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ABSTRACT

Ramanujan Sum (RS) has recently been used in the Ramanujan
Periodic Transform (RPT), which efficiently extracts period in-
formation with lower computational complexity. Building on RS
and RPT, Complex Conjugate Pair Sums of type-1 (CCPS(1)) and
type-2 (CCPS(2)) have been developed, forming the basis of the
Orthogonal Complex Conjugate Periodic Transform (OCCPT), an
alternative to the Discrete Fourier Transform (DFT) with reduced
computational requirements. While RSs and CCPS(1) properties
are well-studied, CCPS(2) characteristics remain underexplored.
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This paper investigates CCPS(2) properties and their potential
applications. Specifically, it examines the behavior of a Linear
Time-Invariant (LTI) system with a CCPS(2)-based impulse re-
sponse, demonstrating that the system can approximate first- and
second-order derivatives of the input signal. This property is
applied to image edge detection and Electrocardiogram (ECG)
preprocessing, comparing the performance with systems using RS
and CCPS(1) impulse responses. Additionally, the paper shows
that the DFT coefficients of any two distinct, CCPS(1) or CCPS(2),
as well as CCPS(1) and CCPS(2), sequences are non-overlapping,
ensuring orthogonality among the subspaces they span. Based on
this, we propose a new modulation scheme, Orthogonal Complex
Conjugate Periodic Subspace Division Multiplexing (OCCPSDM),
which is compared with existing modulation techniques regarding
Peak-to-Average Power Ratio (PAPR) and computational complex-
ity.

Keywords: Complex exponential, Ramanujan sums, complex conjugate pair
sums, RPT, OCCPT

1 Introduction

Complex Exponential Sequences (CESs) are fundamental in the mathematical
framework of digital signal processing [16]. The well-known discrete Fourier
representation utilizes CESs as the basis for representing finite-length signals,
enabling the extraction of frequency and period information from the given sig-
nal [16, 40, 41]. Recently, the integer-valued Ramanujan Sum (RS), introduced
by the Indian mathematician Srinivasa Ramanujan [21], has been employed
in a signal representation method called the Ramanujan Periodic Transform
(RPT) [40, 41]. RPT is notable for its ability to extract period information
from signals with reduced computational complexity. Consequently, RPT has
found applications in various fields [19, 25, 36, 38, 24, 30, 29, 28, 32, 11, 23,
13].

Building on the concepts of RS and RPT, the authors in [31, 26] have
introduced two summations, termed Complex Conjugate Pair Sum of type-1
(CCPS(1)) and Complex Conjugate Pair Sum of type-2 (CCPS(2)). These
summations form the foundation of an orthogonal representation known as
the Orthogonal Complex Conjugate Periodic Transform (OCCPT) [27]. The
OCCPT has been shown to extract the same information—namely, frequency
and associated period—as the widely used Discrete Fourier Transform (DFT),
but with reduced computational complexity. This advancement has significant
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implications for applications that require efficient signal-processing techniques
[27].

While extensive research has been conducted on properties of CESs, RSs,
and CCPS(1), there remains a notable gap in the study of CCPS(2) properties
[25, 18, 40, 41, 26, 35, 43]. This paper aims to address this gap by exploring
the CCPS(2) properties and their applications in signal processing. Specifically,
motivated by the properties of RS and CCPS(1) stated in [40, 41, 26, 43], this
paper discusses the following properties:

1. Consider a Linear Time-Invariant (LTI) system characterized by an input
signal x(n), an impulse response h(n), and an output y(n). If h(n) is
defined by the one-period data of CCPS(2), then we can demonstrate
that y(n) approximates the first-order derivative of x(n). Furthermore,
we establish that under certain constraints on CCPS(2), the LTI system
can also approximate the second-order derivative of the input signal. As
applications, we explore image edge detection and Electrocardiogram
(ECG) signal preprocessing for enhanced R-peak delineation. We also
compare the results obtained using the one-period data of the CCPS(2)

impulse response with those obtained using the one-period data of RS and
CCPS(1), as the impulse responses of the system. Through comparisons,
we demonstrate that CCPS(1) and CCPS(2) extract the same frequency
information with a phase shift, validating the fact that they form a Hilbert
Transform (HT) pair. Additionally, compared to RS, we demonstrate
that both CCPS(1) and CCPS(2) achieve a fine feature extraction.

