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ABSTRACT
The autoregressive entropy model facilitates high compression effi-
ciency by capturing intricate dependencies but suffers from slow de-
coding due to its serial context dependencies. To address this, we
propose ParaPCAC, a lossy Parallel Point Cloud Attribute Com-
pression scheme, designed to optimize the efficiency of the autore-
gressive entropy model. Our approach focuses on two main com-
ponents: a parallel decoding strategy and a multi-stage context-
based entropy model. In the parallel decoding strategy, we parti-
tion the voxels of the quantized latent features into non-overlapping
groups for independent context entropy modeling, enabling paral-
lel processing. The multi-stage context based entropy model is em-
ployed to decode neighboring features concurrently, utilizing pre-
viously decoded features at each stage. Global hyperprior is incor-
porated after the first stage to improve the estimation of attribute
probability. Through these two techniques, ParaPCAC achieves
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significant decoding speed enhancements, with an acceleration of
up to 160× and a 24.15% BD-Rate reduction compared to serial
autoregressive entropy models. Furthermore, experimental results
demonstrate that ParaPCAC outperforms existing learning-based
methods in rate-distortion performance and decoding latency.

Keywords: Point cloud compression, point cloud attribute compression, learned
data compression

1 Introduction

Point clouds, a prevalent format for representing 3D scene data, find extensive
application in graphics and autonomous driving, among other fields. Com-
prising discrete sampled points on object surfaces, each point is defined by
its geometry (expressed as [x, y, z] coordinates in 3D space) and attributes
(including RGB color, surface normals, reflectance intensity, etc.). With large-
scale point clouds often containing millions of points, there is a pressing de-
mand for efficient compression techniques to manage their substantial data
volumes. In recent years, learning-based point cloud compression has gar-
nered significant interest, with extensive research conducted on techniques
such as learning-based point cloud geometry compression [35, 32, 31].

However, exploration into learning-based point cloud attribute compres-
sion (PCAC) remains relatively limited. Two mainstream approaches to
PCAC include hybrid coding frameworks and end-to-end frameworks. Hybrid
codecs integrate learnable modules into traditional point cloud frameworks,
e.g., MPEG standardized G-PCC, enhance compression performance [12, 10,
41, 28]. One well-known codec is 3DAC [12], which combines a Region-
adaptive Hierarchical Transform (RAHT) [10] with a learning-based entropy
model. GPCC++ [41] based on G-PCC employs learnable filters to mitigate
distortion for decoded attributes [28]. While hybrid coding methods improve
compression performance by combining traditional algorithms with learnable
modules, the system complexity increases, making end-to-end optimization
difficult. The integration and tuning costs of such frameworks are high, limit-
ing their scalability and applicability in real-world applications. Thus, end-to-
end PCAC has been proposed to facilitate comprehensive optimization [33, 34].
Wang et al. [34] introduced an entropy model that integrates joint hyperprior
and autoregressive neighborhood context. Nonetheless, this serial process re-
quires decoding each point or block step by step, significantly slowing down the
decoding speed, especially when handling large-scale point cloud data, where
the decoding bottleneck becomes highly evident. Besides, Wang et al. [33]
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proposed a lossless PCAC model leveraging multiscale structures and cross-
scale/group/color correlations for accurate probability estimation, but they
lack consideration of the global dependency, which can enhance probability
estimation.

To overcome the inefficiency of serial autoregressive decoding, we intro-
duce a novel parallel decoding strategy. By partitioning the quantized latent
features into several non-overlapping groups, our model enables independent
context entropy modeling for each group, facilitating both inter-group and
intra-group parallelism. This approach significantly accelerates the decoding
process by allowing multiple parts of the data to be processed simultane-
ously.This parallel decoding approach ensures high efficiency without sacrific-
ing compression performance. The global hyperprior is derived via an atten-
tion module, integrating global attribute latent and geometric features. To
streamline the computational complexity of the global hyperprior, we choose
to compress and transmit it directly to the decoder. In the multi-stage context
based entropy decoding, the current features are decoded with the aid of the
global hyperprior and previously decoded local features from the same group.
Here, the global hyperprior functions as contextual information, enriching the
understanding of the broader context.

• We present an efficient parallel decoding strategy tailored for lossy point
cloud attribute compression, effectively boosting decoding efficiency with-
out compromising decoding quality. Our model demonstrates remark-
able speed enhancements, achieving up to a 160× acceleration and a
24.15% BD-Rate reduction compared to serial autoregressive entropy
models.

