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ABSTRACT

We introduce Serial-OE, a new approach to anomalous sound de-
tection (ASD) that leverages small amounts of anomalous data
to improve the performance. Conventional ASD methods rely
primarily on the modeling of normal data, due to the cost of col-
lecting anomalous data from various possible types of equipment
breakdowns. Our method improves upon existing ASD systems by
implementing an outlier exposure framework that utilizes normal
and pseudo-anomalous data for training, with the capability to also
use small amounts of real anomalous data. A comprehensive evalu-
ation using the DCASE2020 Task2 dataset shows that our method
outperforms state-of-the-art ASD models. We also investigate the
impact on performance of using a small amount of anomalous data
during training, of using data without machine ID information,
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and of using contaminated training data. Our experimental results
reveal the potential of using a very limited amount of anomalous
data during training to address the limitations of existing methods
using only normal data for training due to the scarcity of anomalous
data. This study contributes to the field by presenting a method
that can be dynamically adapted to include anomalous data during
the operational phase of an ASD system, paving the way for more
accurate ASD.

Keywords: Anomalous sound detection, self-supervised learning, outlier ex-
posure, serial method.

1 Introduction

Anomalous sound detection (ASD) is used to detect unusual sounds, such as
equipment malfunctions. It is often used to monitor sound inside machines, or
other areas that cannot be directly monitored by cameras, such as equipment
in tunnels or other dark locations. Early detection of anomalous conditions
can minimize losses due to outages and damage resulting from breakdowns.
Due to a decrease in the number of skilled maintenance technicians in recent
years, and an increase in the number of aging facilities [2], there is a greater
need for systems that can automatically detect anomalous conditions and allow
timely repair after mechanical breakdowns [25, 1, 15, 23].

First, let’s consider the development of an ASD system. Ideally, both nor-
mal and anomalous audio data would be used to train a binary classification
model. However, the possible types of anomalous data are diverse, and inten-
tionally causing machines to break down in various ways to collect anomalous
data is expensive. Therefore, the detection model of an ASD system is often
trained using only normal data [26, 28]. Next, let’s consider the operational
phase of ASD systems. These systems are generally installed in facilities that
experience occasional breakdowns due to aging machinery, or because the fa-
cility’s design makes human monitoring impractical. Conversely, facilities that
do not generally experience anomalous conditions do not need an ASD system.
Therefore, facilities that have installed ASD systems are likely able to capture
samples of various types of anomalous audio data during breakdowns, data
which contains important information about possible anomalous conditions for
the machine, so it would be advantageous to utilize this data to improve the
performance of the ASD system. Several methods have been proposed using
active learning to improve performance in sound event detection tasks by util-
ising a small number of labelled data [51, 36]. However, most studies on ASD
have focused on the development phase, when normal data is generally used
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to create the detection model for the ASD system. Few studies have focused
on continuously improving ASD performance by utilizing the small amounts
of anomalous data that can be obtained during the operational phase [30].

Current ASD methods can be classified into generative and discriminative
model-based methods [25, 1]. Generative model-based methods identify sounds
deviating from the normal distribution as anomalous data. For example, some
methods use reconstruction errors obtained using an autoencoder [54, 11, 42,
21, 37], Long-Short Term Memory networks [39], WaveNet [15], or generative
adversarial networks [60, 20], as well as methods that use the likelihoods of
Gaussian mixture models (GMM) [44, 32, 13] or normalizing flow [40, 24, 8].
These generative model-based methods cannot use anomalous data because
they are trained while generating normal data. In methods that minimize the
reconstruction error of normal data, if anomalous data is added to the training
data and the reconstruction error is minimized, the anomalous data can be
reconstructed, so the ASD performance is degraded. Similarly, if anomalous
data is added to methods that maximize the likelihood of normal data, the
likelihood of anomalous data increases, so the performance is degraded. In
order to utilize anomalous data with these methods, it is necessary to add an
architecture for utilizing anomalous data to the original method.

Discriminative model-based methods can also be divided into two types.
The first method uses normal data to make multi-class classifications. It
includes methods based on classification by machine type, using either data
augmentation [19], metadata classification [12, 33, 57, 55, 56, 3, 59], or
contrastive learning [18, 64, 14, 4], which have demonstrated competitive
performance in recent years. These methods compute anomaly scores for
multiple types of machines, and have the advantage of being able to detect
anomalous conditions in multiple machines using a single model. However,
because these methods do not assume the use of anomalous data, it is not
easy to use them without changing the architecture, even if anomalous data
is available. The second method defines normal data and pseudo-anomalous
data and use a binary classification. Some methods use a single model to
infer the status of a single machine [30, 50, 46, 48, 41, 29], while others use a
single model to infer the status of multiple machines by considering the normal
sounds of all similar machines as normal data [31]. Since these methods use
pseudo-anomalous data as training data, it is possible to utilize real anomalous
data without making any changes to the architecture.

