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ABSTRACT
Face anti-spoofing (FAS) aims to distinguish live images and facial
spoof attacks to defend facial recognition systems. Thanks to
advancements in deep learning, recent deep learning-based FAS
methods have shown promising potential, especially in effectively
addressing newly developed attacks. In this survey, we first pro-
vide an overview of common challenges in FAS and then recap
recent advances in deep learning-based FAS. In particular, these
anti-spoofing methods generally fall into two main categories, i.e.,
two-class FAS and one-class FAS. Recent two-class FAS methods
have employed a wide range of techniques in developing FAS models,
including auxiliary supervision, local descriptor-enhanced feature
learning, disentangled feature learning, meta learning, adversarial
learning, data augmentation, long-range dependency learning, and
multimodal learning. Meanwhile, recent one-class FAS methods
have utilized reconstruction supervision, statistical learning, and
generative feature learning to learn liveness features solely from live
images. In this survey, we also provide an overview of publicly avail-
able FAS datasets. Finally, we summarize recent FAS development
and highlight some potential future research directions.
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1 Introduction

Ensuring authenticity of detected facial data is key to applications that heavily
rely on facial recognition. Face anti-spoofing (FAS), namely ‘face presentation
attack detection’, ‘3D mask attack detection’ or ‘face liveness detection’, plays a
critical role in defending facial recognition systems against fraudulent attempts
from facial spoof attacks. As illustrated in Figure 1, face anti-spoofing is a
binary classification task that aims to distinguish between live images and
facial spoof attacks. Common facial spoof attacks often include presentation
attacks, such as Print Attack (printing a face on paper) and Replay Attack
(replaying a face video on digital devices), as well as 3D mask attacks (wearing
a mask on a face), as shown in Figure 2. These attacks pose a serious
threat to the security of facial recognition systems. They may diminish the
reliability and effectiveness of facial recognition systems, potentially leading
to unauthorized access or misuse of sensitive information. Therefore, many
recent deep learning-based FAS methods have been developed to counter these
attacks for maintaining the security of facial recognition systems.

Figure 1: Illustration of face anti-spoofing (FAS).

Figure 2: Illustration of live images and facial spoof attacks.
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Recent learning-based FAS methods primarily focused on two settings:
two-class setting, where the training data include both live images and facial
spoof attacks, and one-class setting, where the training data consist only of
live images. To narrow the domain gap between training and testing data,
previous methods have considered different scenarios (as shown in Figure 3),
including domain generalization (DG), domain adaptation (DA), source-free
domain adaptation (SFDA), and test-time adaptation (TTA), to counter newly
developed facial spoof attacks from unseen domains. In particular, most
FAS methods adopted DG scenario to develop a generalized model capable
of learning from multiple source domains. As shown in Figure 3 (a), by
adopting DG scenario, these FAS methods aim to enhance the generalization
capabilities of FAS models across diverse datasets and environmental conditions.
In Figure 3 (b), when the target data are accessible during the training stage,
DA scenario is often employed to facilitate the adaptation of source knowledge
into the target domain. By leveraging DA scenario, FAS models are able
to effectively bridge the domain gap between the source and target datasets,
thereby enhancing the performance and generalization capabilities of the
target domain. In Figure 3 (c), when the source data are inaccessible due
to data privacy concerns, the concept of SFDA has emerged as a solution by
directly fine-tuning a pre-existing off-the-shelf model on the target domain. By
circumventing the need for access to source data during training, SFDA offers a
practical and privacy-preserving alternative for adapting FAS models to specific
target domains. Through this process, the fine-tuned model can better align
with the characteristics and nuances of the target dataset, thereby enhancing
its performance and adaptability in real-world deployment scenarios. In
Figure 3 (b)-(c), both DA and SFDA need to access target data for adaptation
during offline training. However, because collecting all possible attacks during
this stage is impractical and impossible, the pre-adapted model may still
encounter difficulties in detecting unseen attack types. Consequently, FAS
models may require further adaptation during the online inference stage to
effectively detect unseen novel attacks. In contrast to DA and SFDA, TTA
addresses a more realistic scenario where the source domain data are either
inaccessible or no longer available and only an off-the-shelf model is accessible,
as shown in Figure 3 (d). Hence, TTA aims to enable online adaptation of
an off-the-shelf model directly to unlabeled target data during the inference
stage. By leveraging the information of unlabeled target data, TTA adaptively
fine-tune the parameters of FAS models to better align with the specific
characteristics of target data encountered during inference. This dynamic
adaptation process allows FAS models to effectively adapt to unseen attack
types and environmental variations, thereby enhancing its performance and
generalization capabilities in real-world scenarios.

Early FAS datasets primarily consisted of single modality data, i.e., RGB
images. However, as facial spoof attacks have evolved and become more
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Figure 3: Illustration of different cross-domain scenarios in [41]: (a) domain generalization
(DG), (b) domain adaptation (DA), (c) source-free domain adaptation (SFDA), and (d)
test-time adaptation (TTA).

Figure 4: Different modalities of live class (marked by green box) and spoof class (marked
by red box).

sophisticated, there is an increasing demand for datasets that incorporate
multi-modalities to enhance the robustness and effectiveness of FAS systems.
This shift towards multi-modal datasets specifies the limitations of single
modality data in capturing diverse spoof cues and characteristics necessary for
accurate spoofing detection. Some examples of different modalities in FAS are
given in Figure 4 and show distinct characteristics in different modalities. For
example, RGB images offer rich color and detailed textural information, yet
they are highly sensitive to variations in illumination. By contrast, infrared (IR)
images are less affected by illumination changes and are more consistent over
diverse lighting conditions. On the other hand, depth images complementarily
provide structural insights through depth information but usually possess little
detailed textural information present in RGB images. By integrating multiple
modalities, these multimodal FAS datasets offer a more comprehensive and
nuanced representation of facial features, thereby enabling FAS systems to
achieve higher accuracy and reliability.

In this survey, we introduce recent deep learning-based face anti-spoofing
methods following the structure in Figure 5. In Section 1, we first outline
two-class and one-class settings as well as different cross-domain scenarios. In
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Figure 5: Structure of this survey for deep learning-based face anti-spoofing.