2. We demonstrate that the DFT coefficients of any two distinct CCPSs(1)
or CCPSs(2), as well as CCPS(1) and CCPS(2), do not overlap. This
property ensures orthogonality among the subspaces spanned by these
summations. Specifically, a CCPS spans a two-dimensional space called
Complex Conjugate Subspace (CCS). Based on this finding, we intro-
duce a new modulation scheme named Orthogonal Complex Conjugate
Periodic Subspace Division Multiplexing (OCCPSDM). We then com-
pare OCCPSDM with existing modulation schemes and two other new
schemes that belong to the Nested Periodic Matrix (NPM) family, fo-
cusing on metrics such as Peak-to-Average Power Ratio (PAPR) and
computational complexity. We show that OCCPSDM offers comparable
PAPR with reduced computational complexity relative to other existing
modulation schemes.

The paper is organized as follows. Section 2 provides a review of the funda-
mental preliminaries necessary for understanding the subsequent discussions.
It includes essential definitions and concepts related to our study. Section 3
explores the derivative property of CCPS(2) and its applications. Section 4
examines the property of non-overlapping DFT coefficients of CCPSs and its
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application in wireless communication. Section 5 concludes with a summary
of our findings.

In this paper, the following notations are employed. The symbols N,
Z, and R denote the sets of natural numbers, integers, and real numbers,
respectively. The notation (a, b) represents the Greatest Common Divisor
(GCD) of two integers a and b. The floor function ⌊a⌋ denotes the greatest
integer less than or equal to a real number a. We use a | b to indicate
that a divides b, and a ∤ b to signify that a does not divide b. Euler’s
totient function, denoted as φ, is defined by the formula φ(n) = #Un, where
Un = {i ∈ N | 1 ≤ i ≤ n, (i, n) = 1}, which counts the number of
integers up to n that are coprime with n. Furthermore, we define the set Ûn

as {i ∈ N | 1 ≤ i ≤ ⌊n
2 ⌋, (i, n) = 1, n > 2}, which consists of integers less

than or equal to n
2 that are coprime to n. The cardinality of Ûn is given by

#Ûn = φ(n)
2 . The linear convolution between two sequences x(n) and h(n) is

denoted as x(n) ∗ h(n).

2 Preliminaries

2.1 First-Order and Second-Order Derivative Approximation

An LTI system characterized by an impulse response acts as an approximation
to the first-order derivative if the system output satisfies the following three
properties [43, 10, 9]:

• Equal to zero for a constant input.

• Equal to non-zero at the on-transient of a unit step input.

• Equal to a non-zero constant for a given ramp input.

Notably, both unit step and ramp input signals provide a comprehensive
understanding of the LTI system’s behavior under both transient and steady-
state conditions. Along with the first two properties mentioned above, if
the system output is zero for a ramp input, then the system acts as an
approximation to the second-order derivative [43].

2.2 Definitions of RS and CCPSs

For a given q∈N and k ∈ [0, q − 1], the CES is defined as sq,k(n) = e
j2πkn

q ,
where n∈Z. Various summations, such as RS, CCPS(1), and CCPS(2) have
been developed in the literature by taking linear combinations of CESs that
satisfy certain periodicity property [21, 31, 27]. For instance, let q = 8,
then {s8,1(n), s8,3(n), s8,5(n), s8,7(n)}, are the set of CESs with period exactly
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equals 8. Using these sequences, RS, CCPS(1), and CCPS(2) are generated as
follows:

RS: c8(n) = e
j2π(1)n

8 + e
j2π(3)n

8 + e
j2π(5)n

8 + e
j2π(7)n

8 .

CCPS(1): c
(1)
8,k(n) = e

j2π(k)n
8 + e

j2π(8−k)n
8 , k∈Û8 = {1, 3}.

CCPS(2): c
(2)
8,k(n) =

1

j

[
e

j2π(k)n
8 − e

j2π(8−k)n
8

]
, k∈Û8 = {1, 3}.

Generalizing the above example, for a given q∈N, leads to the following
definitions [21, 31, 27]:

RS: cq(n) =
q∑

l=1
(l,q)=1

e
j2πln

q , ∀n∈Z.

CCPS(1): c
(1)
q,k(n) =


1, if q = 1

(−1)n, if q = 2

2 cos
(

2πkn
q

)
, if q > 2

, ∀n∈Z and k∈Ûq .

CCPS(2): c
(2)
q,k(n) =


1, if q = 1

(−1)n, if q = 2

2 sin
(

2πkn
q

)
, if q > 2

, ∀n∈Z and k∈Ûq .