In this research, we also employ a discriminative model-based
method that defines normal data and pseudo-anomalous data and use a binary
classification, allowing us to take advantage of any real-world anomalous
data that is available as additional training data, in order to improve ASD
performance. In our previous work, we compared the average performance
of the proposed method when using the DCASE2021 Task2 dataset to show
that it improves ASD performance [31]. However, we did not perform a
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component-by-component analysis of our method, evaluate the effectiveness
of using of real-world anomalous data for training, or examine the possibility
of contamination of the real-world anomalous data with normal data, which
may occur when collecting the anomalous data. In this paper, we compare
the performance of our proposed system with other ASD methods when using
the DCASE2020 Task2 dataset, the major ASD dataset available [27, 43].
Our investigation into the possibility of contamination of the real anomalous
data used for model training is the first such investigation of this topic in
the field of ASD. We not only compare the proposed method with state-of-
the-art methods proposed in previous studies, and with similar methods, but
also perform ablation studies for each component, evaluate the effect of the
DCASE2020 Task2-specific information known as ‘machine ID’, which has
been used in previous studies, evaluate the effect of utilizing a small amount
of real anomalous data for model training, and evaluate the effect of training
the model with data containing anomalous and normal data from the same
type of machine.1

The rest of this paper is organized as follows: In Section 2, we describe
previously proposed ASD methods which are able to utilize anomalous data.
In Section 3, we provide the details of our proposed method. In Section 4, we
investigate the reasons why our proposed method improves ASD performance
and the impact of utilizing anomalous data during detection model training
on performance through experimental evaluation. In Section 5, we note the
limitations of this study, and in Section 6 we present our conclusions.

2 ASD Methods that can Utilize Anomalous Data

Few methods which utilize anomalous data have been proposed for ASD.
Here, small amounts of anomalous data refers to data that accounts for
approximately 0.1% to 3% of the training data. DDCSAD+BCE [30] is a
method which we have proposed previously for improving the performance of
ASD systems by utilizing small amounts of anomalous data for training. A
feature extractor is trained by defining normal data and pseudo-anomalous
data, and two loss functions are then applied. The first loss function performs
binary classification using binary cross-entropy. The second loss function uses
metric learning to define the centroid of each class in the feature space, then
uses Euclidean distance to cluster data in the same class while pushing data
from different classes farther apart. The classification results for the normal and
pseudo-anomalous classes obtained through multi-task learning using these loss
functions are then used as anomaly scores. This method improves performance

1The current implementation of our proposed Serial-OE system is available at https:
//github.com/ibkuroyagi/Serial-OE.

https://github.com/ibkuroyagi/Serial-OE
https://github.com/ibkuroyagi/Serial-OE
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by not only discriminatively learning normal and pseudo-anomalous data, but
also by explicitly classifying normal data and other data in the feature space.
This method also improves performance by classifying anomalous data as part
of the pseudo-anomalous data class.

To explain this method in more detail, here we will describe the DCASE2020
Task2 data set [27, 43] and how it was used when evaluating this method.
The Task2 dataset has a hierarchical structure of six machine types (Fan,
Pump, Slider, Valve, ToyCar, and ToyConveyor), as well as machine IDs
that identify the manufacturer and model of each machine belonging to each
machine type. There are seven machine IDs for each machine type, except for
the ToyConveyor machine type, which contains only six machine IDs, thus
there are 41 machine IDs in the entire data set. DDCSAD+BCE treats specific
machine IDs within a machine type as normal sound data, and the normal
sounds of the other machines of the same type, as well the normal sounds of
the other types of machines, are used as pseudo-anomalous data. For example,
if machine ID 0 of machine type Fan is considered to be our normal data,
the normal sounds of the Fans with machine IDs from 1 to 6, as well as the
normal sounds of the different machine types, such as Pumps, Sliders, Valves,
ToyCars and ToyConveyors are treated as pseudo-anomalous data. Therefore,
41 different models need to be trained when using the DCASE2020 Task2 data
set in order to evaluate ASD performance for all of the machines.

Our DDCSAD+BCE method performed well in terms of average AUC for
a single model at that time. Furthermore, ASD performance was improved
by adding real anomalous data to the pseudo-anomalous class and by fine
tuning the detection model. However, the performance of this method is
not as high as that of more recent ASD methods, and it also suffers from
large variations in performance from machine ID to machine ID. Since the
proposed method trains a feature extractor for each machine ID, performance
is strongly influenced by the particular characteristics of each machine’s audio
data, which is defined as normal data. In addition, this method uses only the
classification probability from discriminative training as the anomaly score,
however discriminative classification results are not necessarily equivalent to
ASD results [33]. Considering the recent success achieved by combining dis-
criminative and generative models, our method’s lack of an anomaly detection
method based on generative models, such as outlier detection, may also be a
factor in its lower performance [22]. Therefore, to take advantage of the small
amount of anomalous data, this paper retains the framework for classifying
normal and pseudo-anomalous data but combines ASD methods based on
generative models to improve performance.