• We propose an efficient multi-stage context based entropy model to cap-
ture both short-range and long-range dependencies from previously de-
coded features and global prior to enhance compression performance.

• Experimental results demonstrate that our method outperforms other
end-to-end learned approaches in compression performance with an ap-
plicable decoding latency, as illustrated in Figure 1.

2 Related Works

2.1 Point Cloud Attribute Compression (PCAC)

Point cloud attribute compression methods can be broadly categorized into
rule-based and learning-based methods. Rule-based methods typically rely
on conventionally point cloud compression codec, while learning-based ap-
proaches tend to use neural networks to predict the probability distribution
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Figure 1: Comparison of average compression performance and decoding latency among
various point cloud attribute compression codecs on the longdress (10-bit geometry) from
8iVFBv2 [8] dataset. Our proposed model, compared with the joint hyper-autoregressive
entropy model [34], demonstrates notable decoding speed enhancements while maintaining
comparable decoding latency to codecs utilizing hyperprior entropy model (Hyper) and
factorized entropy models (Factorized). Notably, Ours-Light shares the same backbone
architecture as Hyper and Factorized, but these models employ different entropy models.

of point cloud attributes. In this subsection, we provide a brief review of
existing research from both these perspectives.

Rules based Methods typically rely on conventionally designed transfor-
mations, e.g., Graph Fourier Transform (GFT) [39], RAHT [10], Gaussian Pro-
cess Transform (GPTs) [11], and Region Adaptive Graph Fourier Transform
(RA-GFT) [20], to leverage spatial correlations among the attribute values of
points. GFT [39] and its variants [7, 29, 36] perform Laplace decomposition
on the local graph of points and decompose the attributes by eigen decom-
position. RAHT [10] performs regionally adaptive weighted multi-resolution
wavelet transform on attributes in 3D space, which has competitive speed and
coding performance. GPT [11] models the statistics of the attributes using
stationary Gaussian processes (GPs) and applies a Karhunen-Loève trans-
form for coding. RA-GFT [20] is a generalized version of RAFT that uses
Q-normalized graph Laplacian. In the G-PCC [28] (TMC13), RAHT is in-
corporated as a core transformation due to its efficiency. Simultaneously, the
TMC13 introduces rules-based entropy model and coefficient prediction to
achieve efficient compression performance.

Learning based Methods have attracted attention in point cloud geom-
etry [25, 35, 4, 26, 32, 31] and point cloud attribute [12, 34, 33] compression.
These approaches tend to use neural networks to predict the probability dis-
tribution of point cloud attributes.

According to the learning strategy of the modules in codec, existing meth-
ods can be divided into hybrid approaches and end-to-end learning based
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approaches. The hybrid approaches replace parts (transformation or entropy
model) of the traditional codec with learnable modules, or enhance traditional
codec as a plugin. For lossless point cloud attribute compression, Wang et
al. [33] and Nguyen et al. [19] proposed learnable entropy models by using
sparse convolutional networks to estimate attribute distribution. For lossy
compression, Quach et al. [24] attempted to fold 3D point clouds onto a 2D
plane and directly compress them using learned image/video codecs. Fang et
al. [12] proposed 3DAC using RAHT [10] as transformation and construct-
ing a learnable entropy model to predict the probability distribution of high-
frequency coefficients of attributes. YOGA [40] feeds the output of learnable
transformation into G-PCC, while GPCC++ [41] filters the reconstructed
result of G-PCC to remove distortion, achieving performance improvement
compared to G-PCC.

End-to-end learning based approaches are believed to have a higher the-
oretical performance [3] as they enable the simultaneous optimization of the
transformation and entropy model. Recently, Sheng et al. [30] used a point-
based neural network for attribute compression, Pinheiro et al. [22] use a nor-
malizing flow based network for attribute compression, and Wang et al. [34]
utilized sparse convolutional networks [6] with introducing joint hyperpri-
ors [3] and autoregressive contexts [18] based entropy model to improve at-
tribute compression performance. However, end-to-end learning-based meth-
ods have not been able to achieve compression performance surpassing that
of traditional point cloud codecs like G-PCC [1, 30], or they may exhibit
unacceptable decoding latency [34].