(1)

From (1), c
(2)
q,k(n) is a q-periodic sequence for any k∈Ûq. Furthermore, it

has been demonstrated that a two-dimensional Complex Conjugate Subspace
(CCS) [5] can be spanned using CCPS(2) and its circular downshift. The
authors of [27] explored several fundamental properties of CCPS(2), including
orthogonality, summation, and sum-of-squares. However, there is a gap in
the literature, [25, 18, 40, 41, 26, 27, 35, 43], concerning the comparison
of CCPS(2) properties with RS and CCPS(1). This paper seeks to fill that
gap by examining specific properties of CCPS(2). In particular, we focus
on two properties in the following sections: derivative approximation and
non-overlapping DFT coefficients.

3 CCPS(2) As Derivative Approximation

In this section, we examine a linear time-invariant (LTI) system with an
impulse response based on CCPS(2). We establish constraints to ensure that
the system’s output closely approximates the first or second derivative of its
input. Before delving deeper into the analysis, we derive closed-form expressions
for the following summations, which will be utilized in the subsequent analysis:
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S(q, k) =

q−1∑
n=0

c
(2)
q,k(n), T (q, k) =

q−1∑
n=0

nc
(2)
q,k(n), and

P (q, k,m) =

q−1∑
n=0

nc
(2)
q,k(n−m).

(2)

It is proved in [27] that

S(q, k) = 0, for q > 1 and k∈Ûq. (3)

However, T (q, k) = 0 only when q = 1. If q = 2, then T (q, k) = −1. If q > 2,
then

T (q, k) =
1

j

[
q−1∑
n=0

ne
j2πkn

q −
q−1∑
n=0

ne
−j2πkn

q

]
. (4)

By recalling
q−1∑
n=0

ne
j2πkn

q = −q

1−e
j2πk

q

and (q, k) = 1, equation (4) can be

simplified as

T (q, k) =
−q sin

(
2πk
q

)
1− cos

(
2πk
q

) ̸=0, q > 2. (5)

Now, consider the summation P (q, k,m) =
q−1∑
n=0

nc
(2)
q,k(n−m), where q > 2 and

1 ≤ m ≤ q−1. Observe that the term P (4b+2, k, b) = P (4b+2, k, 3b+1) = 0,
∀b∈N and ∀k∈Ûq. The following result shows that the converse is also true.

Theorem 1. If P (q, k,m) = 0, then q = 4b+ 2 and m∈{b, 3b+ 1}.
Proof. Simplifying P (q, k,m) similar to that of T (q, k), we obtain

P (q, k,m) =
q

1− cos (v)
[sin (vm)− sin (v(m+ 1))] , (6)

where v = 2πk
q . Thus, P (q, k,m) = 0 only if

sin (vm)− sin (v(m+ 1)) = 2 cos

(
πk(2m+ 1)

q

)
sin

(
−πk

q

)
= 0.

As (k, q) = 1, the term sin
(

−πk
q

)
̸=0, and cos

(
πk(2m+1)

q

)
will be zero if

πk(2m+1)
q = (2r + 1)π2 , where r∈Z. From this, it follows that q is an even

number and k(2m+ 1) = q1(2r+ 1), where q = 2q1. Using (k, q) = (k, q1) = 1,
implies q1|(2m + 1); hence q is of the form 4b + 2 and m = αq1−1

2 , where
b∈N and α∈N. Finally, m = b or m = 3b + 1 follows from the fact that
1 ≤ m ≤ 2q1 − 1.

Figure 1 depicts sin (vm) − sin (v(m+ 1)) for different values of q and k.
One can validate Theorem 1 from these figures as well.
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Figure 1: (a)-(b) sin (vm)− sin (v(m+ 1)) for different q and k values.

3.1 CCPS(2) as Derivative

Consider an LTI system with impulse response

hq(n) = ĉ
(2)
q,k(n) =

{
c
(2)
q,k(n), 0 ≤ n ≤ q − 1

0, otherwise
, q > 1,

and analyze the system output, y(n), for different input, x(n), sequences to
validate its derivative approximation.

• If x(n) = C, where C is a constant value, then

y(n) = x(n) ∗ ĉ(2)q,k(n) =

q−1∑
l=0

x(n− l)c
(2)
q,k(l) = CS(q, k). (7)

Substituting (3) in the above equation leads to y(n) = 0.