From a different perspective, we investigated how anomalous detection in
image detection using anomalous data can be used to improve the performance
of ASD systems. Random images obtained from large data sets are called outlier
exposures, and the use of such data has resulted in higher anomaly detection
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performance [16, 17]. DeepSAD [48] was the first deep model to exploit a small
number of anomalous cases, by generalizing unsupervised DeepSVDD [46]
for use in a semi-supervised anomaly detection setting. In [47], Ruff et al.
further modified DeepSAD using a method based on cross-entropy classification,
significantly improved DeepSAD’s performance. However, methods that use
only a small amount of anomalous data have a problem; their output is biased
against the known anomalous data, resulting in poorer performance. DAR [7]
and BGDA [62] have been proposed to solve this problem. By training these
methods to acquire a feature space that explicitly distinguishes normal data
from the small amount of anomalous data obtained, they improve the detection
performance of the small amount of known anomalous data used during training
without reducing the detection performance of unknown anomalous data not
used during training. This paper also improves the detection performance for
known anomalous data by explicitly classifying a small amount of anomalous
data in the feature space.

These methods have achieved good performance but they are difficult to
apply directly to ASD because many of the techniques used are unique to image
data processing. These methods utilize CutMix [63, 7], image rotation [53]
and semantic segmentation [62] in order to generate pseudo-anomalous data
for training. The nature of the data used to represent images and sounds
differs greatly, so many factors must be considered when applying these outlier
exposure methods to ASD. In particular, sound and images differ in their
approach to adding data. For example, images generated by superimposing
different images on top of each are not common in the real world and thus
have a high probability of being anomalous. However, sounds generated by the
superimposing different sounds may be normal (e.g., adding background noise
to a movie scene). Therefore, it is necessary to carefully design the training
process with these points in mind.

3 Proposed Method

3.1 Overview

When designing the proposed method, we decided that if it was too difficult to
collect anomalous audio data for the target device during the development of an
ASD system, the anomaly detection model could be trained using only normal
data. But if it was possible to collect a small amount of anomalous data for the
target device, the system would allow the use of that data to improve anomaly
detection performance. With this in mind, we developed Serial-OE, which is an
ASD system consisting of a DNN-based feature extractor and a GMM-based
anomaly detector in a serial method [31]. This framework incorporates the
powerful feature extraction capability of DNNs for high-dimensional data,
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with the high detection performance of generative models, allowing Serial-OE
to achieve performance comparable to that of other recently proposed ASD
methods [39, 57, 22, 53, 38, 45]. The proposed method also incorporates
outlier exposure as a binary classification method for identifying normal and
pseudo-anomalous data.

An overview of the proposed method is shown in Figure 1. Incorporating
outlier exposure in our proposed method makes it easier to utilize anomalous
data when it is available. The proposed method trains one feature extractor
DNN for each machine type, and one GMM for each machine ID. Therefore, in
the case of the DCASE2020 Task2, there are six machine types, so six feature
extractors are trained, and 41 GMMs are trained for use as anomaly detectors
since there are 41 machine IDs. Each sample is a mixture of machine operating
and environmental sounds. When training the feature extractors, normal and
pseudo-anomalous data are used. The normal sound of the target machine type
is used as the normal data. The normal sound of the other machine types are
used as pseudo-anomalous data. When real anomalous data for a machine is
available, this anomalous data is treated in the same way as pseudo-anomalous
data. Note that the proposed method assumes that both pseudo-anomalous
data and anomalous data are chunks of the same length as normal data. When
training the anomaly detectors, only normal data is used. We discuss the
validity of using normal sounds from machines other than the target machine
type as pseudo-anomalous data. One of the most significant factors that
degrade the performance of ASD systems is the misclassification of anomalous
and environment sound noises. So, ASD models should be trained to ignore
environmental sound noise to prevent misclassification. A model trained by
a task that identifies the operation sounds of several different machines with
the same environment sound noise will ignore the effect of the environment
sound noise and focus on the operation sound to classify [59]. Using this model
in ASD reduces misclassification due to noise and improve performance [59].
It has also been shown experimentally that the classification of normal and
pseudo-anomalous sounds by this selection improves performance [30, 41, 31].
Therefore, it is reasonable to select data that have different operation sounds
from normal data and the same environment sound noise as normal data as
pseudo-anomalous data and have them classified.

The proposed method uses the following steps to infer and obtain anomaly
scores:

• Preprocessing: The input sound is divided into S-second
chunks, and each chunk is converted into a mel spectrogram.

• Feature extractor: The mel spectrogram is input to a DNN
to obtain a D-dimensional feature vector.

• Anomalous detector: The D-dimensional feature vector is
input to the GMM for the target machine ID to obtain the
negative log-likelihood for each chunk.
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Figure 1: Overview of the proposed Serial-OE method. The gray areas represent the training
phase, while the white area represents the inference phase. This example shows how to
train the ASD system to detect anomalies in the sound produced by machine type Fan.
Section 1 shows the training of feature extractor f , which is trained by applying two loss
functions to the features extracted from a mixture of normal and pseudo-anomalous sounds,
as sampled by a batch sampler in mini-batches. Section 2 shows the training of anomaly
detector h. Since a different anomaly detector h is trained for each machine ID, here we
train the anomaly detector using the features of normal audio from Fan ID 0 obtained from
pretrained feature extractor f . Section 3 shows the inference process used to obtain the
anomaly score, which is computed by dividing the test sample into multiple chunks, each of
which is fed into pretrained feature extractor f and trained anomaly detector h, with the
resulting anomaly scores aggregated to obtain the final score.

