unsupervised
learning

MIMIC-
CXR,

IU-Xray

[144] 2021 ✓ 0.143 – 0.326 0.273 0.237 0.326 – 0.180 – 0.398 0.439 Global alignment,
disease classification

MIMIC-
CXR,

IU-Xray

[93] 2021 ✓ 0.224 0.222 0.390 – 0.432 0.418 0.412 0.235 0.219 0.436 –

Human-computer
interaction, disease
classification, memory,
traceback mechanism

MIMIC-
CXR,

IU-Xray

[131] 2021 – – – – – – – 0.208 – 0.359 0.452
Global alignment,
traceback mechanism,
reinforcement learning

COV-
CTR,

IU-Xray

[42] 2021 ✓ – 0.101 0.240 0.493 – – – – – – – Encoder structure
MIMIC-
CXR,

IU-Xray

[4] 2021 ✓ – – – – – – – 0.111 0.164 0.289 0.257 Large language model
MIMIC-
CXR,

IU-Xray

[82] 2022 0.097 0.133 0.281 – – – – 0.162 0.186 0.378 – Curriculum learning
MIMIC-
CXR,

IU-Xray

[121] 2022 ✓ 0.105 0.138 0.279 – – – – 0.199 0.22 0.411 0.359 Intermediate matrix
MIMIC-
CXR,

IU-Xray

[22] 2022 ✓ 0.106 0.142 0.278 – 0.334 0.275 0.278 0.170 0.191 0.375 – Intermediate matrix
MIMIC-
CXR,

IU-Xray
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Table 1: Continued.

Model Year Code MIMIC-CXR IU-Xray Method Dataset

BL-4 MTR RG-L CD P R F BL-4 MTR RG-L CD

[102] 2022 ✓ 0.109 0.151 0.287 – 0.342 0.294 0.292 0.181 0.201 0.384 – Intermediate matrix,
reinforcement learning

MIMIC-
CXR,

IU-Xray

[142] 2022 ✓ 0.115 – 0.284 0.203 – – – 0.178 – 0.381 0.382 Knowledge graph
MIMIC-
CXR,

IU-Xray

[127] 2022 0.118 – 0.287 0.281 – – – 0.175 – 0.377 0.449 Global alignment,
disease classification

MIMIC-
CXR,

IU-Xray

[123] 2022 ✓ 0.121 0.147 0.284 – – – – 0.188 0.208 0.382 – Disease classification
MIMIC-
CXR,

IU-Xray

[130] 2022 ✓ 0.136 0.170 0.298 0.429 – – – – – – –

Disease classification,
encoder structure,
memory,
reinforcement learning

MIMIC-
CXR

[92] 2022 ✓ 0.136 0.191 0.315 – 0.396 0.312 0.350 0.170 0.230 0.390 – Global alignment
MIMIC-
CXR,

IU-Xray

[148] 2022 – – – – – – – 0.174 0.193 0.377 – Intermediate matrix,
disease classification IU-Xray

[120] 2022 – – – – – – – 0.175 – 0.36 0.331 Disease classification
CX-

CHR,
IU-Xray

[65] 2022 – – – – – – – 0.215 0.201 0.415 – Traceback mechanism IU-Xray

[73] 2023 ✓ – – – – – – – 0.125 – 0.279 0.306
Disease classification,
detection, knowledge
graph

CX-
CHR,
COV-
CTR,

IU-Xray

[87] 2023 0.069 – 0.235 – – – 0.32 – – – – Large language model MIMIC-
CXR

[9] 2023 ✓ 0.092 – 0.296 – – – – – – – –
Global alignment,
local alignment,
eliminate noise

MIMIC-
CXR,
MS-

CXR-T

[134] 2023 0.103 0.139 0.270 0.109 – – – 0.18 0.206 0.369 0.287 Global alignment
MIMIC-
CXR,

IU-Xray

[75] 2023 0.107 0.157 0.289 0.246 – – – 0.200 0.218 0.405 0.501 Global alignment,
intermediate matrix

MIMIC-
CXR,

IU-Xray

[72] 2023 ✓ 0.109 0.150 0.284 0.281 – – – 0.163 0.193 0.383 0.586
Global alignment,
knowledge graph,
eliminate noise

MIMIC-
CXR,

IU-Xray

[141] 2023 ✓ 0.111 – 0.274 0.111 0.420 0.339 0.352 0.174 – 0.399 0.407 Disease classification,
memory

MIMIC-
CXR,

IU-Xray

[151] 2023 0.113 0.143 0.276 – – – – 0.190 0.207 0.394 – Memory

MIMIC-
CXR,

IU-Xray,
COV-
CTR

[46] 2023 0.113 0.160 0.285 – 0.371 0.318 0.321 0.185 0.242 0.409 – Disease classification,
knowledge graph

MIMIC-
CXR,

IU-Xray

[16] 2023 0.116 0.161 0.283 – – – – 0.175 – 0.375 0.361 Encoder structure,
memory

MIMIC-
CXR,

IU-Xray

[126] 2023 0.118 0.136 0.301 – – – – 0.176 0.205 0.396 – Detection
MIMIC-
CXR,

IU-Xray

[125] 2023 0.119 0.158 0.286 0.259 – – – 0.205 0.223 0.414 0.370 Local alignment
MIMIC-
CXR,