• If x(n) = u(n− n0), where u(n) is a unit step sequence, then

y(n) =

q−1∑
l=0

u(n− n0 − l)c
(2)
q,k(l). (8)

Again using (3), we can check that y(n) ̸=0 for n0 < n ≤ n0 + q − 2
(on-transient duration).

• If x(n) = n, then

y(n) =

q−1∑
l=0

(n− l)c
(2)
q,k(l) = nS(q, k)− T (q, k). (9)

Substituting (3) and (5) in the above equation lead to

y(n) =
q sin

(
2πk
q

)
1− cos

(
2πk
q

) , q > 2 and k∈Ûq. (10)
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The right-hand side term in (10) is independent of the variable n. More-
over, if q = 2, then y(n) = 1. Hence, for a given ramp input, the system
output is equal to a non-zero constant value.

From Section 2.1, we can summarize the above analysis as the following
theorem:

Theorem 2. The linear convolution between the given finite-length signal x(n)
and hq(n) = ĉ

(2)
q,k(n), q > 1, is an approximation to the first-order derivative

of x(n).

In [43] and [26], it is proved that the linear convolution of x(n) with
ĉq(n) (one period of RS) and x(n) with ĉ

(1)
q,k(n) (one period of CCPS(1)) are

equivalent to the first-order derivative of x(n), respectively. Further, this
operation is also equivalent to the second-order derivative if we consider an
odd number q and a circular shift of q−1

2 for both ĉq(n) and ĉ
(1)
q,k(n). This

raises the following question: Can a system with h(n) = ĉ
(2)
q,k(n) act as an

approximation to the second-order derivative? Since T (q, k) ̸=0 in (9), we
consider hq(n) = ĉ

(2)
q,k(n − m), 1 ≤ m ≤ q − 1. Hence, we replace the term

T (q, k) in (9) with P (q, k,m); then the following result is a direct consequence
of Theorem 1.

Theorem 3. If q be of the form 4b + 2 and m∈{b, 3b + 1}, then the linear
convolution between the given signal x(n) and ĉ

(2)
q,k(n−m) is an approximation

to the second-order derivative of x(n).

From the above theorem, we state that, an LTI system with CCPS(2) as an
impulse response requires different constraints on CCPS(2) to approximate the
second-order derivative compared to a system employing CCPS(1) or RS as its
impulse response. Additionally, from the definitions of CCPSs, we can say that
CCPS(1) and CCPS(2) are HT pairs, i.e., HT of CCPS(1) is equal to CCPS(2)

and vice-versa. Given the derivative properties of CCPS(1), it is crucial to
derive the derivative properties of CCPS(2) for a comprehensive understanding
of the analytical signal, which conveys both amplitude and phase information.
This understanding is essential for various applications, including envelope
detection [20] and phase tracking [12].

3.2 Applications

3.2.1 Image Edge Detection

Derivative property is an essential tool in signal processing, enabling a wide
range of applications such as feature extraction, system analysis, filtering, etc
[20, 9, 7]. Here, we address the fundamental image edge detection problem
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using CCPS(2) as a first-order derivative. The primary reason for selecting the
image edge detection problem as an application stems from our approach to
proving the first-order derivative approximation of an LTI system. Specifically,
we utilized three distinct properties (refer to Section 2.1) to prove that an LTI
system with CCPS(2) as its impulse response can effectively approximate the
first-order derivative. This approach is well-established in the literature on
image processing [43, 10, 9]. Consequently, we chose to focus on the image
edge detection problem.

As stated earlier, image edge detection is a fundamental problem in image
processing that involves identifying significant transitions in intensity values
within an image. These transitions, or edges, typically correspond to bound-
aries between different regions, objects, or features in the image, making edge
detection crucial for image segmentation and object recognition [10, 9]. Addi-
tionally, edge detection plays a vital role in numerous applications, including
medical imaging, autonomous driving, and image retrieval systems [10, 9].

For the analysis, we consider the standard Lena image, x, of size 128×128,
as depicted in Figure 2 (a). We perform the linear convolution between x and
CCPS(2) in the vertical direction, that is, processing one column of x at a
time. The results are then compared to those obtained using RS and CCPS(1).
Consider q = 5, then there are φ(q)

2 = 2 possible k values in (1), resulting in
two distinct CCPSs(2), denoted as ĉ

(2)
5,1(n) and ĉ

(2)
5,2(n). Figure 2 (b) and (c)

depict the results of convolving x with ĉ
(2)
5,1(n) and ĉ

(2)
5,2(n), respectively, in the

vertical direction. From these figures, we can observe that CCPS(2) effectively
detects edges in the image by acting as a derivative operator. Additionally,
each ĉ