Section 2, we introduce common challenges in FAS. Next, we recap recent
two-class FAS methods in Section 3 and one-class FAS methods in Section 4.
In Section 5, we then review several popular datasets and common evaluation
metrics in FAS. Finally, we conclude this survey in Section 6.

Note that, compared to previous FAS surveys [124, 3], which primarily
adopt two perspectives: 1) single versus multi-modalities [124], and 2) passive
versus active approaches based on user interaction requirements [3], this
survey specifically emphasizes the discussion of one-class and two-class settings
in previous FAS works employing similar techniques within these contexts.
In Table 1, we also introduce recent scenarios in FAS, such as source-free
domain adaptation (SFDA) and test-time adaptation (TTA), which have not
been covered in previous surveys. Furthermore, this survey explores common
challenges in FAS and highlights recent advancements, including the application
of vision-language models and acoustic-based features.

To sum up, in this survey:

• We comprehensively cover recent deep leaning-based face anti-spoofing
methods on common two-class and one-class settings as well as cross-
domain scenarios, including domain generalization (DG), domain adap-
tation (DA), source-free domain adaptation (SFDA), and test-time adap-
tation (TTA).
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Table 1: Summary of different scenarios and common benchmarks in face anti-spoofing.

Scenarios Problem Statement Common benchmarks and exemplary methods

Domain
generalization

(DG)

Given the labeled source training data
{XS , YS}, the objective is to train FAS
models that can generalize effectively
to the unlabeled target data {XT }

1. Intra-testing[39, 38, 37]:
Oulu[9], Siw[77]

2. Leave-one-dataset-out cross-testing[40, 42]:
Oulu (O)[9], CASIA-MFSD (C)[135],
Idiap Replay-Attack (I)[15], MSU-MFSD (M)[113]
Protocols: [O, C, M] → I, [O, C, I] → M,
[I, C, M] → O, and [O, I, M] → C

3. Limited source cross-domain testing[40, 42]:
Oulu (O)[9], CASIA-MFSD (C)[135],
Idiap Replay-Attack (I)[15], MSU-MFSD (M)[113]
Protocols: [M, I] → C and [M, I] → O

Domain
adaptation

(DA)

Semi-domain
adaptation

(SDA)

Given the labeled source training data
{XS , YS}, the partially labeled target

training data {XTa , YTa}, and the
unlabeled target data {XTb}, the
objective is to train FAS models
that can effectively adapt to the
unlabeled target data {XTb}.

1. Cross-dataset testing[47]:
CASIA-MFSD (C) [135], Idiap Replay-Attack (I)[15],
MSU-MFSD (M) [113]
Protocols: C → I, C → M, I → C, I → M,
M → C, M → I

Unsupervised
domain

adaptation
(UDA)

Given the labeled source training data
{XS , YS} and the unlabeled target
data {XT }, the objective is to train

FAS models that can effectively adapt
to the unlabeled target data{XT }.

1. Leave-one-dataset-out cross-testing[106, 14]:
Oulu (O)[9], CASIA-MFSD (C) [135],
Idiap Replay-Attack (I)[15], MSU-MFSD (M) [113]
Protocols: [O, C, M] → I, [O, C, I] → M,
[I, C, M] → O,[O, I, M] → C

2. Limited source cross-domain testing[14]:
CASIA-MFSD (C) [135], Idiap Replay-Attack (I)[15],
MSU-MFSD (M) [113]
Protocols: [M, I] → C, [M, I] → O

3. Cross-dataset testing[58]:
Oulu (O)[9], CASIA-MFSD (C) [135],
Idiap Replay-Attack (I)[15], MSU-MFSD (M),
Protocols: C → I, C → M, C → Y,
I → C, I → M, I → Y, M → C, M → I,
M → Y, Y → C, Y → I, Y → M

Source-free
domain

adaptation
(SFDA)

Given the off-the-shelf FAS models
and unlabeled target data {XT },

the objective is to train FAS models
that can effectively adapt to the

unlabeled target data {XT }.

1. Leave-one-dataset-out cross-testing:
(A). Oulu (denotes as O)[9], CASIA-MFSD (C) [135],
Idiap Replay-Attack (I)[15], MSU-MFSD (M) [113]
Protocols: [O, C, M] → I, [O, C, I] → M,
[I, C, M] → O,[O, I, M] → C
(B). Oulu (O)[9], Siw (S) [77],
HKBU-MARs (H)[76], Siw-M (M) [79]
Protocols: [O, M, H] → S, [O, S, H] → M,
[M, S, H] → O,[M, S, O] → H

Test-time
adaptation

(TTA)

Given the off-the-shelf FAS models
and the mini-batch of unlabeled target

data {Xt1},the objective is to train FAS
models that can effectively adapt to
the unlabeled target data{Xt1} and
directly make reliable prediction.

1. Unseen attack testing[41]:
OULU-NPU(O)[9], CASIA-MFSD (C)[135],
MSU-MFSD (M)[113], Idiap Replay-Attack (I)[15],
3DMAD (D)[20], HKBU-MARs (H) [76]
Protocols: [O, C, I] → [M, D, H], [O, M, I] → [C, D, H],
[O, C, M] → [I, D, H],[I, C, M] → [O, D, H]

2. Leave-one-attack-out testing[41]:
Oulu(O)[9], CASIA-MFSD (C)[135],
MSU-MFSD (M)[113], Idiap Replay-Attack (I)[15],
3DMAD (D)[20], HKBU-MARs (H) [76]
Protocols :[O, M, I] → [C, D, H],[C, D, H] → [O, M, I]

Few-shot

Given the labeled source training data
{XS , YS} and a limited set of k labeled
target training data {XTa , YTa}, the
objective is to train FAS models that
can effectively adapt to the unlabeled

target data {XTb}.