IU-Xray

[44] 2023 ✓ 0.123 0.162 0.293 – 0.416 0.418 0.385 0.195 0.205 0.399 – Disease classification
MIMIC-
CXR,

IU-Xray

[128] 2023 0.124 0.152 0.291 0.362 – – – 0.172 0.192 0.380 0.435 Encoder structure
MIMIC-
CXR,

IU-Xray

[43] 2023 ✓ 0.125 0.168 0.288 – 0.389 0.443 0.393 – – – – Disease classification,
eliminate noise

MIMIC-
CXR,

MIMIC-
ABN

[116] 2023 ✓ 0.126 0.168 0.264 0.495 – – – – – – –
Detection, disease
classification, large
language model

MIMIC-
CXR

[95] 2023 ✓ 0.127 0.155 0.286 0.389 0.367 0.418 0.391 0.175 0.200 0.376 0.694 Warm starting
MIMIC-
CXR,

IU-Xray

[112] 2023 0.130 0.148 0.315 – – – – 0.174 – 0.388 – Encoder structure,
memory

MIMIC-
CXR,

IU-Xray

[137] 2023 0.192 0.207 0.380 0.372 – – – 0.149 0.197 0.381 0.524 Encoder structure,
reinforcement learning

MIMIC-
CXR,

IU-Xray

[129] 2023 ✓ 0.134 0.160 0.297 0.269 0.392 0.387 0.389 0.173 0.211 0.377 0.438 Large language model
MIMIC-
CXR,

IU-Xray

[152] 2023 0.113 0.153 0.284 – 0.380 0.342 0.335 0.165 0.195 0.377 –
Knowledge graph,
semi-supervised
learning

MIMIC-
CXR,

IU-Xray
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Table 1: Continued.

Model Year Code MIMIC-CXR IU-Xray Method Dataset

BL-4 MTR RG-L CD P R F BL-4 MTR RG-L CD

[86] 2023 0.125 0.160 0.304 – 0.855 0.730 0.773 0.206 0.211 0.423 –

Human-computer
interaction, global
alignment, disease
classification

MIMIC-
CXR,

IU-Xray

[140] 2023 – – 0.225 0.160 – – – – – 0.341 0.380 Knowledge graph,
disease classification

MIMIC-
CXR,

IU-Xray

[158] 2023 – – – – – – – 0.221 0.210 0.433 – Global alignment,
segmentation IU-Xray

[124] 2023 – – – – – – – 0.157 0.196 0.374 – Encoder’s structure IU-Xray

[20] 2024 0.106 0.163 0.286 – – – – 0.145 0.162 0.366 – Encoder’s structure,
reinforcement learning

MIMIC-
CXR,

IU-Xray

[54] 2024 ✓ 0.112 0.157 0.268 – 0.501 0.509 0.476 0.098 0.160 0.281 –
Retrieve similarity
reports, disease
classification

MIMIC-
CXR,

IU-Xray

[122] 2024 ✓ 0.112 0.145 0.279 0.161 0.483 0.323 0.387 0.218 0.203 0.404 0.418 Disease classification
MIMIC-
CXR,

IU-Xray

[117] 2024 0.115 – 0.275 – – – 0.398 – – – – Disease classification MIMIC-
CXR

[34] 2024 ✓ 0.116 0.168 0.286 – 0.482 0.563 0.519 0.205 0.210 0.409 – Retrieve similarity
reports, memony

MIMIC-
CXR,

IU-Xray

[146] 2024 ✓ 0.121 0.149 0.281 – 0.319 0.509 0.393 0.194 0.218 0.402 – Reinforcement
learning

MIMIC-
CXR,

IU-Xray

[97] 2024 0.125 0.154 0.291 – – – – 0.172 0.206 0.401 – Intermediate matrix
MIMIC-
CXR,

IU-Xray

[81] 2024 ✓ 0.128 0.175 0.291 – 0.465 0.482 0.473 0.184 0.208 0.390 –
Retrieve similarity
reports, large
language model

MIMIC-
CXR,

IU-Xray

[145] 2024 0.129 0.162 0.309 0.311 – – – 0.204 0.233 0.386 0.469
Local alignment,
disease classification,
traceback mechanism

MIMIC-
CXR,

IU-Xray

[80] 2024 0.141 0.163 0.309 – 0.457 0.337 0.330 0.175 0.192 0.379 0.368 Local alignment,
reinforcement learning

MIMIC-
CXR,

IU-Xray

[40] 2024 0.072 0.128 0.239 – 0.237 0.197 0.183 0.140 0.197 0.360 – Unsupervised learning

MIMIC-
CXR,

IU-Xray,
PadCh-

est

The application of AMRG in radiography offers several significant benefits.
First, it can significantly reduce the radiologist’s workload by automating
the initial draft of the report, allowing them to focus on more complex and
nuanced cases [4, 134, 3, 29, 113]. Second, these models can improve diagnostic
consistency and reduce inter-observer variability by applying standardized
criteria and guidelines in the report generation process [150]. Third, in regions
with limited access to experienced radiologists, AMRG models can provide
essential diagnostic support, ensuring timely and accurate medical care for
patients [91]. Finally, these models can support large-scale screening programs
by rapidly processing and generating reports for large volumes of X-ray images,
thereby facilitating the early detection of diseases.