2.2 Efficient Learning Based Entropy Models

Accurate entropy models are essential for improving compression performance.
In image compression, joint hyperprior and autoregressive context entropy
models [18] have been highly effective in reducing spatial redundancy and
improving efficiency. These models typically combine a global hyperprior
with local context models to predict the distribution of image representations.
However, their sequential decoding process leads to slower speeds due to the
autoregressive structure.

To address this, researchers have explored parallelization strategies. For
instance, He [14] introduced a checkerboard context entropy model for image
compression, dividing images into groups for partial parallel decoding. While
this improves speed, it struggles to capture long-range dependencies due to
the limited receptive field of CNNs. Kim [16] and Qian [23] incorporated
global references into entropy models, which helped capture both local and
global contexts, but at the cost of increased computational complexity.

Building on these advancements, similar entropy models [34] have been
applied to point cloud attribute compression, exploiting local correlations to



6 Wang et al.

improve compression. Like in image compression, these models also face slow
decoding due to their sequential nature. Wang [34] proposed a group-based
model for partial parallel decoding, improving speed while maintaining com-
pression quality.

However, both image and point cloud compression methods still struggle
to capture long-range dependencies, particularly in 3D point clouds. Recent
works have introduced attention mechanisms to overcome these limitations.
For example, OctAttention [13] applied global attention to expand the recep-
tive field, while Song [31] proposed EHEM, a hierarchical attention structure
to improve efficiency and performance.

Inspired by these efforts, we propose a multi-stage context-based global en-
tropy model for 3D point cloud attribute compression. By capturing both lo-
cal and global dependencies through context-based and attention mechanisms,
our model enables parallel decoding and improves compression performance.
This approach strikes a balance between efficiency and complexity, making it
well-suited for real-world 3D data compression applications.

3 Preliminary

3.1 Variational Point Cloud Attribute Compression

The VAE (Variational Autoencoder) based point cloud attribute compres-
sion framework consists of transformation and entropy coding. Given a vox-
elized point cloud P = (G,X) with known coordinates G ∈ ZN×3, attribute
compression only considers the representation and compression of attributes
X ∈ [0, 1]N×S where S is the number of channels and N is the number of
non-empty voxels in sparse tensor.

In the first step of the encoding process, point cloud attributes X are
transformed into quantized latent representations Ŷ through a learned anal-
ysis transform ga and a scalar quantizer Q. In learning-based point cloud
compression methods, the analysis transform ga is typically employed to map
the input data into a more compact latent space representation. This pro-
cess involves a series of downsampling operations or feature extraction layers,
which reduce the spatial and attribute redundancy, capturing the essential
information required for efficient compression.

After transformation, the entropy model estimates the probability distribu-
tion pŶ of the quantized latent representations Ŷ , enabling efficient encoding
into a bitstream. The goal of the compression process is to minimize the bit
rate (denoted as R), which represents the number of bits required to encode
the latent variables. The bit rate R is defined as the expected negative log-
likelihood of the estimated probability distribution, i.e., R = − log2 pŶ (Ŷ ),
and minimizing R ensures efficient encoding.
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On the decoder side, the synthesis transform gs reconstructs the attributes
from the decoded latent representations Ŷ . The synthesis transform gs is the
inverse process of ga, aiming to recover the original point cloud attributes
from the compact latent space representation. It performs a series of upsam-
pling operations or feature decoding layers that map the latent variables back
into the original high-dimensional space, restoring the detailed point cloud
attributes. In essence, gs functions as a decoder network that reverses the
compression process, attempting to faithfully reconstruct the input data from
its compressed latent form. The distortion (denoted as D) measures the dis-
crepancy between the original attributes X and the reconstructed attributes
X̂ = gs(Ŷ ) after decoding. D is typically evaluated using a distortion met-
ric such as the Binary Cross-Entropy (BCE) loss, quantifying how well the
reconstructed attributes preserve the original information.

During the training phase, the objective is to minimize the combined rate-
distortion loss function L, which balances the trade-off between the bit rate
and distortion. The loss function is defined as follows:

L = R+ λ ·D

= EX∼pX
[− log2 pŶ (Ŷ )] + λ · EX∼pX

[d(X, gs(Ŷ ))],
(1)

where pX is the real distribution of the point cloud attributes, d is the dis-
tortion metric, and λ is the Lagrangian multiplier used to control the rate-
distortion trade-off.