1. Leave-one-dataset-out cross-testing[40, 42]:
Oulu (O)[9], CASIA-MFSD (C)[135],
Idiap Replay-Attack (I)[15], MSU-MFSD (M)[113]
Protocols: [O, C, M] → I, [O, C, I] → M,
[I, C, M] → O, [O, I, M] → C

2. Limited source cross-domain testing[40, 42]:
CASIA-SURF (S)[130], CASIA-CeFA (C)[68],
WMCA (W)[29]
Protocols: [C, S] → W, [S, W] → C, [C, W] → S
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• We introduce common challenges in FAS and summarize the techniques
adopted in both two-class and one-class FAS methods.

• We review popular datasets and evaluation metrics in FAS, and point
out future research directions towards countering ever-evolving facial
spoof attacks.

2 Common Challenges in FAS

There are three common challenges in face anti-spoofing. The first one is the
issue of similar visual appearance. As shown in Figure 6, we see that genuine
live faces, i.e., Figure 6 (a) and facial print attacks, i.e., Figure 6 (b)-(c), may
visually resemble each other, thereby posing challenges for accurate classifi-
cation. Because live and spoof faces are visually similar, face anti-spoofing
often requires a more delicate representation to characterize intrinsic features
associated with facial spoof attacks compared to other image classification
tasks. Next, the second challenge concerns the problem of subtle spoof cues.
Figure 6 shows that facial spoof attacks involve subtle spoof cues, such as the
grid artifacts of facial print attacks in Figure 6 (b) and the moiré patterns of
facial replay attacks in Figure 6 (c), which are imperceptible to human eyes.
Therefore, face anti-spoofing is a nontrivial task that needs to capture subtle
spoof cues for distinguishing live images from facial spoof attacks. Finally,
the third challenge arises from the absence of prior knowledge about unseen
attack types. Similar to most deep learning-based tasks, the effectiveness of
deep learning-based FAS heavily depends on the quantity and quality of the
labeled training dataset, which serves as the foundation for model training
and generalization. However, as facial spoof attacks continue to evolve and
become increasingly sophisticated, FAS detectors struggle to keep pace with
the rapid emergence of new and unseen attack variations.

3 Two-class Face Anti-spoofing Methods

Following the structure in Figure 5, in this section, we review recent two-class
deep learning-based FAS methods and their adopted techniques, including
auxiliary supervision, local descriptor-enhanced feature learning, disentangled
feature learning, meta learning, adversarial learning, data augmentation, long-
range dependency learning, unified attack detection and multi-modalities
feature learning.
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(a) (b) (c)

Figure 6: Examples of facial images and their low-level feature maps from [42], (a) genuine
live images without spoof cues, (b) facial print attacks with grid artifacts, and (c) facial
replay attacks with moiré patterns.

3.1 Auxiliary Supervision

Integration of auxiliary information, such as facial depth maps [39, 77, 94, 122,
111, 52, 106, 49], Remote Photoplethysmography (rPPG) signals/maps [39,
121, 75, 60, 74], reflection maps [51, 132, 122], attention maps [42], moire maps
[8], frequency maps [24], and paired captions [97], has emerged as a successful
strategy in enhancing the supervision of live/spoof classification in FAS. By
incorporating these additional sources of information, FAS models are able to
leverage a more comprehensive understanding of facial cues and characteristics
to improve their accuracy and robustness in distinguishing between genuine
live faces and facial spoof attacks.

3.1.1 Depth supervision

Intuitively, live faces exhibit natural depth variations that can be perceived
visually or through depth maps to reflect three-dimensional structure of faces.
In contrast, certain spoof attacks, such as replay attacks, often lack these
depth variations and may appear planar or artificially uniform in depth. This
difference in depth serves as a distinguishing characteristic between genuine
live faces and spoof attacks in FAS. By leveraging depth characteristics, the
authors in [39, 77, 94, 122, 111, 52, 106, 49, 138] proposed to adopt depth
supervision to enable the identification of facial spoof attacks through detecting
unnatural or uniform depth information.

3.1.2 rPPG signal/map supervision

Live faces typically exhibit natural Remote Photoplethysmography (rPPG)
signals, reflecting subtle changes in skin color caused by blood flow. These
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physiological responses indicate characteristics of genuine faces. In contrast, fa-
cial spoof attacks, such as those involving 3D masks and printed papers/photos,
often lack rPPG signal responses, because non-biological materials used in
facial spoof attacks do not possess the physiological properties of genuine
rPPG signals. Therefore, the authors in [39, 121, 75, 60, 74] proposed to detect
the absence or abnormality of rPPG signal responses to distinguish live faces
and facial spoof attacks.

3.1.3 Other auxiliary supervision

In addition to depth information and rPPG responses, recent FAS methods
focused on exploring various auxiliary information from different perspectives
to enhance FAS. For example, the authors in [51, 132, 122] proposed to estimate
highlight surface reflections on faces to help detecting spoofing materials or
artifacts that may distort the reflection patterns observed in genuine facial
images. Next, in [42], the authors proposed adopting attention maps to
provide regional indications of where the attacked regions are located, offering
FAS models additional guidance with fine-grained information. Furthermore,
the authors in [8] proposed to generate moiré pattern maps to guide FAS
model in effectively countering replay attacks. In [57], the authors proposed
cross-stage relation enhancement and spoof material perception to improve
feature extraction across model stages. Moreover, the authors in [24] proposed
adopting Discrete Cosine Transform (DCT) to decompose the frequency map
from input images into auxiliary inputs, aiming to mitigate the sensitivity
of FAS models to variations in capture environments (e.g., sensors or light
conditions). In addition, thanks to the rapid development of language models,
some recent methods [71, 97, 21] have incorporated vision-language models,
such as CLIP [90], to facilitate the learning process of FAS models. CLIP
(Contrastive Language-Image Pretraining) is a multimodal model that learns
joint representations of images and text and is able to understand semantic
relationships between visual and textual inputs. By leveraging CLIP or similar
language models, the authors in [71, 97, 21] proposed to enhance the ability of
FAS to discern between genuine live faces and spoof attacks by facilitating the
understanding of contextual information associated with facial images.