3D Imaging: CT and MRI provide detailed, three-dimensional (3D)
views of the human body, playing a pivotal role in diagnosing a wide range of
conditions, including neurological disorders and abdominal diseases. Recent
studies have explored AMRG for these imaging modalities [38, 21, 151], but
these studies often treat 3D images as a set of 2D slices, overlooking the
inherent stereoscopic structural information, an issue that future research
should address.
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Ultrasound: Ultrasound is widely used due to its real-time imaging
capability and safety profile. Recently, AMRG has been explored for ultrasound
applications [66]. enabling real-time report generation and assisting clinicians
in making immediate decisions, especially in emergency and point-of-care
settings. However, the low image quality and operator-dependent nature of
ultrasound image acquisition still affect the quality of generated reports.

Ophthalmic Imaging: In ophthalmology, AMRG applications in fundus
fluorescein angiography (FFA) [71] and fundus images [133] aid in diagnosing
critical eye diseases such as diabetic retinopathy. Li et al. [71], proposed the
CGT model for ophthalmic report generation. Their approach involves an
information extraction scheme that converts unstructured medical reports into
a structured format, constructing clinical graphs. These graphs encapsulate
prior medical knowledge, which is then distilled into sub-graphs and integrated
with visual features to enhance report generation. By employing a combination
of cross-entropy and triples loss, they optimize the report generation model,
achieving SOTA results on the FFA-IR benchmark dataset [70].

Endoscopy: For endoscopic imaging, AMRG aids in diagnosing various
complications, such as gastrointestinal diseases and cancers. Cao et al. [16]
combined disease tags with cross-attention and introduced memory augmenta-
tion in the image encoder to improve the model’s sensitivity to lesion areas.
Their model achieved competitive results with SOTA models on the gastroin-
testinal endoscope image dataset, which is a private dataset contains white
light images and their Chinese reports from the department of gastroenterology.

Surgical Scene: In surgical imaging, AMRG helps create operative reports
by documenting surgical steps. This alleviates surgeons’ workloads and allows
them to focus more on the operations. Lin et al. [77] proposed the SGT++
model to effectively models interactions between surgical instruments and
tissues. Their method involves homogenizing heterogeneous scene graphs to
learn explicit, structured, and detailed semantic relationships via an attention-
induced graph Transformer. Additionally, it incorporates implicit relational
attention to integrate prior knowledge of interactions.

Pathological Imaging: Pathological imaging involves examining high-
resolution images of tissue sections, requiring meticulous analysis. Chen et al.
[19] recently introduced the MI-Gen model to produce pathology reports for
gigapixel whole slide images (WSIs). Furthermore, they created the largest
WSI-text dataset, PathText, which contains nearly 10,000 high-quality WSI-
text pairs.

Unified Model: Unlike the above models specialized for one modality,
Google recently introduced a groundbreaking model, Med-PaLM M [117],
which encodes and interprets various biomedical data modalities using the
same model weights. This model can process multiple data modalities, includ-
ing clinical language, genomics, and imaging (e.g., radiography, mammography,
dermatology, and pathology). To support these developments, they curated
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MultiMedBench [117], a benchmark comprising 14 tasks such as AMRG, report
summarization, medical question answering, visual question answering, and
medical image classification. Med-PaLM M achieved performance competi-
tive with or surpassing specialist models on all MultiMedBench tasks. This
innovation marks a significant advance in applying a unified model to different
modalities.

5 Public Dataset

In this section, we introduce several image-report datasets used for AMRG. All
discussed datasets are publicly available and privacy-safe. The two benchmark
datasets (Section 5.1) are widely used and serve as standards for performance
comparison in most AMRG studies. Additionally, other datasets (Section 5.2)
have been created to address specific needs, such as particular languages and
imaging modalities. Table 2 presents the statistical results of the datasets.
The following sections introduce these datasets in detail.

Table 2: This table presents dataset statistics including counts of images, reports, abnor-
mal/normal cases, and medical conditions. For MIMIC-CXR, abnormal/normal counts refer
to the counts of radiographs classified by Ni et al. [94], as official splits aren’t provided. For
other datasets, abnormal/normal counts are provided by officials and represent the counts
of reports (cases).