• Aggregator: Anomaly scores for all the chunks are obtained,
and an aggregator is applied to these scores.

In the following subsections, we describe each step of the training and inference
processes in detail.

3.2 Preprocessing

Consider N samples of training data, denoted by xi | i = 1, 2, . . . , N . Each xi

is associated with a label yi ∈ {0, 1} | i = 1, 2, . . . , N , where 1 is normal data
and 0 is pseudo-anomalous data. Normal data refers to the normal sounds
of the target machine type, and pseudo-anomalous data refers to the normal
sounds of the other machine types. Anomalous data for the target machine
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type is treated as yi = 0. Each xi has a class representing the machine ID,
denoted by ti ∈ {1, 2, . . . , C} | i = 1, 2, . . . , N , where C is the number of
machine ID classes. When applying the loss function, ti is converted into
one-hot vector ti,c ∈ {0, 1} | c = 1, 2, . . . , C. Before inputting audio data into
the model, the amplitude of x is normalized by calculating the mean and
variance of the amplitude across yi = 1 (normal sounds). Assuming each
xi represents a sound source of L seconds, these data segments are divided
into chunks of S seconds, after which a band-pass filter is applied, converting
them into mel spectrograms. The resulting mel spectrogram of each chunk is
denoted as xi,s and is input into the feature extractor.

3.3 Loss Functions for Training Feature Extractor

The proposed method uses two loss functions to train feature extractor f to
obtain a D dimensional feature vector from xi,s. We show in Figure 2 an image
of the feature space obtained by the feature extractor f . In the following, we
describe the training method for acquiring this feature space. The first loss
function Ltype is a binary cross-entropy (BCE) that classifies data as normal
or pseudo-anomalous using the norm of the feature vectors. Loss function
Ltype is defined as follows:

Ltype = − 1

N

N∑
i=1

{
yilog(gtype(||f(xi,s)||2))

+(1− yi)log(1− gtype(||f(xi,s)||2))
}
,

(1)

where gtype is a function that applies the sigmoid function after performing an
affine transformation. By using the norm of the feature vectors for classification,
pseudo-anomalous data are distributed near the origin of the hypersphere,
while normal data are distributed away from the origin. The loss function
trains the model to classify pseudo-anomalous data and normal data with
similar environmental sounds so that the norm of features for samples that do
not contain operation sounds of normal data is 0. The model will focus on the
operation sound, reducing the percentage of misclassification due to differences
in environmental sound. In addition, by collecting environmental sound
pseudo-anomalous data at a single point, the model prevents misclassification
as normal data when data with a distribution that differs significantly from
normal data is input. Although anomalous data may not always be distributed
near the origin at the time of inference, this loss function is introduced to
reduce the risk of treating unknown data that is different from normal data as
false positives. Furthermore, adding anomalous data to the pseudo-anomalous
data class will explicitly distribute data with known anomalous features near
the origin. This is expected to create a feature space that makes it easier for
the anomaly detectors to detect anomalies.
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Figure 2: Feature space obtained when using a feature extractor for machine type ‘Fan’.
The symbols ◦ and △ represent the normal and pseudo-anomalous data used for training,
respectively. The pseudo-anomalous data are distributed near the origin (i.e., center) of the
hypersphere after performing binary classification based on the norm of Ltype, while the
normal data are distributed farther from the origin. Data for each machine ID is distributed
into separate clusters using Lid. For the purpose of illustrating our process when using
the obtained feature space, normal data for Fan ID 0 are represented with a red ◦, while
anomalous data for Fan ID 0 are denoted by ×. The black dashed circles represent the
areas where anomalous data are distributed. It is assumed that anomalous data for Fan ID
0 will cluster around the normal data in the feature space if its characteristics are similar
to the normal data (e.g. if anomalous data is caused by a slight scratch), and around the
pseudo-anomalous data cluster if its characteristics significantly differ from the normal data,
suggesting a possible breakdown. The proposed method detects anomalous data by modeling
the normal data for Fan ID 0 using a GMM, in relation to such a feature space.

The second loss function Lid is a BCE that classifies normal data by
machine ID. Note that the normal data are of the same machine type. The
loss function is defined as follows:

t′i = yiti,c, (2)

Lid = − 1

C
∑N

i=1 yi

N∑
i=1

C∑
c=1

{t′ilog(gid(f(xi,s)))

+(1− t′i)log(1− gid(f(xi,s)))} ,

(3)

where gid is a function that applies the sigmoid function after performing
an affine transformation. Lid is introduced with the goal of more precisely
representing the characteristics of the data from the targeted machine ID, by
identifying data with similar sounds. Since the characteristics of the sounds
produced by each machine ID are unique, BCE is used instead of cross-entropy.
Using BCE allows the classifier to be trained to focus on whether a sound
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is from a particular machine, thereby becoming more robust when mixing
in other sounds. This will be discussed in more detail in Section 3.4. It is
important to note that by multiplying ti,c by yi in Eq. 2, updates are only
made for normal data. Thus, Lid focuses training of the feature extractor only
on normal data features.