3.2 Local Descriptor-enhanced Feature Learning

To capture subtle spoof cues, several authors in recent FAS methods [127,
126, 125, 109, 122, 13, 42, 38, 138] have proposed integrating predefined or
learnable descriptors into vanilla convolutional architectures. This integration
aimed to capture gradient-level information within facial images for enhancing
the representation capability of FAS models.
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3.2.1 Pre-defined local descriptors

In [127, 126, 125, 109, 122, 13], the authors proposed including predefined
descriptors into vanilla convolution, e.g., Central Difference Convolution [127,
126], Dual-cross Central Difference Convolution [125], Sobel Convolution [109],
Bilateral Convolution [122], and Eight-Direction Differential Convolution [13],
to capture gradient information of subtle spoof cues to learn discriminative
liveness features for FAS.

3.2.2 Learnable local descriptors

While previous methods [127, 126, 125, 109, 122, 13, 42, 38, 138] have integrated
various local descriptors to enhance conventional convolutional approach, it is
noteworthy that these local descriptors remain fixed and are not updated during
model training. As noted in [42], the predefined and unlearnable descriptors
lack flexibility in capturing diverse textural features, thereby limiting their
applicability in FAS. Therefore, instead of predetermining the descriptor,
in [42, 38, 138], the authors proposed including learnable descriptors into
vanilla convolution, such as Learnable Descriptive Convolution [42], Decoupled-
Learnable Descriptive Convolution [38], and Dynamic Kernel Generator [138].

3.3 Disentangled Feature Learning

In FAS, disentangled feature learning aims to separate or disentangle the
underlying representation of liveness and domain information in facial images.
By disentangling these factors, FAS models in [80, 78, 50, 134, 105, 36, 112,
40, 114, 34, 104, 129] are able to better understand the essential liveness fea-
tures associated with genuine live faces and facial spoof attacks. This feature
disentanglement facilitates more effective and accurate classification by reduc-
ing the interference caused by domain-specific variations, thus enhancing the
robustness and generalization capability of FAS models. Through disentangled
feature learning, FAS models are able to focus on capturing intrinsic charac-
teristics of live faces while disregarding irrelevant domain-specific variations
to increase the performance in detecting facial spoof attacks. In addition, in
[36, 112, 40], the authors proposed adopting disentangled feature learning to
augment spoof training data toward unseen domains. Similarly, in [117], the
authors proposed using finer domain partition to disentangle liveness-irrelevant
factors.

3.4 Meta Learning

Meta learning aims to train models to quickly adapt and learn generalized
features from limited data samples. In [95, 88, 14, 45, 52, 106], the authors
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proposed adopting meta learning to enable FAS models to effectively generalize
its knowledge and adapt to unseen spoofing attacks during inference. When
addressing the domain generalization issue via meta learning, it is necessary
to ensure that the meta-optimization successively leads to stable directions
towards the well-generalized model. However, as observed in [95], because of
simple binary live/spoof ground-truth labels and the domain shift, the vanilla
meta-learning directions are prone to be arbitrary during the meta-train and
meta-testing steps. Therefore, the authors in [95, 14, 45, 52, 106, 11] proposed
adopting external depth supervision or learned pattern, such as Meta Patterns
to provide fine-grained information to regularize the meta learning for finding
generalized FAS models.

3.5 Adversarial Learning

Adversarial learning aims to introduce adversarial examples or perturbations
during the training process to enhance the robustness of models. By exposing
the FAS models to these intentionally crafted challenging examples, which are
designed to fool the FAS models, adversarial learning in [137, 94, 30, 34, 48]
encouraged the FAS models to learn robust liveness features to improve the
generalization ability of FAS models across diverse conditions and environments.
For example, in [94], the authors proposed to adopt adversarial learning to learn
generalized feature space from multiple source domains. Next, the authors in
[137] proposed adopting adversarial learning to align the liveness features across
various facial regions to effectively handle domain discrepancies. Furthermore,
in [30], the authors proposed adopting adversarial learning to transfer the
knowledge from teacher models to enhance the FAS models. Moreover, the
authors in [34] proposed adopting adversarial learning to disentangle the
spoof-specific and domain-specific features, and then mixing different spoof-
specific and domain-specific features to generate new samples. Finally, the
authors in [48] proposed adopting adversarial learning to align the conditional
distributions across domains to learn domain-invariant conditional features.

3.6 Data Augmentation

Data augmentation in FAS involves applying various transformations and
techniques to increase the diversity and volume of the training data at both
the image-level [107, 32, 81, 118, 36, 103] and feature-level [40, 112, 105].
In [118], the authors proposed combining two images to simulate reflection
artifacts. Also, the authors proposed using color distortion [107, 32] and
weak augmentation [81, 103] to enlarge the training data. Furthermore, the
authors in [36] proposed to learn disentangled features and then to generate an
augmented spoof dataset via reconstructing images by remixing disentangled
features. In addition, the authors in [112, 105] proposed swapping disentangled
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features to augment the training data in the feature space; and the authors
in [40] proposed to enrich the diversity of liveness features and to enlarge
the generalization ability of domain features before generating the augmented
features.

3.7 Long-range Dependency Feature Learning

With the great success of convolutional neural networks (CNNs) in many
computer vision tasks, CNN-based methods have become a favorite in face
anti-spoofing. However, the limited receptive field of convolutional operations
in CNNs restricts their ability to capture global context and long-range depen-
dencies from images. To address this limitation, many recent face anti-spoofing
methods [62, 28, 67, 38, 35, 110, 70, 64] have adopted Vision Transformers
(ViTs) as their backbone to model long-range pixel dependencies. This en-
ables them to learn more comprehensive and distinguishing features between
live and spoof faces. By leveraging the self-attention mechanism inherent
in transformers, ViTs are able to effectively capture intricate patterns and
relationships across different patches within the whole image. Although this
capability allows modeling long-range data dependency, ViTs may not ade-
quately capture the local intrinsic features crucial for FAS, e.g. fine-grained
textures. This limitation comes from that ViTs emphasize global context but
potentially overlook detailed local features.