Dataset Images Reports Abnormal Normal Conditions
Chest radiographs
IU-Xray [27] 7,470 3,955 2,470 (62.5%) 1,485 (37.5%) 177
MIMIC-CXR [56] 377,110 227,835 38,551 (10.2%) 338,559 (89.8%) 14
Padchest [15] 160,868 109,931 - - 19
CX-CHR [76] 45,598 33,236 - - 20
Lung CT scans
COV-CTR [73] 728 728 349 (47.9%) 379 (52.1%) 2
Fundus fluorescein angiography images
FFA-IR [70] 1,048,584 10,689 10,087 (94.4%) 602 (5.6%) 46
Surgical images
EndoVis-18 [135, 136] 1,560 1,560 - - 20
TORS [135, 136] 335 335 - - 13

5.1 Benchmark Datasets

IU-Xray: The Indiana University Chest X-ray dataset (IU-Xray) [27], also
known as the OpenI dataset, was released in 2016. This dataset was sourced
from two large hospital systems within the Indiana Network for Patient Care
database. It comprises 7,470 chest radiographs (including both frontal and
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lateral views) and 3,955 corresponding narrative reports from 3,955 patients.
Each report includes two primary sections: findings, which provide a detailed
natural language description of the significant aspects in the image, and
impression, which offer a concise summary of the most immediately relevant
findings. The 3,955 studies are divided into 2,470 abnormal cases and 1,485
normal cases. Disease labels were extracted from the reports either manually or
automatically using Medical Subject Headings (MeSH) [32], Radiology Lexicon
(RadLex) [63], and the Medical Text Indexer (MTI) [90]. The ten most frequent
disease tags are cardiomegaly, pulmonary atelectasis, calcified granuloma,
tortuous aorta, hypoinflated lung, lung base opacity, pleural effusion, lung
hyperinflation, lung cicatrix, and lung calcinosis. Since the dataset does not
have an official split, the common practice is to randomly divide it into training,
validation, and test sets in a 7:1:2 ratio.

MIMIC-CXR: The Medical Information Mart for Intensive Care Chest
X-ray (MIMIC-CXR) [56] is the largest public medical image-report dataset. It
includes imaging studies from 65,379 patients from the Beth Israel Deaconess
Medical Center Emergency Department, collected between 2011 and 2016.
The dataset includes 377,110 chest radiographs (including frontal and lateral
views) and 227,835 corresponding reports, most of which include findings and
impression sections. Each report is associated with to one or more images. On
average, 3.5 reports from different time periods are collected for each patient,
providing longitudinal data that allows researchers to reference previous images.
The dataset is officially split into training, validation, and test sets, which
improves reproducibility. Specifically, the training set contains 368,960 images
and 222,758 reports, the validation set contains 2,991 images and 1,808 reports,
and the test set contains 5,159 images and 3,269 reports.

The images were originally stored in DICOM format, but a JPEG version
(MIMIC-CXR-JPG) [57] was also created to reduce storage size. In addition,
14 structured disease labels were extracted from the reports using NegBio
[101] and Chexpert [49], including atelectasis, cardiomegaly, consolidation,
edema, enlarged cardiomediastinum, fracture, lung lesion, lung opacity, pleural
effusion, pneumonia, pneumothorax, pleural other, support devices, and no
finding.

Due to the large volume and the diversity of diseases in the MIMIC-CXR
dataset, two derived datasets were created. MIMIC-ABM [94] is a subset
that contains only abnormal studies with at least one abnormal finding. This
subset, consisting of 38,551 pairs (26,946 for training, 3,801 for validation,
and 7,804 for testing), addresses data bias caused by the prevalence of normal
studies in the original dataset, allowing models to learn abnormal patterns
more effectively. Another derived dataset, MIMIC-PRO [104], eliminates all
temporal information within the reports. Training with this dataset helps
mitigate the generation of hallucinations about non-existent priors by the
model.
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5.2 Other Datasets

In addition to the benchmark dataset of chest radiographs with English
reports, there are several public datasets containing non-English reports and
non-radiographic images. These datasets expand the range of languages
and imaging modalities, catering to the specific needs of different research
communities.

Padchest: The Pathology Detection in Chest Radiographs (Padchest)
[15] contains imaging studies of 67,625 patients collected from 2009 to 2017 at
Hospital San Juan, Spain. It contains 160,868 chest radiographs and 109,931
reports. The radiographs include six views: postero-anterior (PA), lateral,
AP-horizontal, AP-vertical, costal, and pediatric. All reports are written in
Spanish, and each report potentially corresponds to one or multiple views.

CX-CHR: CX-CHR [76] contains 45,598 chest radiographs and 33,236
reports written in Chinese. Each report corresponds to one or multiple views,
including PA and lateral views. The reports include findings and impression
sections, as well as labels for 20 common chest diseases. Although this dataset
is internally proprietary, researchers can apply for academic use after signing
a confidentiality agreement, and it has been used in Wang et al. [120] and Li
et al. [73].

COV-CTR: The COVID-19 CT Report dataset (COV-CTR) [73] contains
728 lung CT scans and corresponding reports. The images are from the public
COVID-CT dataset [143], and the reports are written in Chinese by three
radiologists from the First Affiliated Hospital of Harbin Medical University.
Of these studies, 349 are COVID-19 cases, and 379 are non-COVID-19 cases.

FFA-IR: The Fundus Fluorescein Angiography Images and Reports (FFA-
IR) [70] was collected from patients at the Zhongshan Ophthalmic Center of
Sun Yat-Sen University in Guangzhou, China, between November 2016 and
December 2019. The dataset comprises 1,048,584 FFA images and 10,790
reports, encompassing 46 categories of retinal lesions. Each report is bilingual,
with both Chinese and English versions available. Approximately 5% of the
cases are healthy, while the remaining cases present various retinal conditions.
The dataset is divided into official splits: 8,016 cases for training, 1,069 cases
for validation, and 1,604 cases for testing, facilitating future model performance
comparisons. Each case includes not only the report and FFA images but
also explainable annotations to enhance the interpretability of AMRG models.
Specifically, ophthalmologists labeled the lesion locations and categories in the
images with rectangular boxes based on the size, location, and stage of the
lesions described in the report.