(2)
q,k(n) possesses a unique frequency of 2πk

q or 2π(q−k)
q [27], resulting in

the frequency spectrum of the convolution output being concentrated around
these values.
Comparison with RS: In contrast to CCPS(2), there is only one RS for a
given q > 2, generated by adding φ(q) CESs having a period exactly equal to
q, where the unique frequency of each CES is 2πk

q , (q, k) = 1 [40]. Figure 2 (d)
depicts the convolution result of x with ĉ5(n) in the vertical direction. Note
that RS is also able to extract the image edge information. However, since
RS has multiple discrete frequencies, a fine edge detection in an image can be
achieved using ĉ

(2)
q,k(n) over ĉq(n). This improved precision in edge detection

can be validated from Figure 2 (b)-(d).
Comparison with CCPS(1): Similar to CCPS(2), for q = 5, there are
φ(q)
2 = 2 distinct CCPSs(1), denoted as ĉ

(2)
5,1(n) and ĉ

(2)
5,2(n). Figure 2 (e) and

(f) depict the results of convolving x with ĉ
(1)
5,1(n) and ĉ

(2)
5,2(n), respectively,

in the vertical direction. Observe that CCPS(1) is also able to detect the
edge information effectively. Since CCPS(1) and CCPS(2) are HT pairs, both
x(n) ∗ ĉ(1)q,k(n) and x(n) ∗ ĉ(2)q,k(n) convey the same frequency information with
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(a) (b) (c)

(d) (e) (f)

Figure 2: (a) Lena image. Convolving Lena’s image in the vertical direction: (b)-(c)
With ĉ

(2)
5,1(n) and ĉ

(2)
5,2(n); (d) With ĉ5(n); (e)-(f) With ĉ

(1)
5,1(n) and ĉ

(1)
5,2(n).

a difference in the phase information. Here, the computation of x(n) ∗ ĉ(1)q,k(n)

and x(n) ∗ ĉ(2)q,k(n) involves real-valued operations, whereas the computation
of x(n) ∗ ĉq(n) involves integer-valued operations. Thus, extracting the edge
information using CCPSs requires a higher computational complexity than
using RS.

3.2.2 ECG Preprocessing

In this section, we present another application to demonstrate the use of
CCPS(2) as a derivative operator. R-peak (QRS complex) delineation is a
critical step in ECG signal analysis, with various applications [17, 2, 15, 33,
34]. However, directly estimating R-peak information from raw ECG signals
is challenging. Therefore, it is common practice to preprocess ECG signals
to enhance R-peak delineation. The QRS complex in a typical ECG signal
exhibits sudden changes, which can be effectively captured using a derivative
operator. Here, we use CCPS(2) for this purpose, and later compare its
performance with CCPS(1) and RS.

For our analysis, we use a 10-second ECG recording sampled at 500 Hz
from record number 19 of person 1 in the ECG-ID database [8]. To simplify
the computation, we down-sampled the data by a factor of 8, resulting in a
625-sample signal with a sampling frequency of 62.5 Hz, as shown in Figure
3 (a). The raw ECG signal contains a significant T-wave (following the QRS
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2

Figure 3: (a) Original ECG signal. Convolving ECG signal: (b) With ĉ
(1)
5,1(n) and

ĉ
(2)
5,1(n); (c) With ĉ5(n).

complex), making direct R-peak estimation less accurate. Therefore, before
feeding it into an algorithm, we first preprocess the ECG signal using CCPS(2).
Specifically, we perform the convolution operation between the ECG signal and
ĉ
(2)
5,1(n). The result of this convolution, depicted in Figure 3 (b), shows that

the R-peak information is amplified, while the T-wave is attenuated, allowing
for improved R-peak estimation using standard methods such as adaptive
thresholding [17]. The choice of ĉ(2)5,1(n) is based on the frequency range of the
QRS complex, typically 8–20 Hz [6]. With a sampling frequency of 62.5 Hz,
the discrete frequency associated with ĉ

(2)
5,1(n) is 12.5 Hz. Hence, the spectrum

of the convolved signal is concentrated around 12.5 Hz, which falls within the
QRS complex frequency range.
Comparison with CCPS(1): Figure 3 (b) also shows the convolution output
between ECG signal and ĉ

(1)
5,1(n). Since CCPS(1) and CCPS(2) form an HT

pair, they contain the same frequency information with a phase shift. This is
evident in the Figure 3 (b).
Comparison with RS: Figure 3 (c) shows the convolution output using
ĉ5(n). While RS also amplifies the R-peak information, it retains significant
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T-wave content. The reason is that an RS has multiple frequencies associated
with it. For instance, in this example, ĉ5(n) is generated by adding CESs with
frequencies 12.5 Hz and 25 Hz. As a result, one can observe significant T-wave
information in Figure 3 (c).