Therefore, the authors in [38] proposed to combine CNNs and ViTs to bal-
ance the tradeoff between receptive field size and local feature capabilities from
both architectures on modeling long-range and distinguishing characteristics
of FAS. In addition, in [12], the authors proposed to integrate the histogram
information of transformer tokens into ViT to learn more domain-invariant
feature representations.

3.8 Unified Attack Detection

In [139], the authors proposed integrating SoftMoE into CLIP’s image encoder
to enhance its capacity for handling the sparse feature distribution in unified
attack detection (UAD) tasks, thereby reducing the gap between physical
attack detection (PAD) and digital attack detection (DAD). In particular, they
proposed replacing SoftMoE’s traditional weighting mechanism with linear
attention to improve the model’s ability to handle both physical and digital
attacks within a unified framework. Next, in [96], the authors proposed a
new benchmark to evaluate the effectiveness of multi-modal face anti-spoofing
models in detecting both physical and digital attacks. In [23], the authors
also proposed adopting vision-language models (VLMs) to learn joint and
category-specific knowledge for Unified Attack Detection. Furthermore, the
authors in [128] provided a large-scale dataset (UniAttackData) to facilitate the
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research of Unified Attack Detection. In [32], the authors proposed simulating
the color distortions of print attacks, the moire patterns of replay attacks,
the facial artifacts of digital forgery, and the gradient noises of adversarial
attacks to augment training samples for detecting both physical and digital
attacks. Moreover, the authors in [121] proposed using both visual appearance
and physiological rPPG cues to develop a joint detection framework for face
spoofing and forgery. Finally, in [53], the authors proposed incorporating
various auxiliary information, such as remote physiological signals and pseudo
depth maps, to improve detection performance of unified attack detection.

3.9 Multi-modalities Feature Learning

3.9.1 Modalities between images

With the advance of spoofing attacks, many methods [123, 69, 27, 108, 67, 70,
19, 101, 59, 64, 69, 120, 31, 65] are developed to improve the performance of
FAS models by incorporating modalities other than RGB, mainly infrared and
depth images. In [123], the authors extended their previous single modality
CDCN to a multi-modal CDCN, with each modality having its own branch to
learn modality-aware features independently. The authors in [69] proposed an
adversarial framework to translate features across modalities to enhance the
performance through cross-modality translation. In [120], the authors proposed
integrating Vision Transformers and Masked Autoencoders to enhance multi-
modal feature extraction to develop more generalized FAS models that perform
effectively across diverse environments. In [31], the authors proposed exploring
hyperbolic space to enhance feature separability and cross-modal robustness.
In [65], the authors proposed a dual cross-attention mechanism combined
with a semi-fixed mixture-of-expert strategy to improve generalizability across
multiple modalities in face anti-spoofing tasks.

The authors in [27] used a different approach by proposing the use of
cross-modal focal loss to modulate the contribution of different modalities
and to learn their complementary information. Using the design of Conv-
MLP [108], the authors proposed to extract local and long-range depended
features and also designed a novel moat loss to improve the extraction of
discriminative features by preventing the blindly clustering of spoof features.
In [59], the authors implemented a novel design of cross-modality fusion module
to encourage the extraction of complementary features between modalities.
The authors in [19] used dual-stream fusion method to fuse both infrared
and surface normal map created using depth images, in which one stream
focuses on extracting complementary global features, while the other extracts
complementary fine-grained features.

On the other hand, because most previous multi-modal methods require
the existence of training modalities during inference, the authors in [70, 67, 64]
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proposed a practical setting of flexible modal, in which the modal is capable of
inferencing even when one or more modalities are absent. In [70] the authors
proposed a novel cross-modal attention module to extract modality-agnostic
feature learning and to mine informative patches. In addition, the authors [70]
also implemented separate classification heads for each modality. Similarly, the
same authors in [67] proposed to use another cross-modal attention module to
extract both modality-agnostic and complementary liveness features across
modalities. The authors in [64] proposed to reduce the effect of unreliable
features within each modality using cross-modality adapter to ensure the
contribution of each modality during inference by using the gradient modulation
strategy.

Recent advancements have further focused on addressing the challenge of
missing modalities by utilizing visual prompts [119, 66]. In [119], the authors
proposed leveraging visual prompts and residual contextual prompts to adapt
models to varying modality availability without requiring extensive re-training,
significantly improving robustness under missing-modality scenarios. Similarly,
In [66], the authors proposed adapting cross-modal learning and language-
guided prompts to dynamically adjusts visual features for handling missing
modalities.

3.9.2 Acoustic-based features

Although modalities like IR and depth have proven effective in countering
many types of attacks, they come with significant limitations. Each of these
modalities requires specialized sensors for data capture, which are often not
available on most face recognition devices. In addition, the variation in sensor
design across different devices leads to inconsistencies between datasets, limiting
the scalability and broader adoption of these modalities. To address these
limitations, the authors in [136, 55, 54, 116] proposed using acoustic-based
features, where echoed audio signals are utilized to capture facial characteristics
and detect subtle variations in facial geometry. In [136], the authors proposed
combining acoustic and visual features for user authentication. They used
audio signals to capture 3D facial geometry and fuse these with visual features
from CNNs to improve robustness against spoofing attempts. The authors in
[55] presented Echo-FAS, an acoustic-based Face Anti-Spoofing system that
uses a smartphone’s speaker and microphone to emit and capture signals
reflecting off the user’s face, providing a cost-effective and secure alternative
to traditional RGB-based systems. Their experiments show that Echo-FAS
achieves nearly 99% AUC performance and can enhance liveness detection when
combined with RGB models, mitigating domain gaps effectively. Continuing
their previous work [54], the authors introduced M3FAS, a multimodal face
anti-spoofing system that combines RGB data with acoustic signals to enhance
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the accuracy and robustness of Presentation Attack Detection (PAD). They
employ a hierarchical cross-attention module and a multi-head learning strategy,
demonstrating through extensive experiments that this system can effectively
mitigate overfitting, improve detection performance, and operate flexibly even
under challenging conditions like missing modalities or poor-quality inputs.
Lastly, the authors in [116] introduced AFace, an authentication system that
effectively addresses the shortcomings of previous methods, which often focus
on preventing 2D attacks but are vulnerable to 3D spoofing using printed
models. AFace utilizes acoustic sensing with an iso-depth model that links
acoustic echoes to facial structures, allowing it to distinguish between genuine
users and 3D attacks. Its range-adaptive algorithm enhances flexibility by
compensating for distance variations.