EndoVis-18: The EndoVis-18 dataset originates from the MICCAI
Robotic Scene Segmentation of Endoscopic Vision Challenge 2018 [6]. It
comprises 1,560 endoscopic surgical images, each annotated by experienced
surgeons [135, 136], and corresponding scene graphs are generated by Islam
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et al. [50]. The dataset includes a total of nine objects, featuring one type of
tissue (kidney) and eight different surgical instruments. Additionally, there are
11 types of interactions between the surgical instruments and tissue, such as
manipulation, grasping, and cutting. Following the methodology of previous
studies, 1,124 images along with their captions and scene graphs are used as
the training set, while the remaining images serve as the test set.

TORS: The TORS dataset was collected from transoral robotic surgery
[135, 136] and consists of 335 surgical images, also annotated by experienced
surgeons with associated scene graphs. It includes five types of objects: tissue,
clip applier, suction, spatulated monopolar cautery, and Maryland dissector,
with eight types of semantic interactions such as clipping, suturing, and
grasping.

6 Evaluation Metrics

This section discusses various evaluation metrics used to evaluate the quality
of generated reports, including (i) NLP metrics (Section 6.1), (ii) clinical
efficacy (CE) metrics (Section 6.2), and (iii) human evaluation (Section 6.3).
NLP metrics measure the word overlap between the generated report and
the reference report, while CE metrics evaluate the clinical accuracy of the
generated reports by focusing on specific disease labels. Human evaluation
involves inviting radiologists to assess the generated reports to ensure reliability.

6.1 NLP metrics

NLP metrics were originally designed for natural language tasks and are em-
ployed in AMRG tasks to measure the quality of generated reports. Commonly
used NLP metrics include BLEU, METEOR, ROUGE-L, and CIDEr, which
are described in detail in the following sections.

BLEU: Bilingual Evaluation Understudy (BLEU) [100] was originally
designed for machine translation. It measures the correspondence between a
candidate (generated) sequence and a reference (ground-truth) sequence. A
higher BLEU score indicates a closer match to the reference sequence.

BLEU calculates precision (pn) for n-grams (subsequences of n words) and
includes a brevity penalty (BP ) for overly short sentences. BLEU is computed
as follows:

pn =
Number of n-grams in candidate that match reference

Total number of n-grams in candidate

BP =

{
1 if c > r

e(1−
r
c ) if c ≤ r

, BLEU = BP · exp(
N∑

n=1

wn log pn),

(19)
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where c and r are the lengths of the candidate and reference sequence, respec-
tively, and wn is the weight for n-grams (typically wn = 1

N ).
METEOR: The Metric for Evaluation of Translation with Explicit Or-

dering (METEOR) [8] is a precision and recall-based measure that improves
BLEU-1 by considering synonyms, stemming, and word order. It expands
uni-gram matching to include exact matches, stemming matches, and synonym
matches. METEOR aligns more closely with human judgment when comparing
candidate and reference sequences.

Precision (P ) and recall (R) are computed as follows:

P =
m

length of candidate
, R =

m

length of reference
, (20)

where m is the number of matches (including exact, stemmed, and synonym
matches) between candidate and reference uni-grams.

The harmonic mean (Fmean) of precision and recall is:

Fmean =
10PR

R+ 9P
(21)

METEOR also includes a fragmentation penalty (Pen) to penalize candi-
date sequences with poor word order:

Pen = 0.5 · #chunks
m

, (22)

where #chunks are the number of groups of matched words in the same order
as the reference. The final METEOR score is formulated as:

METEOR = Fmean · (1− Pen) (23)

ROUGE-L: Recall-Oriented Understudy for Gisting Evaluation - Longest
Common Subsequence (ROUGE-L) [78] is a metric originally designed for
automatic summarization. It measures the longest common subsequence (LCS)
between the candidate (X) and reference (Y ) sequences. A higher ROUGE-L
score indicates better quality in terms of the structure and important content
of the reference sequence.

Precision (P ) and recall (R) are computed by:

P =
LCS(X,Y )

length of candidate
, R =

LCS(X,Y )

length of reference
, (24)

where LCS(X,Y ) denotes the length of the LCS of sequences X and Y .
ROUGE-L is formulated as:

ROUGE-L =
(1 + β2)PR

R+ β2P
, (25)
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where β is a hyper-parameter that determines the relative importance of
precision and recall. It is usually set to a large number to emphasize the recall
score.