3.2 Joint Hyper-Autoregressive Entropy Model

The accuracy of estimating the distribution p is crucial for entropy coding.
Various entropy models have been proposed and used in 2D image compres-
sion, such as factorized, hyper [3], and autoregressive prior entropy models
and their combinations [18]. For 3D point cloud attributes, Wang et al. [34]
first explored estimating the distribution pŶ using a joint of hyperprior and
autoregressive context. With the joint entropy model, the rate R term in the
rate-distortion trade-off loss function can be written as:

R = EX∼pX
[− log2 pŶ |Ẑl

(Ŷ | Ẑl)− log2 pẐl
(Ẑl)], (2)

where Ẑl = Q(ha(Y )) is the hyperprior used to eliminate neighborhood re-
dundancy and pẐl

is the estimated distribution of the hyperprior.
The probability estimation of the joint entropy model can be modeled as:

pŶ |Ẑl
(Ŷ | Ẑl) =

∏
i

(V(µi, σi) ∗ U(−
1

2
,
1

2
))(Ŷi),

with µi, σi = gep(gcm(Ŷ<i),ψ),ψ = hs(Ẑl).

(3)
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V represents a probability distribution, e.g., Laplace distribution and Gaus-
sian distribution. U is an uniform distribution. gep and gcm are the entropy
model and the autoregressive context model, respectively. And, hs is the hy-
perpripor decoder. For decoding the i-th quantized latent Ŷi in a point cloud
with morton order [2], the decoded latents Ŷ<i are used to generate the autore-
gressive context by the autoregressive context model gcm implemented by a
masked sparse convolution. The autoregressive context is then concatenated
with the output of the hyperprior decoder hs(Ẑl) to generate the parame-
ters (µi, σi) of probability distribution, e.g., mean / diversity for the Laplace
distribution or mean / standard deviation for the Gaussian distribution.

Unlike images defined on 2D dense grids, point cloud attributes exist on
the non-empty voxels of the determined 3D sparse grids. Due to the sparsity
and unorder of the input point cloud, it is hard to effectively capture the neigh-
bor context of the current non-empty voxel to be encoded, which limits the
performance improvement brought by the autoregressive context model. Ad-
ditionally, autoregressive context model has an unacceptable decoding latency
due to serial context dependencies.

4 Proposed Method

The overview of the proposed compression architecture is shown in Figure 2.
The VAE based point cloud attribute compression architecture is employed
as the backbone. Initially, the transformation network transforms the input
point cloud attributes into latent features. Subsequently, these features are
encoded into a bitstream by the entropy model. To enhance the decoding
speed, we propose a parallel decoding strategy(Section 4.1) that does not rely
on intra-group autoregressive context. The latent features are divided into
K non-overlapping groups according to their coordinates to encode and de-
code them group-by-group. To compensate the loss of autoregressive context
prior, we introduce a inter-group global context (Section 4.2). This approach
leverages global context from previously decoded groups to provide context
information for the groups to be decoded later. The proposed multi-stage
context based entropy model (Section 4.3) integrates these methods, forming
a comprehensive solution that optimizes both speed and compression perfor-
mance.

4.1 Parallel Decoding Strategy

To address the problem of the slow decoding speed caused by the serial depen-
dency of the autoregressive context model, we propose a multi-stage context
modeling to support parallel decoding. Specifically, the quantized latent, gen-
erated via the 3D sparse convolution, contains many voxels, which then are
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Figure 2: The overview of our proposed method. The left side shows the attributes au-
toencoder, and the right side shows the entropy model. “SConv n3 × C” and “TSConv
n3×C” denotes the sparse convolution and transposed convolution with C output channels
and kernel size n3. “Residual Block” and “Self Attention Block” represent the residual
network and the local self attention network used for efficient latent feature aggregation.
“s ↑” and “s ↓” represent upsampling and downsampling at a factor of s. “Q” represents
quantizer, “AE” represent arithmetic encoder, and “AD” represent arithmetic decoder. “G”
represents the partition operation of the quantized latent representations. “0” symbolizes
the context with the same shape as the input point cloud, where all attribute values are
0. ∪ is used to describe the combination of point clouds of different shapes. Red arrows
represent the encoding data flow, blue arrows represent the decoding data flow, and purple
arrows represent the shared data flow.

partitioned into several non-overlapped groups. For convenient description,
we define a cube with the size of 2× 2× 2, a total of 8 voxels, as a basic cod-
ing unit. These eight voxels in one cube are then partitioned into K groups
according to their indexes in the cube. Consequently, the original encod-
ing/decoding process becomes K-pass. During the implementation, after all
the non-empty voxels in group k are encoded (or decoded), the encoding (or
decoding) of the next group can begin. The context model of each non-empty
voxel within the same group depends on the information of the non-empty
voxels in the previously encoded (or decoded) groups. Since there is no serial
dependency within a group, and the decoding of each group depends on the
previously decoded groups, the non-empty voxels within the same group can
be parallel decoded.