3.10 Other Two-class FAS Methods

Some other FAS methods have explored various techniques, including live-spoof
transition alignment [99] , triplet mining [94, 42, 46], continual learning [93,
10], patch learning [133, 81, 103], and transfer learning [131, 89] and differ-
ent settings, including test-time adaptation (TTA) [41], source-free domain
adaptation (SFDA), and few-shot learning [35] to enhance the effectiveness
and robustness of spoof detection.

In [99], the authors proposed to learn the live-to-spoof transition for
generalized FAS. Next, in [94], the authors utilized triplet mining to ensure
the closeness of liveness features within and across domains in comparison
to the distace to spoof features. The authors in [46] focused on extracting
domain-invariant features by clustering live features from various domains and
by pushing them away from spoof features. Similarly, in [42], the authors
focused on clustering live features, and additionally used attack type labels to
cluster spoof features to learn a more refined feature representation.

To tackle the challenge of unseen data from new sources, the methods [93,
10] proposed to incorporate continual learning into face authentication systems
(FAS) to store domain information while adapting to new domains. In [93], the
authors designed a neural network with mechanisms to identify emerging types
of attacks by managing confidence for novel inputs and updating the model
with new data without losing information on past threats. In [10], the authors
introduced novel convolutional adapters to enhance domain adaptation and
proposed a contrastive regularization to prevent catastrophic forgetting by
leveraging previous domain knowledge through proxy prototypes.

Since facial structures are generally irrelevant to the performance of face
authentication systems (FAS) and may even cause difficulties, the methods
[133, 81, 103] proposed to focus on image patches so as to alter the facial
structure. Specifically, the authors in [133] proposed to permute and remix
patches from separate classes and domains so as to ensure reliable extraction
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of discriminative features. In [81], the authors introduced to merge patches of
transformed images to generate identity-agnostic features for better mining
spoof features. Also, in [103], the authors redefined FAS as a fine-grained
patch-type recognition system and proposed to capture spoof-related features.

To address FAS in test-time adaptation scenarios, the authors in [41]
focused on online adaptation using an off-the-shelf model without accessing
to labeled or source data. The 3A-TTA method in [41] proposed to select
reliable features and employ these features within an anti-forgetting framework.
Additionally, they introduced a novel contrastive learning constraint to enhance
the learning of distinct feature representation.

In [35], the authors simulated another real-world scenario and addressed a
few-shot domain adaptation. That is, only a few samples of the target domain
are available to adapt the model. The authors in [35] proposed using a frozen
ViT and ensemble adapters during adaptation to maintain the stability of ViT
while promoting the learning of diverse features within the ensemble adapters.
To further enhance the training process, they also introduced feature-level
augmentation using Feature-Wise Transformation to increase the diversity of
training samples.

4 One-class Face Anti-spoofing Methods

In this section, we introduce recent one-class FAS methods that utilize various
techniques, such as reconstruction-based feature learning [43, 63], statistical
learning [84], and synthetic/generative feature learning [83, 4, 37].

In [43, 63], the authors proposed to reconstruct facial images to learn
liveness information. However, due to the absence of facial spoof training
images, one-class FAS models may simply learn some general facial features
rather than the genuine liveness features. The authors in [84] then proposed
adopting Gaussian Mixture Models (GMMs) to learn the distribution of live
images by using the features of Image Quality Measures introduced in [113]
for learning GMMs. Moreover, the authors in [83, 4] proposed to mix the
sampled Gaussian noises with the liveness features of live images to synthesize
pseudo spoof features. Nevertheless, since mixing Gaussian noises into the
liveness features is far from enough to mimic the spoof latent features, the
performance of this one-class FAS method seemed limited. Therefore, the
authors in [37] proposed to adopt generative feature learning to generate latent
spoof features. In particular, because live images exhibit no spoof cues and
spoof images should exhibit visible spoof cues, the authors in [37] proposed to
adopt non-zero pseudo spoof cue maps to generate pseudo latent spoof features
to facilitate the learning of one-class FAS. Furthermore, the authors in [61]
proposed a knowledge distillation approach, where a teacher network trained on
large datasets transfers knowledge to a student network which enable effective
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one-class learning in FAS by distilling spoof information without requiring
explicit spoof examples during training.

5 Face Anti-spoofing Datasets and Evaluation Metrics

In this section, we introduce recent FAS datasets, including both single modality
and multi-modality datasets.

5.1 Single Modality FAS Datasets

Table 2 summarizes single modality FAS datasets, which typically consist of
RGB images, including both low-resolution RGB images [100, 86, 135, 15,
56, 113] and high-resolution RGB images [135, 87, 18, 76, 85, 82, 9, 58, 77,
44, 79, 102, 132, 2, 126, 72]. Grayscale images [86, 56] are more common in
early single modality datasets, while color images [100, 135, 15, 113, 87, 18,
76, 85, 82, 9, 58, 77, 44, 79, 102, 132, 2, 126, 72] are more prevalent in recent
single modality datasets. In addition, with the development of facial spoofing
attacks, more realistic 3D mask attacks [56, 76, 82, 79, 132, 126] are becoming
more popular.

5.2 Multi-modalities FAS Datasets

While FAS methods using RGB images have achieved promising results, single-
modality FAS methods still find difficulties in challenging environments, be-
cause RGB images are inherently sensitive to varying lighting conditions.
Hence, recent multimodal FAS methods adopted multi-modality cameras to
capture different modalities, including RGB images, infrared (IR) images,
depth images, thermal images, and spectroscopic images, to enhanc security in
face recognition systems. As shown in Table 3, the most common modalities in
multimodal FAS datasets include RGB images, IR images, and depth images.
RGB images, in comparison to depth images, provide more detailed textural
information but offer less structural depth information; and in comparison to
IR images, RGB images provide richer color information but are more sensitive
to illumination changes under various lighting conditions.