CIDEr: Consensus-based Image Description Evaluation (CIDEr) [119]
was designed for image captioning. It measures the cosine similarity between
a generated caption and a set of reference captions using the term frequency-
inverse document frequency (TF-IDF) weighted n-grams. TF-IDF assigns
higher weights to significant words, so a high CIDEr score indicates substantial
coverage of these important words. TF quantifies how frequently an n-gram
appears in a caption, while IDF measures how common an n-gram appears
across all reference captions. The TF and IDF are calculated as follows:

TFij =
Countij∑
k Countik

, IDFi = log
N∑

j min(1,Countij)
, (26)

where Countij is the count of the n-gram i in caption j,
∑

k Countik is the total
count of all n-grams in caption j, N is the total number of reference captions,
and

∑
j min(1,Countij) is the number of reference captions containing the

n-gram i.
The TF-IDF weighting for an n-gram i in caption j is calculated as:

TF-IDFij = TFij · IDFi (27)

Denote TF-IDF vector for n-grams of length n and caption j as vj,n. The
CIDErn score for n-grams of length n is computed by averaging the cosine
similarity between the candidate and reference captions over all reference
captions:

CIDErn(c,R) =
1

|R|
∑
r∈R

S(vc,n, vr,n), (28)

where R is the set of reference captions, |R| is the number of reference captions,
S represents cosine similarity, and vc,n and vr,n are TF-IDF vectors for the
candidate and reference captions for n-grams of size n.

The final CIDEr score is a weighted average of the CIDErn scores for
different n-gram lengths:

CIDEr(c,R) =
1

N

N∑
n=1

wn · CIDErn(c,R), (29)

where N is the maximum n-gram length (typically 4), and wn is the weight
for n-grams of length n (typically wn = 1

N ).

6.2 Clinical Efficacy

NLP metrics primarily measure the word overlap between the generated report
and the reference report. However, in the medical field, semantic similarity
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and factual consistency between the generated report and the reference report
are more important. For example, the NLP scores for the sentences “The heart
is within normal size and contour” and “No cardiomegaly observed” are zero.
However, in medical reports, these two sentences convey the same information.
Therefore, many radiographic report generation studies supplement NLP
metrics with clinical efficacy (CE) metrics [46, 85, 81, 129, 141, 86, 152, 30,
23, 139, 89, 22, 40, 102, 44, 80, 122]. Specifically, they use CheXpert [49]
to extract labels from the generated and reference reports, focusing on 12
possible chest diseases. The label-based precision, recall, and F1 score are then
calculated as CE metrics. This approach allows CE metrics to assess whether
the generated report and the reference report contain the same diseases.

However, CE metrics are currently limited to the evaluation of English chest
radiography reports. There are no tools similar to CheXpert for extracting
disease labels from text for other body parts, modalities, and languages, which
presents an opportunity for future research.

6.3 Human Evaluation

However, both NLP metrics and CE metrics sometimes are unreliable for
evaluating medical reports, and CE metrics are limited to pre-trained dis-
ease categories. Some researchers suggest introducing human evaluation to
comprehensively assess the quality of generated reports [89, 102, 73, 70, 155,
82]. Specifically, reports generated by multiple candidate models are mixed
together, and multiple board-certified radiologists compare the candidate re-
ports with the reference reports to avoid personal bias. The radiologists select
the generated reports that are most similar to the reference reports based on
fluency, factual consistency, and overall quality. While human evaluation is the
most reliable evaluation method, it is also the most expensive and impractical
for large-scale evaluations.

7 Performance Comparisons

Table 1 shows the results of SOTA radiographic reporting methods published
between 2021 and 2024 on benchmark radiography datasets. By comparing
their performance and techniques, we identified six techniques that effectively
improve NLP and CE metrics: (i) human-computer interaction, (ii) reinforce-
ment learning, (iii) detection and segmentation, (iv) disease classification, (v)
traceback mechanism, and (vi) local alignment. In the following sections,
BLEU-4, METEOR, ROUGE-L, and CIDEr in NLP metrics, as well as preci-
sion, recall, and F1 score in CE metrics, are simplified to BL-4, MTR, RG-L,
CD, P, R, and F, respectively.
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Human-computer interaction technology achieves the highest scores in
both NLP and CE. Specifically, the inclusion of doctors’ notes significantly
enhances the quality of the generated reports. Nguyen et al. [93] achieved
the best NLP scores on both MIMIC-CXR (BL-4: 0.224, MTR: 0.222, and
RG-L: 0.390) and IU-Xray (BL-4: 0.235, MTR: 0.219, and RG-L: 0.436)
by incorporating clinical documents. These clinical documents, which may
include patients’ clinical histories or doctors’ notes, guide the model to focus
on specific areas of the image and relevant diseases. For instance, if the
doctor’s note mentions “shows cough and shortness of breath symptoms”, the
model will focus on the lung area and consider pneumonia. In addition to
human-computer interaction, the model involves disease classification, memory
retrieval and traceback mechanism, as illustrated in Figure 9. Similarly, Liu
et al. [86] introduced disease labels provided by radiologists, achieving the
highest CE scores (P: 0.855, R: 0.730, and F: 0.773). Their model offers two
options: automatic disease classification based on the input image or radiologist-
provided potential disease labels. The latter results in markedly higher clinical
efficacy in generated reports. Thus, incorporating human guidance into the
model effectively improves the quality of the generated reports.