To achieve a trade-off between the compression performance and comput-
ing efficiency, we partition the downsampled voxelized point cloud output by
gs into 3 groups based on their spatial coordinates as shown in Figure 3. The
first group {1} can be regarded as low-scale context, while the second group
{3, 6, 8} and the third group {2, 4, 5, 7} are interlaced to maximize the avail-
able neighborhood context. Our proposed multi-stage context based context
structure can enhance probability estimation accuracy by leveraging the spa-
tial correlation between groups with high decoding speed compared with the
serial autoregressive context model.
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Figure 3: An example of a multi-stage context modeling scheme with three groups:{1},
{3,6,8}, {2,4,5,7}, aimed at enhancing the accuracy of probability estimation in an entropy
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same shape as the input point cloud, where all attribute values are 0. Yth represents the
hyperprior context output by decoder hs, and Ẑg defines the global hyperprior. The en-
tropy decoding decodes the bitstream into voxels using the entropy model parameters{µ, θ}
generated by gep and gcm.

4.2 Global Context Model

Despite the parallel decoding strategy improving decoding speed, it unfor-
tunately results in the loss of context information. Moreover, the entropy
model can only capture short-range information (i.e., local context) due to
the limited receptive field of sparse convolution networks. Consequently, the
full utilization of long-range information (i.e., global context) is hindered.

To address this issue, we introduce an inter-group global context, as illus-
trated in Figure 4. This global context is designed to enhance the efficiency
of the inter-group context information utilization. It adaptively selects global
context information from previously decoded groups using the attention mech-
anism. To avoid quadratic computational complexity of global attention, a
global hyperprior Zg is employed inspired by Informer [16]. The global hyper-
prior is generated as follows:

Zg = hg(fg(G),Y ; τ ), (4)

where hg is the global hyperprior encoder with a multi-head attention block,
fg(G) is the point cloud geometry feature and τ is a learnable parameter
with a fixed length. In order to obtain the global hyperprior during the
decoder stage, the global hyperprior Zg is quantized to Ẑg and compressed
to bitstream by a factorized entropy model [3] for transmission.

4.3 Multi-stage Context Based Entropy Model

The multi-stage context-based entropy model is designed to improve the accu-
racy of attribute probability estimation by integrating both short-range and
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Figure 4: The overview of the Global Hyperprior Model and the proposed parallel Context
Model and Joint Entropy Model.

long-range dependencies. This model operates by progressively refining the
probability estimations using previously decoded features and global contex-
tual information.

The workflow of the model is illustrated in Figure 3, which shows an
example with three groups of voxel features: 1, 3, 6, 8, and 2, 4, 5, 7. These
numbers represent the indices of voxel features in each group, and the features
within the same group are encoded and decoded in parallel.

In the first stage, when no context is available, the model initializes the
context to 0, a tensor of all zeros with the same shape as the expected output.
During this stage, the hyperprior context Ŷlh is used along with 0 to decode the
first group of voxel features, denoted as 1. For subsequent stages, the entropy
model is conditioned on both the local hyperprior hs(Ẑl)) and the global
context gcm(Ŷ {1,...,k−1}, Ẑg), which is derived from the previously decoded
groups.

The parameters of the probability model for the k-th group are estimated
as follows:

Φk =

{
gep(0, hs(Ẑl)), k = 1

gep(gcm(Ŷ {1,...,k−1}, Ẑg), hs(Ẑl)), k ≥ 2
(5)

where Φk = {µk,σk} represents the estimated parameters for the k-th
group, and 0 is an all-zero tensor. The global context gcm helps in refining
the probability estimation for the current group by using information from
the previously decoded groups.