4 Non-Overlapping DFT Coefficients

In this section, we show that the DFT coefficients of any two distinct CCPS(1),
CCPS(2), or CCPS(1) and CCPS(2) do not overlap. Specifically, we have the
following theorem.

Theorem 4. The q-point DFT coefficients of any two q-length sequences
c
(1)
q1,k1

(n− l1) and c
(2)
q2,k2

(n− l2) never overlap, where q1 ̸=q2 and q = lcm(q1, q2).

Proof. For a given q2∈N and k2∈Ûq2 , the q2-point DFT of c(2)q2,k2
(n), C(2)

q2,k2
(K),

equal to [27]

C
(2)
q2,k2

(K) =


−jq2, if K = k2

jq2, if K = q2 − k2

0, otherwise
.

Here c
(2)
q2,k2

(n) can be rewritten as c
(2)
q,k2m2

(n), where q = m2q2, m2∈Z. The

q-point DFT of c(2)q,k2m2
(n− l2), C

(2)
q,k2m2,l2

(K), is

C
(2)
q,k2m2,l2

(K) =


−jqe

−j2πk2l2
q2 , if K = k2m2

jqe
j2πk2l2

q2 , if K = q − k2m2

0, otherwise

.

Similarly, if we compute the q-point DFT of c(1)q,k1m1
(n−l1), where q = m1q1 and

m1∈Z, we get the non-zero coefficient values at K = k1m1 and K = q− k1m1.
The DFT coefficients of both these sequences will overlap if k1m1 = k2m2 or
k1m1 = q − k2m2, implying k1q2 = k2q1 or k1q2 = q1(q2 − k2); this equality is
valid if and only if q1 = q2, since (k1, q1) = 1 and (k2, q2) = (q2 − k2, q2) = 1.
This contradicts our assumption of q1 ̸=q2.

Likewise, by using the same procedure as in the proof of the previous
theorem, we can demonstrate the following theorem:

Theorem 5. The q-point DFT coefficients of any two sequences c
(1)
q1,k1

(n− l1)

and c
(1)
q2,k2

(n − l2), or c
(2)
q1,k1

(n − l1) and c
(2)
q2,k2

(n − l2) never overlap, where
q = lcm(q1, q2) and q1 ̸=q2.
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Figure 4 (a)-(d) depict the magnitude spectra of the 24-point DFT coeffi-
cients of c(1)8,3(n− 1), c(2)8,3(n− 1), c(1)6,1(n− 2), and c

(2)
6,1(n− 2), respectively. One

can verify Theorem 4 and Theorem 5 from this example as well. Note that
the DFT coefficients of any two sequences are non-overlap, implying that both
sequences are orthogonal to each other. Hence, we can state that any two
CCPSs are orthogonal to each other. This property plays an important role in
signal representation.
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Figure 4: (a)-(d) Magnitude spectrum of 24-point DFT coefficients of c(1)8,3(n−1), c(2)8,3(n−1),

c
(1)
6,1(n− 2), and c

(2)
6,1(n− 2), respectively.