For methods without human interaction, reinforcement learning (Section
3.4.2) is most effective. Xu et al. [137] used BL-4, MTR, and CD as rewards
and achieved the second-highest NLP scores (BL-4: 0.192, MTR: 0.207, and
RG-L: 0.380) on the MIMIC-CXR dataset. Likewise, the factual completeness
and consistency reward designed by Miura et al. [89] resulted in the second-
highest CE scores (P: 0.503, R: 0.651, and F: 0.567) on MIMIC-CXR dataset
and highest CD scores (CD: 0.509 and 1.034) on both datasets. In addition,
using CD alone as a reward can also lead to relatively high NLP and CE scores
on benchmark datasets [131, 80, 130]. Therefore, incorporating reinforcement
learning into AMRG models is a straightforward but effective strategy.

Another effective technique involves leveraging pre-trained detection or
segmentation networks (Section 3.2.2) to enhance AMRG models by focusing
on meaningful anatomical regions. For instance, Tanida et al. [116] integrated
a detection network with binary classifiers, as illustrated in Figure 10, enabling
the model to concentrate on critical regions and achieving the second-highest
CD score of 0.495 on the MIMIC-CXR dataset. Similarly, Zhao et al. [158]
employed a segmentation network, securing the second-highest NLP scores
(BL-4: 0.221 and RG-L: 0.433) on the IU-Xray dataset.

In addition, integrating multi-label disease classification (Section 3.2.1)
yields considerable improvements in CE scores [54, 44, 141, 43, 85, 46], ensuring
that the diseases identified in the generated reports are consistent with those
in the input images. For implementation, the image encoder can use disease
classification as a pre-training task, or the classification can be employed as a
joint learning task during training. Notably, incorporating the classification
results as additional information into the text decoder can yield higher CE
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Figure 9: This diagram illustrates the architecture of the model developed by Nguyen et al.
[93], which involves human-computer interaction, disease classification, memory retrieval,
and a traceback mechanism. The model begins by encoding a chest radiograph and the
doctor’s note into image and text embeddings. These embeddings are combined to form
a fused embedding, which is then processed by a classification network to predict the
patient’s diseases. The predicted diseases guide a search through stored memory to retrieve
relevant information. The fused embedding, predicted diseases, and retrieved memory are
integrated to create an enriched embedding, which is subsequently decoded into a report.
This generated report is further classified using a text encoder-based classifier to verify
whether the diseases identified in the report align with the diseases indicated by the image.
Model optimization is driven by three loss functions: the classification loss (Lc) between the
predicted and ground truth (GT) diseases, the report loss (Lr) between the generated and
GT reports, and the traceback loss (Lt) between the diseases in the generated report and
the GT diseases. The total loss is Ltotal = Lc + Lr + Lt.

metrics. For example, Li et al. [54] reported CE scores of P: 0.501, R: 0.509,
and F: 0.476, while Hou et al. [44] achieved CE scores of P: 0.416, R: 0.418,
and F: 0.385.

For the IU-Xray dataset, both the traceback mechanism (Section 3.4.1) [65,
131, 145] and local alignment (Section 3.1.2) [125, 80, 145] demonstrate notable
efficacy. The traceback mechanism involves making the generated report
similar to the reference report at the feature level, while local alignment aligns
sentences or words with image patches. In particular, Li et al. [65] employed
a traceback mechanism to achieve notable NLP scores (BL-4: 0.215,and RG-
L: 0.415), indicating that the generated reports are similar to the reference
reports in terms of 4-gram and the longest sequence. Ye et al. [145] combined
traceback with local alignment and obtained the highest MTR score of 0.233
and a relative high CD score of 0.469, indicating that the generated reports
have a high overlap with reference reports in terms of keywords. However,
these techniques did not yield similarly excellent results on the MIMIC-CXR
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Figure 10: This diagram illustrates the architecture of the model developed by Tanida et al.
[116], which integrates detection, disease classification, and a large language model (LLM).
The detection network extracts visual features from 29 potential anatomical regions in chest
radiographs. These features are then processed by an abnormal classifier and a selection
classifier. The abnormal classifier determines whether a region contains a lesion, encoding
strong abnormal information into the features. The selection classifier identifies regions
critical for report generation, ensuring that only the visual features from these critical regions
are passed to the decoder. The model’s decoder, which incorporates a pre-trained LLM,
injects the features of the selected critical regions through pseudo self-attention, generating
a sentence for each region.

dataset, indicating that the traceback mechanism and local alignment still
have limitations when applied to more complex and variable datasets.

8 Future Directions

Finally, we highlight unresolved issues in the current methods that present
opportunities for future research in the AMRG field.

Multimodal Learning: The primary challenge in the AMRG field is
bridging the modality gap between images and text. The CLIP model [103],
which utilizes natural language as supervision for contrastive learning, has
significantly advanced this area. However, from the current results (Table
1), the performance of SOTA AMRG models remains limited, with CIDEr
scores much lower than those of SOTA general image captioning models [67,
68]. This discrepancy underscores the inadequacy of existing multimodal
learning methods in fully supporting report generation models, particularly
when dealing with medical images containing subtle differences.