After incorporating the global context, the rate term R in the rate-distortion
loss function Eq. (1)is updated as follows:

R = EX∼pX
[− log2 pŶ |Ẑl,Ẑg

(Ŷ | Ẑl, Ẑg)

− log2 pẐl
(Ẑl)− log2 pẐg

(Ẑg)],
(6)

where pẐg
is the estimated distribution of the global hyperprior. This integra-

tion of global context enhances the models ability to capture both local and
long-range dependencies, leading to more accurate probability estimations and
improved compression performance.
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5 Experimental Results

5.1 Datasets

We evaluate the proposed method on three datasets with different geometric
and attribute characteristics.
Human body. The human body point cloud is widely used in the MPEG
common test for evaluation. We select 8 point clouds include 4 point clouds
from 8i Voxelized Full Bodies (8iVFBv2) [8] and 4 point clouds from Owlii
Dynamic Human Textured Mesh Sequence Dataset (Owlii) [38] for evaluation.
Each point cloud consists of approximately one million points.
Synthesize COCO. Due to the limited diversity in the geometry and color
information of human body point clouds, we synthesize 10,000 colored point
clouds for training using the COCO dataset [17]. To generate synthetic point
clouds from the COCO dataset, we randomly select images from the dataset
to use as the attributes for the synthetic point clouds. The geometry of these
synthetic point clouds is based on a grid structure, which is then distorted
using Perlin noise [21]. to introduce variability in the geometric shape. This
noise simulates more natural and irregular surfaces within the point cloud.
Furthermore, we apply random 3D rotations to the synthetic point clouds to
further increase the diversity of the dataset. We train our model using the
Synthesize COCO dataset and evaluated it on the Human Body dataset. De-
spite the differences in characteristics between the synthetic dataset and the
human body dataset, the proposed method demonstrates strong generaliza-
tion capability.
Indoor scene. The ScanNet dataset [9] is widely used for training and testing
on indoor scenes, comprising 1603 scans of various indoor environments. We
select 1503 scans for training and 100 scans for testing. Each scan contains a
point cloud with approximately 0.8 million points.
Large-scale outdoor scene. The SensatUrban [15] dataset is a large-scale
urban point cloud dataset collected by UAV photogrammetry. It contains
about 6 billion points from two cities and covers about 6 square kilometers
of the urban area. The point clouds are partitioned into 35m× 35m patches
according to the actual physical distance, each patch containing about 0.5
million points. We randomly select 1570 patches for training and 100 patches
for testing.

5.2 Implementation Details

Training strategies. We implement the proposed methods using PyTorch
and MinkowskiEngine [6]. Models are trained for 80 epochs on the synthetic
dataset or 150 epochs on indoor and large-scale outdoor scene datasets using
the Adam optimizer. We initiated training with an initial learning rate of
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1 × 10−4, which decayed by a factor of 0.3 every 30 epochs, with a lower
bound of 2.7× 10−6. For training models at different bitrates, we set λ to the
following values: 0.0006, 0.0018, 0.0130, 0.0063, and 0.0530.
Evaluation metrics. We utilize the Peak Signal-to-Noise Ratio (PSNR, in
dB) of the Y channels at different bits per point (bpp) to evaluate the compres-
sion performance. To measure the averaged R-D performance of the proposed
method, we also provide the Bjøntegaard Delta PSNR [5] (BD-PSNR, in dB)
gain and the Bjøntegaard Delta bit rate [5] (BD-RATE, in percentage) reduc-
tion for comparison.

5.3 Performance Comparisons

Comparison to the G-PCC. We conduct the official implementation with
three different versions of G-PCC (TMC13), including TMC13v6, TMC13v19
and TMC13v23. Following the MPEG common test conditions (CTC) with
QPs={51, 46, 40, 34, 28}.

The rate-distortion (RD) performances are illustrated in Figure 5, and
quantitative comparison results are shown in Table 1.

Figure 5: Rate-distortion curves of various point cloud attribute compression approaches.
The results are evaluated on Human Body (8iVFBv2, Owlii), ScanNet and SensatUrban
datasets.

Our model demonstrates a superior capability in handling point clouds
with intricate textures. Specifically, our model outperform the latest version of
MPEG G-PCC(TMC13v23) with 0.74dB and 0.05dB BD-PSNR improvement
and 17.58% and 1.29% BD-Rate reductions on the longdress and soldier point
clouds, respectively.
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Table 1: Comparison results of the proposed method with the G-PCC and other learning
based methods in terms of BD-PSNR(Y) (dB) and BD-RATE (%).