The final loss function is expressed as follows:

L = Ltype + αLid, (4)

where α is a hyperparameter to balance the loss functions. However, even
if we train the feature extractor to update L as shown, stable updating is
not possible due to several problems. Therefore, we used a few additional
techniques, described in Section 3.4 below, to stabilize the training of the
feature extractor.

3.4 Strategies for Mini-batch Sampling

When training feature extractors, employing Mixup [65], as proposed in [57],
allows the acquisition of intermediate representations between samples, with
the aim of improving performance. However, when using the proposed method,
two issues prevent the simple application of Mixup. The first issue is the
imbalance between the normal data, which consists of data from only one
machine type, and the pseudo-anomalous data, which includes data from all
of the machines belonging to the five other machine types. Therefore, most
of the data is pseudo-anomalous, so when Mixup is applied, Eq. 3 is hardly
updated. The second issue is the difference in the scope of each loss function.
Eq. 1 focuses on classification of audio data into normal and pseudo-anomalous
data, while Eq. 3 focuses on the classification of normal data into machine ID
classes. Although mixing up normal and pseudo-anomalous data when using
in Eq. 1 is a normal Mixup, Eq. 1 does not allow machine IDs to be defined
for pseudo-anomalous data, so it is necessary to consider how Mixup should
be used.

To address these issues, first we defined a batch sampler for creating
mini-batches in order to deal with the imbalance between normal and pseudo-
anomalous data. The mini-batches created by the batch sampler contain
half normal data and half pseudo-anomalous data, so if real anomalous data
can be utilized, one sample of anomalous data is selected to be included in
the mini-batch, reducing the number of pseudo-anomalous samples by one.
One epoch is defined as a single update of the normal data. Using a batch
sampler not only avoids the problem of an imbalance in data during training,
but also reduces the number of iterations, making the training process more
efficient. The batch sampler also plays a role in stabilizing the training process;
if training is performed without the batch sampler, the proportion of pseudo-
anomalous data contained in the mini-batches will increase, and the model



12 Kuroyanagi et al.

will continue to output values close to 0 for Lid, as the result of an unstable
training process. In my experiment conducted without the batch sampler,
Lid diverged during the training, and anomaly scores could not be obtained.
Therefore, it is important to adjust the balance between the ratio of normal
and pseudo-anomalous data in the mini-batches.

Next, to address the difference in the scope of the two loss functions, we
devised a method for mixing multiple self-supervised labels as follows:

xmix
i = λxi + (1− λ)xj , (5)

ymix
i = λyi + (1− λ)yj , (6)

t
′mix
i = λyiti,c + (1− λ)yjtj,c′ , (7)

where xmix
i , ymix

i , t
′mix
i are samples obtained by Mixup, xj , yj , tj,c′ are samples

obtained by randomly shuffling the mini-batch indices, and 0 ≤ λ ≤ 1 is the
mixing coefficient, randomly sampled from Beta distribution B(β, β) as defined
for the length of the mini-batch. When using Mixup, three types of samples
are obtained:

1. a mixture of pseudo-anomalous data and pseudo-anomalous data,

2. a mixture of normal data and normal data,

3. a mixture of normal data and pseudo-anomalous data.

The mixture in the second case involves data from the same or different
machine IDs. If two normal samples xi and xj have ti ̸= tj (different IDs
within the same machine type), then mixing them yields a combination of
normal data from different machine IDs. For instance, if yiti,1 = [1, 0, . . . , 0]

and yjtj,2 = [0, 1, . . . , 0], then their mixture becomes t
′mix
i = [λ, 1−λ, 0, . . . , 0].

In the third case, if one sample is normal (yi = 1), such as yiti,1 = [1, 0, . . . , 0],
and the other is pseudo-anomalous (yj = 0), such as yjtj,2 = [0, 0, . . . , 0],
then their mixture yields t

′mix
i = [λ, 0, . . . , 0]. The Mixup-generated samples

xmix
i , ymix

i , t
′mix
i are applied during the training of the feature extractor by

substituting them into Eqs. 1 and 3. First, let us consider Eq. 1, which
can be updated in all cases since we only need to consider machine type yi
in this loss function. Next, consider Eq. 3. A sample that is a mixture of
pseudo-anomalous data and pseudo-anomalous data does not affect the update
of Eq. 3 since yi = 0. Samples containing a mix of normal and normal data
or a mix of normal and pseudo-anomalous data are used to train the feature
extractor to detect the proportion of normal data, since 0 ≤ ymix

i ≤ 1. In other
words, the model is trained to focus on whether or not the sounds subject to
ASD are included. The model is expected to detect normal data when normal
sounds are included, even when the SNR of the environmental sound changes.
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3.5 Training Method for Anomaly Detector

A feature vector which has D dimensional features is obtained from trained
feature extractor f . All of the audio samples of normal data for a particular
machine ID in the training data are used to train the GMM functioning as
anomaly detector h. If x represents L seconds of normal data samples, the
samples used to train the GMM are divided into chunks of M = ⌈2L/S⌉, M ∈
N samples, allowing for half duplication. Feature extractor f is then applied
to these chunks to obtain the features used to train the GMM. Therefore, M
times more samples of data for each machine ID are used to train the GMM.
Since M is assumed to be sufficiently large compared to dimensional features
D in this study, the full covariance matrix is used to calculate the covariance
of the GMM.