Similar to single-modality FAS datasets, the majority of multi-modal FAS
datasets include RGB modality [1, 6, 7, 130, 29, 68, 33, 93, 20, 26, 98, 17, 115],
and only few exceptions [91, 73] consist of only the light field modality. Also,
some of the multi-modality datasets are captured in low-resolution [6, 20, 91,
26, 98, 115] and high-resolution [1, 7, 130, 29, 68, 33, 93, 17, 73] formats.

The second most prevalent modality is IR, including both near infrared
(NIR) [1, 6, 7, 130, 29, 68, 33, 93, 17, 115] and shortwave infrared (SWIR)
[33, 93, 98]. Depth modality is also widely represented within many datasets
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Table 2: Single modality FAS datasets.

Dataset Year
Image(I)/
Video(V)

High(H)-/
Low(L)-resolution

Color(C)/
Grayscale(G)

Live/
Spoof Device

Print(P)/Replay(R)/
Waxworks(W) /

3D mask(M) attacks
NUAA[100] 2010 I L (640 × 480) C 5105/7509 Webcam P (flat, wrapped)

YALE_Recaptured[86] 2011 I L (64×64) G 640/1920 Kodak C813
Samsung Omnia i900 P (flat)

CASIA-MFSD[135] 2012 V L (640×480)
H (1280×720) C 150/450 USB camera

Sony NEX-5
P (flat, wrapped, cut)

R (tablet)

REPLAY-ATTACK[15] 2012 V L (320×240) C 200/1000 Apple Macbook Air webcam P (flat)
R (tablet, phone)

Kose and Dugelay[56] 2013 I L G 200/198 / M (hard resin)

MSU-MFSD[113] 2014 V L (640×480,
720×480) C 70/210 Apple Macbook Air webcam

Google Nexus 5 (frontal)
P (flat)

R (tablet, phone)

UVAD[87] 2015 V H (1366×768) C 808/16268

Sony CyberShot DSC-HX
Canon PowerShot SX1 IS

Nikon Coolpix P100
Kodak Z981

Olympus SP 800UZ
Panasonic FZ35

R (monitor)

REPLAY-Mobile[18] 2016 V H (720×1280) C 390/640 Apple iPad Mini 2
LG G4

P (flat)
R (monitor)

HKBU-MARs V2[76] 2016 V
H (1280×720,

800×600,
1920×1080)

C 504/504

Logitech C920
Industrial Camera
Canon EOS M3
Google Nexus 5

iPhone 6
Samsung S7

Sony Tablet S

M (hard resin)

MSU USSA[85] 2016 I H (1280×960,
3264×2448) C 1140/9120 Google Nexus 5 (frontal, rear)

Others (collected online)
P (flat)

R (laptop, tablet, phone)
SMAD[82] 2017 V H C 65/65 / M (silicone)

OULU-NPU[9] 2017 V H (1920×1080) C 720/2880

Samsung Galaxy S6 edge
HTC Desire EYE

MEIZU X5
ASUS Zenfone Selfie

Sony XPERIA C5 Ultra Dual
OPPO N3

P (flat)
R (phone)

Rose-Youtu[58] 2018 V H (640×480,
1280×720) C 500/2850

Hasee smartphone
Huawei smartphone

iPad 4
iPhone 5s

ZTE smartphone

P (flat)
R (monitor, laptop)

M (paper)

SiW[77] 2018 V H (1920×1080,
1280×720) C 1320/3300 Logitech C920 webcam

Canon EOS T6
P (flat, wrapped)

R (phone, tablet, monitor)

WFFD[44] 2019 I,V H C 2300/2300 (I)
140/145 (V) Others (collected online) W (wax)

SiW-M[79] 2019 V H (1920×1080,
1280×720) C 660/968 Logitech C920 webcam

Canon EOS T6

P (flat)
R (phone, tablet, monitor)

M (hard resin, plastic,
silicone, paper,

mannequin)
Makeup (cosmetics,

impersonation, obfuscation)
Partial (glasses, cut paper)

Swax[102] 2020 I,V H C 110 (I)
1812 (V) Others (collected online) W (wax)

CelebA-Spoof[132] 2020 I H C 156384/ 469153 10 sensors
P (flat, wrapped)

R (monitor, tablet, phone)
M (paper)

RECOD-
Mtablet[2] 2020 V H (1920×1080) C 450/1800 Moto G5

Moto X Style XT1572
P (flat)

R (monitor)

CASIA-SURF
3DMask[126] 2020 V H (1280×720) C 288/864

Apple
Huawei

Samsung
M (plaster)

HiFiMask[72] 2021 V H C 13650/40950

iPhone11
iPhoneX

MI10
P40
S20
Vivo
HJIM

M (transparent, plaster, resin)

SuHiFiMask[22] 2022 V H C 10195/101 Surveillance cameras M(Resin, plaster,
silicone, paper)

CelebA-Spoof-Enroll[5] 2022 I H C 156384/ 469153 10 sensors
P (flat, wrapped)

R (monitor, tablet, phone)
M (paper)
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Table 3: Multi modality FAS datasets.