Dataset Point Cloud
Ours vs G-PCC(TMC13v23) Ours vs Hyper Ours vs Joint

BD-PSNR (dB) ↑ BD-RATE (%) ↓ BD-PSNR (dB) ↑ BD-RATE (%) ↓ BD-PSNR (dB) ↑ BD-RATE (%) ↓

8iVFBv2

longdress +0.74 –17.58 +1.09 -26.81 +0.57 -16.19
loot -1.09 +50.54 +0.60 -17.80 -0.16 +7.59
redandblack -0.66 +24.20 +0.55 -15.43 -0.19 +8.42
soldier +0.05 -1.29 +1.10 -28.66 +0.62 -18.98
Average -0.24 +13.95 +0.84 -22.18 +0.21 -4.79

Owlii

basketball_player -0.23 +9.73 +0.67 -21.14 -0.08 +4.03
dancer -0.42 +14.71 +0.60 -18.92 -0.10 +4.82
exercise -0.55 +28.79 +0.35 -15.16 -0.27 +17.44
model -0.56 +17.01 +0.62 -18.20 +0.10 -2.75
Average -0.44 +17.56 +0.56 -18.36 -0.09 +5.89

ScanNet Average -0.44 +14.63 +1.25 -31.61 +0.25 +18.30
SensatUrban Average +0.70 -17.33 +1.06 -30.27 +0.52 -6.77

The visual quality comparison of the reconstructed results is presented in
Figure 6 and Figure 7. G-PCC is a meticulously designed model renowned
for its outstanding performance in compressing dense point clouds, particu-
larly excelling in smooth scenarios such as human body point clouds (e.g.,
loot). As illustrated in Figure 6, our method achieves visual quality nearly
indistinguishable from MPEG G-PCC (TMC13v23). Additionally, Figure 7
provides a detailed visualization of the longdress point cloud, highlighting the
challenges G-PCC faces when dealing with point clouds containing complex
textures. In contrast, our method effectively encodes point clouds with mil-
lions of points seamlessly, without requiring partitioning, thereby avoiding
blocking artifacts. As a result, the reconstructed attributes generated by our
approach demonstrate competitive perceptual quality, particularly in scenar-
ios with intricate details.
Comparison to other learning based methods. We evaluate our pro-
posed method by conducting a comprehensive comparison with other learning
based point cloud attribute compression methods. These include the evaluat-
ing of performance against the baseline methods developed by Wang et al. [34],
which employ the factorized entropy model referred to as “Factorized”, the
hyperprior entropy model referred to as “Hyper”, and the joint autoregressive
and hyperpriors entropy model referred to as “Joint”, respectively. The R-D
results shown in Figure 5 and the quantitative comparisons presented in Ta-
ble 1 illustrate that our method outperforms “Hyper” across all datasets. We
also present a visual comparison with the “Joint” model in the Figure 6 and
Fig. 7. The results demonstrate that our method achieves more accurate
color reproduction at comparable bitrates, particularly exhibiting superior
clarity in regions where color blocks are adjacent.

In addition, we compared our method with the improved GPCC-based ap-
proach and non-standard entropy model-based approaches. The PDE-Based
method [37], which is an improvement on GPCCv19, introduces a prediction
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Figure 6: Visual quality comparison of the reconstructed point cloud on 8iVFBv2 dataset.

module based on partial differential equations (PDE), optimizing attribute
gradients for prediction and fully utilizing the geometric distribution of adja-
cent regions to enhance point cloud attribute compression performance. The
Progressive method [27], on the other hand, proposes a progressive coding
model that gradually compresses the quantization residuals of the previous
representation, allowing for a step-by-step improvement in the encoding of
point cloud attributes. The R-D results in the Figure 8 show that our method
outperforms both approaches across all datasets.
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Figure 7: Visual quality detail comparison of the reconstructed point cloud on Longdress
from the 8iVFBv2 dataset.

Figure 8: Rate distortion performance with other learning based methods.