3.6 Method of Aggregating Anomaly Scores

During inference, each xi is divided into M chunks of S seconds, similar to
the training process for the GMM. As a result, M anomaly score samples are
obtained for each xi. ASD can detect both stationary anomalous sounds, such
as the squealing of a belt or the sound of a broken propeller, and non-stationary
anomalous sounds, such as a whistle or intermittent noise from a periodically
operating machine. We explored various methods of effectively aggregating
these anomaly scores. The ‘averaging’ aggregation method tends to highlight
stationary sounds but may dilute the impact of non-stationary anomalies.
Conversely, selecting the maximum anomaly score can lead to overlooking
stationary sounds, or may bias the results toward anomalies that occur in
particular data segments, especially if a sound event spans multiple segments.

To mitigate these issues, we propose an intermediate aggregation strategy.
This method involves sorting all of the chunks by their anomaly scores in
descending order and then calculating the average score of those exceeding the
median score. Thus, our method of calculating anomaly scores, including our
aggregation method, is as follows:

Ai = sorted (ai,1, ai,2, . . . , ai,M ) in descending order,

ai =
1

⌈M
2 ⌉

⌈M
2 ⌉∑

m=1

Ai[m] where Ai[m] > median(Ai),
(8)

where Ai is the list of anomaly scores ai,m |m = 1, 2, . . . ,M for each chunk, and
where ai is the anomaly score. This approach presumes that both stationary
and non-stationary anomalies are present in at least half of the sample’s length.
For samples whose length significantly deviates from the dataset norm, we
considered using quartiles to achieve a more nuanced threshold, especially
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when the length of the input data sample varies widely from that of the typical
dataset sample.

4 Experimental Evaluations

4.1 Dataset

We evaluated the performance of the proposed method using the DCASE2020
Task2 dataset, a representative ASD dataset which has also been used to
evaluate other recently proposed ASD methods. Similar datasets include
DCASE2021 Task2, DCASE2022 Task2, and DCASE2023 Task2 [22, 10, 9],
however these subsequent datasets focus on domain shift control, therefore the
DCASE2021 Task2 and later datasets have a hierarchical structure which is not
necessarily segmented to reflect the audio data of particular target machines.
This difference complicates the discussion when evaluating the proposed method
and examining the factors that led to performance improvement. Therefore,
we used DCASE2020 Task2 data in this study, since its focus is improving
ASD performance through the use of anomalous data.

The DCASE2020 Task2 dataset consists of two datasets, MIMII [43] and
ToyADMOS [27], both of which consist of machine operation and environmental
sounds. The machine operation sounds were collected in a quiet environment
under several different sound collection conditions, while the environmental
sounds were collected in a real factory under several different conditions. The
task organizers mixed these two datasets at various SNRs to generate audio
samples. Each sample was 10 seconds long and was collected on one channel
at 16,000 Hz. Six machine types were used: Fan, Pump, Slider, and Valve
from MIMII, and ToyCar and ToyConveyor from ToyADMOS. We evaluated
our proposed method using the DCASE2020 Task2 development set, which
is the same evaluation setting used in most previous studies [33, 57, 3, 64,
14, 4]. DCASE2020 Task2 evaluation set was used for development purposes,
to determine the hyperparameters of the model. The data for each machine
ID contains about 1,000 samples of normal sounds as training data, and 200
samples each of normal and anomalous sounds as test data. There are three or
four varieties of anomalous sounds for each machine type, but it is impossible
to determine from the evaluation set what type of anomaly is contained in the
anomalous data. When training each of the 41 anomaly detectors h, feature
vectors obtained from all of the normal data for each machine ID were utilized
as training data for the respective detectors.

4.2 Experimental Conditions

For the sake of specific discussion, this subsection describes the development
of a model of a machine type “Fan.” Note that we have implemented the same
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model for other machine types as well and used the same hyperparameters
for all of them to simplify comparison. When developing an ASD model for a
Fan, the normal data includes all of the normal data for all seven of the Fan
machine IDs. The pseudo-anomalous data consists of the normal sounds of all
of the Pump, Slider, Valve, ToyCar, and ToyConveyor machines.