4.1 Application

The property of non-overlapping DFT coefficients is crucial in modulation
techniques within wireless communication because it ensures that different data
symbols are orthogonally modulated, which is key to minimizing interference
and maximizing spectral efficiency [42, 22, 35]. Literature has established that
CESs and RSs also satisfy this non-overlapping DFT coefficients property [16],
[40]. Consequently, these summations serve as the foundation for the Ramanu-
jan subspace (orthogonal periodic subspace) [16, 27, 40]. Ramanujan subspaces
are instrumental in representing finite-length signals. Using CESs, RSs, and
CCPSs (both CCPS(1) & CCPS(2) together) as a basis for the Ramanujan
subspace leads to DFT [3], RPT [40], and OCCPT [27], respectively. In the
literature, DFT and RPT are employed in modulation/demodulation schemes
such as Orthogonal Frequency Division Multiplexing (OFDM) [3, 1] and Ra-
manujan Periodic Subspace Division Multiplexing (RPSDM) [35], respectively.
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Analogously, using OCCPT signal representation (whose mathematical closed-
form equations are given in [27]) introduces a new modulation/demodulation
scheme: Orthogonal Complex Conjugate Periodic Subspace Division Multiplex-
ing (OCCPSDM). While a comprehensive mathematical analysis of OCCPSDM
is beyond the scope of this paper, we provide an initial comparison of its Peak-
to-Average Power Ratio (PAPR) performance and computational complexity
relative to the aforementioned schemes. The commonality among the trans-
formation matrices of DFT, RPT, and OCCPT is that they all belong to
the Nested Periodic Matrix (NPM) family [39]. In addition to DFT, RPT,
and OCCPT, Natural Basis Matrices (NBMs) and Random Periodic Matrices
(RPMs) are also members of the NPM family, which has been used to estimate
periodic information from signals [37, 39]. Furthermore, any transformation
matrix belonging to the NPM family is a full-rank matrix. Therefore, in this
work, we generate modulation symbols using both NBMs and RPMs, and
compare their PAPR with that of the proposed OCCPSDM. We refer to the
modulation and demodulation schemes based on NBM and RPM as Natural
Basis Periodic Subspace Division Multiplexing (NBPSDM) and Random Gaus-
sian Periodic Subspace Division Multiplexing (RGPSDM), respectively. To the
best of our knowledge, this is the first study to utilize both NBM and RPM for
modulation and demodulation. The mathematical analysis of both NBPSDM
and RGPSDM remains an open problem to be explored. It is important to
note that while both NBM and RPM are full-rank matrices, they are not
orthogonal [39], hence, the receiver computational complexity is high in both
NBPSDM and RGPSDM. Furthermore, there are no fast algorithms for com-
puting signal representation coefficients based on NBM and RPM. However,
NBM is a sparse matrix, specifically, an L× L matrix, where L = 2n, n ∈ N,
has L + L

2 log2(L) non-zero elements. Therefore, we exploit the sparsity of
NBM to compute NBM-based representation coefficients efficiently, while for
RPM-based representations, we use a direct method via matrix multiplication.

Figure 5 shows the Complementary Cumulative Distribution Function
(CCDF) of PAPR [4] for OFDM, RPSDM, OCCPSDM, NBPSDM, and RG-
PSDM for N = 128, 256, and 512, where N denotes the number of sub-carriers.
It is evident from Figure 5 that the PAPR of OCCPSDM approximates OFDM
and is slightly better than NBPSDM. Whereas, the PAPR of RPSDM and
RGPSDM is lesser; specifically, RPSDM maintains around 2dB difference for
CCDFs less than 0.1 [35].

For a given complex sequence of length L, where L = 2m and m ∈ N,
Table 1 presents the number of real multiplications required for computing
OCCPT (using FOCCPT [27]), DFT (using FFT), RPT (exploiting the sparse
nature of the transform matrix [35]), NBM-based representation (using sparse
nature of the transform matrix), and RPM-based representation (using direct
method). From Table 1, it is evident that for larger values of L, OCCPSDM
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Figure 5: (a)-(c) PAPR comparison of various modulation techniques.
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Table 1: Comparison of computational complexity between different modula-
tion/demodulation schemes.

Number of Real Multiplications
Modulation/Demodulation L =128 L = 256 L = 512
OFDM (2Llog2(L)) 1792 4096 9216
RPSDM (2Llog2(L) + 2L) 2048 4608 10240
OCCPSDM (2Llog2(L)− 2L+ 2) 1538 3586 8194
NBPSDM (Llog2(L) + 2L) 1152 2560 5632
RGPSDM (2L2) 32768 131072 524288

and NBPSDM exhibit a significant computational complexity advantage over
the other methods. However, it is important to note that the OCCPSDM
transformation matrix is orthogonal, whereas NBPSDM is non-orthogonal.
This non-orthogonality increases computational complexity at the receiver end
for NBPSDM. Consequently, OCCPSDM emerges as a promising candidate
for applications in 5G systems employing OFDM. While this paper highlights
the importance of non-overlapping DFT coefficients of both CCPS(1) and
CCPS(2) through a modulation/demodulation scheme, a detailed computa-
tional analysis of OCCPSDM, NBPSDM, and RGPSDM remains a subject for
future investigation. In addition to its role in communication, the property of
non-overlapping DFT coefficients has numerous applications in digital signal
processing. This includes audio and image processing, where non-overlapping
DFT coefficients are leveraged to develop efficient algorithms for tasks such as
filtering, compression, and enhancement [16, 20, 14].