5.4 Runtime Comparison

We compare the runtime of different methods in Table 2. For G-PCC, only the
attribute encoding and decoding time are recorded to ensure a fair comparison.
For learning based methods with GPU acceleration, we additionally record
the GPU memory usage and the number of parameters of the network. The
experiments are conducted utilizing an Intel Xeon Silver 4210R CPU and an
NVIDIA Geforce RTX 3090 GPU. Our method achieves remarkable decoding
speed enhancements, with an acceleration of up to 160×. For instance, it
only takes 0.391 seconds to decode a point cloud containing 0.8 million points,
whereas “Joint” requires around 64.079 seconds. Ours-Light shares the same
backbone framework (Transform: L) as “Factorized” and “Hyper”. Compared
to Ours, Ours-Light reduces the encoding time by approximately 13%, and it
also cuts the decoding time by about 7%, while only slightly sacrificing the
BD-PSNR metric.
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Table 2: Complexity and compression performance comparison among different methods
on “longdress” point cloud (Anchor: G-PCC). The “L” denotes a lightweight transform
network comprising of stacked convolutional layers, while “H” represents a heavyweight
network incorporating self-attention layers.

Methods Transform #Param. ↓ GPU Mem. (GB) ↓ Enc. Time (s) ↓ Dec. Time (s) ↓ BD-PSNR (dB) ↑ BD-Rate (%) ↓
G-PCC RAHT - - 0.700 0.509 - -
G-PCC (TMC13v19) RAHT - - 4.281 3.889 +2.12 -45.49
G-PCC (TMC13v23) RAHT - - 5.062 4.315 +2.38 -49.75
Factorized L 3.554M 1.903 0.148 0.153 +1.68 -37.22
Hyper L 8.758M 1.911 0.210 0.192 +2.10 -44.33
Joint (Hyper + Autoregressive) L 9.872M 1.848 0.189 64.079 +2.37 -53.17
Ours-Light w/o Global L 9.872M 1.913 0.313 0.222 +2.17 -45.36
Ours-Light L 18.103M 1.919 0.442 0.362 +2.57 -50.48
Ours H 31.127M 2.491 0.513 0.391 +3.16 -57.90

5.5 Ablation Studies

We compare different entropy models (V1-V5), models with and without the
multi-stage context (MSC) based entropy model (V3-V4), and models with
and without the integration of global context (V4-V5). In addition, we con-
duct ablation studies on various transform networks (V5-V6), specifically, the
lightweight (L) network utilizing only residual convolutional layers and the rel-
atively heavyweight (H) transform network incorporating self-attention layers.
Note that evaluations for V1-V5 are performed on the lightweight network.

The results are presented in Figure 9 and Table 3. Comparing the entropy
models (V1 and V2) with the serial context based entropy model (V3), we
observe that V3 outperforms in terms of BD-PSNR and BD-Rate, albeit with
a longer decoding time. Our proposed grouped context structure efficiently
enhances decoding speed, albeit with a performance reduction (as observed
in V3 and V4). By further incorporating the global hyperprior, the method
V5 achieves comparable compression performance, with 160 times faster de-
coding speed compared to the serial context based entropy model (V3) under
the same transform network. The introduction of the residual blocks and
self attention blocks in the transform network (V6) significantly improves per-
formance, surpassing the gains achieved with V5, which relies solely on the
stacked convolutional layer.

Figure 9: Ablation studies of different entropy models and transform networks on 8iVFBv2
dataset.
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Table 3: Complexity and compression performance comparison result of ablation studies
(Anchor: L+Factorized).

Methods BD-PSNR (dB) ↑ BD-Rate (%) ↓ Dec. Time (s) ↓
L+Factorized (V1) - - 0.153
L+Hyper (V2) +1.22 -31.68 0.192
L+Hyper+Autoregressive (V3) +1.52 -43.80 64.079
L+Hyper+MSC (V4) +1.24 -32.99 0.222
L+Hyper+MSC+Global (V5) +1.52 -37.32 0.362
H+Hyper+MSC+Global (V6) +2.03 -47.07 0.391

6 Conclusion

In this paper, we proposed a lossy parallel point cloud attribute compression
scheme, aimed at enhancing decoding speed while maintaining compression
performance. Our approach introduces a parallel decoding strategy and a
multi-stage context-based entropy model. The parallel decoding strategy in-
volves partitioning the quantized latent feature voxels into non-overlapping
groups, allowing for independent context entropy modeling. By integrating
short-range and long-range dependencies, ParaPCAC achieves significant de-
coding speed and quality enhancements in the multi-scale context based en-
tropy model. Experimental results demonstrate that ParaPCAC outperforms
existing learning-based methods in terms of rate-distortion performance and
decoding latency.
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