First, as a pre-processing step, the mean and variance for the amplitude of
all of the normal Fan data were calculated, and the amplitude of the entire
training dataset was normalized. The normalized data was then randomly
split into chunks of S = 2.0 seconds, and features were extracted using a
Mel filter bank with 224 frequency bins, a window size of 128 ms, and a hop
size of 16 ms, covering a frequency range from 50–7,800 Hz We analyzed the
spectrograms of the training data and found that the machine operating sounds
were concentrated in the higher frequency range. We applied a band-pass filter
to ensure that our model focuses on the most relevant features, the frequency
range where the power was concentrated (50–7,800 Hz) across all machines. The
obtained features were applied to EfficientNet-b0 [61], a powerful convolutional
neural network (CNN)-based feature extractor pretrained using ImageNet [5],
to obtain a D = 128 dimension feature vector. When training EfficientNet-b0,
the learning rate was set to 0.001, the optimization method was AdamW [34],
the scheduler was OneCycleLR [52], the number of epochs was 100, the size of
a mini-batch was 128, α in Eq. 4 was set at 10.0, and the hyperparameters
of Mixup’s beta distribution B(β, β) were set to β = 0.2. After training the
feature extractor, the GMM of anomaly detector h was trained. Experiments
using the DCASE2020 Task2 evaluation set suggested setting the number
of GMM mixtures to 2. During inference, an L = 10 second sound source
was divided into ten segments of S = 2.0 seconds, allowing for overlap. The
hyperparameters were used, which showed the highest performance in the
DCASE2020 Task2 evaluation set. Finally, an aggregator was applied to all of
the segments to compute an anomaly score for the target sound source.

4.3 Evaluation of ASD Performance

The performance of the proposed method was compared with the performance
of methods similar to the proposed method, as well as with the performance
of recently proposed state-of-the-art methods. The methods used in our
performance comparison can be briefly described as follows:

GMADE+SSC [11, 12] is the method that came first in the
DCASE2020 Task2 Challenge [25]. The anomaly scores for this method
are calculated by ensemble, using the anomaly scores obtained by the
method that uses a masked autoencoder for density estimation for each
frame (group) of the mel spectrogram (GMADE) [11] and the anomaly
scores obtained by the method that performs two self-supervised classifi-
cations for machine ID classification and data augmentation (SSC) [12].
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DDCSAD+BCE [30] uses the normal data of the target machine’s target
machine ID as normal data. This method uses normal data other than
the target machine ID of the target machine and normal data other than
the target machine as pseudo-abnormal data. It is important to note
that the definitions of ‘normal data’ and ‘pseudo-anomalous data’ differ
from those used in the proposed method.

STgram-MFN [33] utilizes features obtained by classifying machine IDs
using spectrograms and T-grams extracted using a 1D CNN.

SCAdaCos [57] is a method which trains the feature extractor by classifying
the data according to the machine IDs of various machines. The feature
vectors generated through this process are then utilized in a GMM.
The training of the feature extractor leverages a metric known as Sub-
Cluster AdaCos, which is combined with Mixup to produce a feature
space optimally suited for ASD tasks. This approach uses a single
model to extract feature spaces for each of the machines. A GMM is
trained individually for each machine ID to calculate anomaly scores,
allowing for tailored anomaly detection for individual machines. The
feature extractor’s training involves using 16 subclusters, a number
that, along with an equivalent number of GMM mixtures, yielded the
best performance when using the development data, so we adopted it.
All other training conditions are the same as those set in the original
study [57].

SW-WaveNet [3] is a method that integrates spectrograms and wavegrams,
the latter being derived from WaveNet, to extract additional features
using WaveNet itself. This approach is unique since it is the first to
employ WaveNet not as a conventional generative model but as a feature
extractor, as WaveNet is able to extract more detailed features from
audio data, improving the model’s sound analysis ability.

CLP-SCF [14] adopts a two-phase training methodology. In the initial phase
the model is pretrained using a contrastive framework, which involves the
application of contrastive learning to utilize the relationships between
the sounds produced by a particular machine type and the sounds of
the individual machine IDs within that machine type. In the next
phase, the model is fine-tuned using CLP-SCF, which introduces self-
supervised classification in order to enhance the process of learning the
sound features pertinent to ASD. STgram-MFN is utilized as the feature
extractor, enabling the model to identify the characteristics of sound
data.

Noisy-ArcMix [4] improves the compactness of the within-class distribution
by classifying samples virtually synthesized by Mixup to be close to the
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normal data distribution by ArcFace [6]. In addition, a new input feature,
the temporal attention log-Mel spectrogram (TAgram), derived from the
temporal attention block, is introduced into STgram-MFN.

To compare the average ASD performance of each method, we used average
AUC (aAUC), which is the mean of the area under the receiver operating
characteristic curve (AUC) and partial AUC (p = 0.1). To compare stability
of performance across machine IDs, which has also been examined in previous
studies [33, 14, 10], we used minimum AUC (mAUC) which represents the
lowest AUC of a machine ID within a particular machine type. Tables 1
and 2 compare the performance of each method. Results for the proposed
Serial-OE method were obtained by the authors when using the DCASE2020
Task2 development dataset, while the performances of GMADE+SSC [11, 12],
STgram-MFN [33], SW-WaveNet [3], CLP-SCF [14], and Noisy-ArcMix [4]
are the results as reported in the respective studies. The performances of
DDCSAD+BCE [30], SCAdaCos [57], and the proposed method were calculated
five times using different seeds, and the mean and standard deviations of the
results are shown.