Dataset Year
Image(I)/
Video(V)

High(H)-/Low(L)-
resolution Modalities

Live/
Spoof Device

Print(P)/Replay(R)/
3D mask(M) attacks

3DMAD [20] 2014 V L (640×480) VIS
Depth 170/85 Kinect M (paper, hard resin)

GUC-LiFFAD [91] 2015 V L (1080×1080) Light field 1798/3028 Lytro Light Field Camera P (flat)
R (tablet)

3DFS-DB [26] 2016 V L (D:640×480,
VIS:1280x960)

VIS
Depth 260/260 Kinect,

Carmine 1.09 M (plastic)

BRSU [98] 2016 I L (636×508) VIS
SWIR 102/404 / M (silicon, plastic,

resin, latex)

Msspoof [17] 2016 I H (1280x1024) VIS
NIR 1470/3024 uEye camera P (flat)

MLFP [1] 2017 V
H (VIS:1280×720)
L (NIR:424×512,
Thermal:640×480)

VIS
NIR

Thermal
150/1200

Android smartphones,
FLIR ONE,

Kinect
M (latex, paper)

ERPA [6] 2017 V L (640×480)

VIS
Depth
NIR

Thermal

Total 86
Xenics Gobi,

Thermal camera,
Intel Realsense SR300

P (flat)
R (monitor)

M (resin, silicone)

CSMAD [7] 2018 V+I
H (VIS:1920×1080)

L (Depth, NIR:640×480,
Thermal:320×240)

VIS
Depth
NIR

Thermal

104/159 Intel RealSense SR300,
Seek Thermal Compact PRO M (silicone)

LF-SAD [73] 2019 I H (2450x1634) Light field 328/596 Lytro ILLUM camera P (flat, wrapped)
R (monitor)

3DMA [115] 2019 V L (640×480) VIS
NIR 536/384 AuthenMetric binocular camera M (plastics)

CASIA-SURF [130] 2019 V H (VIS:1280×720),
L (Depth, NIR:640×480)

VIS
Depth
NIR

3000/18000 Intel RealSense SR300 P (flat, wrapped, cut)

WMCA [29] 2019 V
H (1920×1080,

1260×720)
L (Thermal:320×240)

VIS
Depth
NIR

Thermal

347/1332 Intel RealSense SR300,
Seek Thermal Compact PRO

P (flat)
R (tablet)

M (plastic, silicone,
paper, mannequin)
Partial (glasses)

HQ-WMCA [33] 2020 V H (1920×1200)

VIS
Depth
NIR

SWIR
Thermal

555/2349 /

P (flat)
R (tablet, phone)
M (plastic, silicon,
paper, mannequin)

Makeup
Partial (glasses, wigs, tatoo)

CeFA [68] 2021 V H (1280×720)
VIS

Depth
NIR

6300/27900 Intel RealSense
P (flat, wrapped)

R
M (print, silica gel)

PADISI [93] 2021 V H (1984×1264)

VIS
Depth
NIR

SWIR
Thermal

1105/924 /

P (flat)
R (tablet, phone)
M (plastic, silicon,

transparent, mannequin)
Makeup

Partial (glasses,funny eye, tatoo)

because of its effectiveness in tackling replay and print attacks [6, 7, 130, 29,
68, 33, 93, 20, 26]. Another popular modality is thermal imaging, which is
difficult to emulate on most surfaces due to skin temperature variations [1, 6,
7, 29, 33, 93].

Compared to single-modality datasets, multi-modality datasets provide
more comprehensive information and enable more reliable FAS detection.
Consequently, most multi-modality datasets are prepared to handle a wider
variety of attack types, enhancing their robustness and effectiveness in real-
world applications. Notably, datasets such as [1, 6, 29, 68, 33, 93, 20, 26, 98,
115] include more challenging 3D mask attacks. Additionally, the datasets [29,
33, 93] feature partial attacks, and the dataset [29] even includes an additional
makeup attack.



20 Huang et al.

5.3 Evaluation Metrics

In the field of face anti-spoofing (FAS), several key metrics are used to evaluate
how effectively systems can differentiate between real users and spoofing
attempts. Two foundational measures are the False Rejection Rate (FRR)[16],
which tracks the percentage of legitimate users wrongly rejected, and the
False Acceptance Rate (FAR) [25], which shows how often spoof attacks
are incorrectly accepted. Common metrics for both intra- and cross-dataset
evaluations include the Half Total Error Rate (HTER)[16], Equal Error Rate
(EER)[92], and Area Under the Curve (AUC). HTER is calculated as the
average of FRR and FAR, while EER identifies the point where these two
rates are equal. AUC is used to assess the capability of the model to separate
genuine users from spoof attacks across various thresholds. In addition, more
specific metrics like Attack Presentation Classification Error Rate (APCER)
and Bonafide Presentation Classification Error Rate (BPCER) are increasingly
employed. APCER measures the error rate for incorrectly classifying spoof
attempts as genuine, while BPCER focuses on errors in rejecting legitimate
users. The Average Classification Error Rate (ACER), which combines APCER
and BPCER, offers a useful overall performance indicator for intra-dataset
testing scenarios [9, 77].

6 Conclusion and Research Directions

Before concluding this survey, we first point out some potential future research
directions.

6.1 Language Guidance for FAS

As discussed in Section 3.1.3, recent advancements in CLIP [90] have signifi-
cantly enhanced understanding of semantic relationships between visual and
textual inputs. The works [71], [21] and [97] demonstrate promising results in
FAS. Nevertheless, although their implementations maintain the main benefits
of CLIP on object identification, liveness-related textual information was yet
not explicitly explored on the pretrained CLIP. Future research could focus
on extracting live/spoof-discriminative information from the pretrained CLIP
model to enhance its capability in distinguishing between live and spoof se-
mantic content. Future research could also involve developing methods to
integrate additional textual features or fine-tuning strategies to better capture
those subtle features to improve the overall performance in FAS.
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6.2 Test-time Adaptation for FAS

When labeled source data are unavailable in the adaptation stage, test-time
adaptation provides a more practical real-world scenario. This setting is
particularly useful for existing pre-trained face recognition systems. When a
system is able to adjust dynamically to new data without model retraining or
updating, its flexibility and robustness to attack can be significantly improved.
Such adaptability is also key to preventing unseen attacks and ensuring its
continuous effectiveness on detecting new threats. Additionally, test-time
adaptation may also reduce personal privacy risks, as each face image is only
processed once and will not be stored, thereby minimizing data exposure. This
adaption does not only mitigate the risks associated with static models but
also reduce the operational overhead associated with frequent updates. There
exits only few work on fully test-time FAS [41] and many related issues remain
unexplored in this setting.

6.3 Conclusion

This article conducts a comprehensive survey on recent deep learning-based
FAS approaches and introduces public FAS benchmark datasets, and different
settings. We have provided a detailed taxonomy of these methods and have
given in-depth discussion. Additionally, we have outlined some potential
research direction in this field.
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