A detailed comparison of the properties of CCPS(1) and CCPS(2), derived
in this work and in [31, 26, 27], is provided in Table 2.

5 Conclusion

In this study, we addressed the gap in the literature concerning Complex Con-
jugate Pair Sum of type-2 (CCPS(2)) by building upon established concepts
such as Ramanujan Sum (RS), Complex Exponential Sequences (CESs), and
CCPS(1). We demonstrated that CCPS(2) can effectively approximate both
first- and second-order derivatives in Linear Time-Invariant (LTI) systems,
with practical applications in image edge detection and ECG signal prepro-
cessing. Through these applications, we showed that CCPS(2) and CCPS(1)

extract the same frequency information with a phase shift, confirming that
they form a Hilbert transform pair. In comparison to RS, we demonstrated
that both CCPS(1) and CCPS(2) achieve finer feature extraction. Additionally,
we established that the DFT coefficients of CCPS(1) and CCPS(2) do not
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Table 2: Properties of CCPS(1) and CCPS(2).

Property
Name CCPS(1) CCPS(2)

Definition

c
(1)
q,k(n) = 2Mcos

(
2πkn

q

)
, k∈Ûq,

n∈Z, q∈N,

M =

{
1
2 , if q = 1 or 2

1, if q > 2

c
(2)
q,k(n) =

1, if q = 1

(−1)n, if q = 2

2sin
(

2πkn
q

)
, if q > 2

, k∈Ûq,

n∈Z, q∈N
Sequence Type Real-valued Real-valued

Periodicity c
(1)
q,k(n+ q) = c

(1)
q,k(n) c

(2)
q,k(n+ q) = c

(2)
q,k(n)

Symmetry c
(1)
q,k(q − n) = c

(1)
q,k(n) c

(2)
q,k(q − n) = −c

(2)
q,k(n), if q > 2

Sum
q−1∑
n=0

c
(1)
q,k(n) = 0

q−1∑
n=0

c
(2)
q,k(n) = 0

Sum-of-Squares
q−1∑
n=0

(
c
(1)
q,k(n)

)2

= 2qM
q−1∑
n=0

(
c
(2)
q,k(n)

)2

= 2qM

Sequence’s
First Element c

(1)
q,k(0) = 2, ∀ q > 2 c

(2)
q,k(0) = 0, ∀ q > 2

DFT
Coefficients

C
(1)
q,k(K) ={

q, if K = k (or) q − k

0, otherwise
C

(2)
q,k(K) =


−jq, if K = k

jq, if K = q − k

0, otherwise

Orthogonality

q−1∑
n=0

c
(1)
q1,k1

(n− l1)c
(1)
q2,k2

(n− l2) =

2qMcos

(
2πk1(l1−l2)

q1

)
δ(q1 −

q2)δ(k1 − k2), q = lcm(q1, q2)

q−1∑
n=0

c
(2)
q1,k1

(n− l1)c
(2)
q2,k2

(n− l2) =

2qMcos

(
2πk1(l1−l2)

q1

)
δ(q1 −

q2)δ(k1 − k2), q = lcm(q1, q2)

Non-
Overlapping

DFT
Coefficients

The q = lcm(q1, q2)-point DFT
coefficients of c(1)q1,k1

(n) and

c
(1)
q2,k2

(n) never overlap, where
q1 ̸=q2

The q = lcm(q1, q2)-point DFT
coefficients of c(2)q1,k1

(n) and

c
(2)
q2,k2

(n) never overlap, where
q1 ̸=q2

The q = lcm(q1, q2)-point DFT coefficients of c
(1)
q1,k1

(n) and c
(2)
q2,k2

(n) never
overlap, where q1 ̸=q2

First-Order
Derivative Yes Yes

Second-Order
Derivative

If q = 2b+ 1 and m = b, where
b∈N, then x(n) ∗ ĉ(1)q,k(n−m) is an
approximation to the second-order

derivative of x(n)

If q = 4b+ 2 and m∈{b, 3b+ 1},
where b∈N, then x(n) ∗ ĉ(2)q,k(n−m)

is an approximation to the
second-order derivative of x(n)

overlap, supporting their use in the newly introduced Orthogonal Complex
Conjugate Periodic Subspace Division Multiplexing (OCCPSDM). This mod-
ulation scheme offers a comparable Peak-to-Average Power Ratio (PAPR)
with reduced computational complexity relative to other existing modulation
schemes.
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