One promising direction involves implementing local alignment techniques
that associate specific image regions with textual entities, enabling the model
to learn more fine-grained details. Although current local alignment methods
have shown improvements on the IU-Xray dataset, they have not yielded
significant benefits on more complex datasets such as MIMIC-CXR [125, 80,
145]. This indicates that current fine-grained alignment methods are still
insufficient for the medical domain. Therefore, future research should focus
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on advancing these methods to capture the nuanced and subtle features of
medical images more effectively.

Unsupervised/Semi-Supervised Learning: Another major factor
limiting the AMRG models is the relatively small size of paired medical datasets.
For instance, the largest medical dataset, MIMIC-CXR [56], contains only
0.22 million pairs, whereas general image captioning datasets like Conceptual
[18] contain 12 million pairs. The high cost of creating image-text paired
medical datasets makes expanding them to a similar scale as general datasets
impractical.

One potential solution is to employ unsupervised and semi-supervised
learning to expand the available data. Some researchers have used image
classification and text reconstruction to train image encoder and text decoder
separately, allowing the model to learn valuable patterns and representations
from unpaired data [40, 85, 132]. This approach enables the use of image-only
and text-only medical data to augment the training set. However, two main
limitations persist: the need for disease labels for images and the low precision
of current methods. Image classification for training encoder requires images
with disease labels, which is also labor-intensive. Moreover, as shown in Table
1, the performance of unsupervised [40, 85] and semi-supervised [152] methods
is currently lower than that of supervised methods. Future research should
focus on eliminating the need for image labels and improving the performance
of unsupervised and semi-supervised methods. By using larger datasets than
those used in supervised methods, their accuracy could ultimately surpass that
of supervised methods.

Human-Computer Interaction: Given the limitations of current meth-
ods in terms of accuracy, human-computer interaction systems represent a
viable avenue for further development. In such systems, physicians can provide
prompts to guide the model in generating descriptive reports [93, 86], or
the model can generate draft reports that physicians subsequently modify.
Integrating the report generation model into the clinical diagnosis process can
reduce repetitive tasks for physicians, allowing them to focus on diagnosing
complex diseases. With physicians’ supervision, the issue of low accuracy in
the generated reports becomes less of an obstacle to clinical application, as
physicians can refine the generated text.

Another approach to human-computer interaction involves incorporating
physicians’ feedback into the model’s iteration process. This approach offers
a more precise and targeted supervision signal than the loss function. By
continuously optimizing the report generation model based on physicians’
feedback during daily use, the model can become more adept at addressing
specific diseases.

Interpretability: Another challenge to the clinical application of the
AMRG models is the opacity of their decision-making process. Providing
visual and textual explanations can assist physicians in understanding the
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rationale behind specific diagnostic recommendations. A common approach
is to utilize back-propagated gradients to highlight pertinent regions within
the image [109]. However, given that the output of the AMRG models is
lengthy text, this approach is unsuitable. To enhance interpretability, Chen
et al. [20] attempted to show rectangular boxes on the image to indicate
areas where the model believed lesions occurred and corresponded to specific
generated sentences. Unfortunately, their model produced many overlapping
boxes, which did not clearly explain the decision-making process.

A future direction for improving interpretability involves refining visual
explanation techniques to highlight critical regions more precisely. Additionally,
since descriptions of diseases in the report are more critical than those of normal
conditions, combining visual explanations with textual ones would be beneficial.
This approach can highlight key words or sentences in the generated text and
the corresponding regions in the input image. Such a combination of visual
and textual interpretation is more suitable for the AMRG domain.

Evaluation Metrics: Developing more accurate evaluation metrics to
assess the accuracy of generated reports is also a critical need in current
research. Current NLP evaluation metrics primarily measure word similarity
between generated and reference texts, but they fail to capture the clinical
accuracy of reports. Meanwhile, CE metrics are limited to chest radiographic
reports and fixed disease categories. While some studies introduce human
evaluation, its high cost and lack of standardized criteria hinder large-scale
implementation.

The AMRG field needs specialized evaluation metrics or methods that can
assess the correctness of medical terminology and the accuracy of diagnoses.
These metrics should be also applicable to various image modalities and diseases,
as well as handle the inherent variability in medical diagnoses. Additionally,
such metrics should be scalable, cost-effective, and standardized to enable
consistent comparisons of model performance, similar to existing NLP metrics.

9 Conclusion

In conclusion, the field of AMRG has made significant strides in recent years,
addressing critical challenges and enhancing the efficiency and accuracy of
medical diagnoses. Our comprehensive review of AMRG methods from 2021 to
2024 highlights fourteen solutions for the four primary challenges: modality gap,
visual deviations, text complexity, and dataset limitations. We also present
AMRG applications across various imaging modalities, including radiography,
CT scans, MRI, ultrasound, FFA, endoscopic imaging, surgical scenes, and
WSI. In addition, our review underscores the importance of publicly available
datasets and robust evaluation metrics in advancing AMRG research. Based
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on their performance on benchmark datasets, we identify six solutions that
can significantly improve evaluation metrics.

Despite these advancements, the field continues to face ongoing challenges.
Future research should focus on developing more effective multimodal learn-
ing algorithms, enhancing human-computer interaction, expanding available
datasets, improving model interpretability, and refining evaluation metrics to
ensure greater accuracy.
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