Table 1: Average performance of compared methods when using the DCASE2020 Task2
dataset. Values represent aAUC (the mean of AUC and partial AUC (p = 0.1)).

Methods Fan Pump Slider Valve ToyCar ToyConveyor Average
GMADE+SSC [11, 12] 80.65 83.27 93.41 91.21 92.72 73.29 86.27
DDCSAD+BCE [30] 83.42±0.26 83.01±0.57 87.27±0.97 97.90±0.83 87.72±0.42 59.72±0.97 83.17±1.58
STgram-MFN [33] 91.51 86.85 98.58 99.04 91.06 69.09 89.35
SCAdaCos [57] 86.63±0.34 90.96±0.46 99.08±0.17 93.33±1.08 95.44±0.06 70.93±0.32 89.39±0.23
SW-WaveNet [3] 94.54 84.98 96.77 98.14 92.85 74.70 90.33
CLP-SCF [14] 95.11 91.18 98.65 99.70 93.02 69.00 91.12
Noisy-ArcMix [4] 96.83 90.72 98.52 99.85 93.44 72.53 91.98
Serial-OE (Proposed) 93.29±0.07 94.87±0.13 99.56±0.17 99.19±0.10 96.54±0.12 77.77±0.49 93.54±1.00

Table 2: Stability of performance compared methods when using DCASE2020 Task2 dataset.
Values represent mAUC (AUC of the lowest-performing machine ID of each machine type).

Methods Fan Pump Slider Valve ToyCar ToyConveyor Average
DDCSAD+BCE [30] 69.58±1.95 71.33±0.93 79.12±1.89 95.19±3.02 74.90±1.13 54.96±1.27 74.18±1.71
STgram-MFN [33] 81.39 83.48 98.22 98.83 83.07 64.16 84.86

SCAdaCos [57] 76.55±0.93 87.83±0.38 99.09±0.18 90.31±1.16 94.24±0.26 69.25±0.71 86.88±0.32
CLP-SCF [14] 88.27 87.27 98.28 99.58 86.87 65.46 87.62
Noisy-ArcMix [4] 92.67 91.17 97.96 99.89 88.81 68.18 89.78
Serial-OE (Proposed) 84.12±0.33 94.17±0.24 99.54±0.17 99.13±0.19 94.81±0.42 70.48±1.41 90.38±1.39

Table 1 shows that the proposed method outperformed GMADE+SSC for
all of the machine types. The single system performed better than the ensemble
method that combined multiple systems. Table 1 also shows that the proposed
method outperformed all of the conventional methods for all of the machine
types except Valve and Fan. The operation sound of the Valve is a clicking
sound, and the operation sound of the Fan is the sound of a propeller cutting
through the wind, so there are almost no similarities between the two machines.
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Compared to the best performance of the conventional method, Noisy-ArcMix,
Valve’s performance difference is 0.66 points in aAUC, which is slight, and
aAUC is also relatively high at 99.19%. While Fan’s performance difference
is 3.54 points in aAUC, indicating a moderate difference, with an aAUC of
93.29%. The sound of the Fan is the sound of a propeller cutting through the
wind, and compared to other machines, it is difficult to distinguish between
the operation sound and environmental noise. Investigating the adverse effects
of Fan on the proposed method is a future issue. Although compared to
Noisy-ArcMix, the proposed method improves aAUC by 1.7% on average.
When comparing the proposed method’s performance with that of SCAdaCos,
which is similar to the proposed method, the proposed method outperformed
SCAdaCos in terms of aAUC for all machine types. Noisy-ArcMix, SCAdaCos,
and the proposed method are the same in that they are trained to detect
trivial changes in normal data using Mixup for the classification task. The
proposed method differs because it trains one model for one machine type and
devises a sampling strategy where irrelevant machine types are regarded as
pseudo-anomalous data. This sampling strategy is considered effective when
compared to the strategy of training one model for all machine types in that
it not only ignores background noise specific to the machine being monitored
but also explicitly identifies mixed sounds as anomalies by being specific to
the machine being monitored.

Table 2 shows the stability of the performance of each method across
machine IDs. Even if the reported aAUC is high, if the mAUC is low it
indicates that some anomalous data could not be detected for a specific
machine ID. Therefore, if a method’s mAUC is high, its ASD performance
can be evaluated as stable. Compared to Noisy-ArcMix, which was also the
best performing conventional method in this stability evaluation, the proposed
method achieved an average mAUC that was 0.7% higher. Compared to
SCAdaCos, a similar method to the proposed method, the proposed method
also achieved higher stability performance in mAUC for all machine types.

These results show that the proposed method performs well not only on
average, but also across many machine IDs. All the methods shown in Tables 1
and 2, except for DDCSAD+BCE and Serial-OE, are based on the assumption
that only normal data is used. Therefore, even if anomalous data can be
obtained, it is necessary to incorporate additional techniques to use them.
The proposed method is superior because it can easily and efficiently handle
anomalous data. This point is discussed in Section 4.6.

4.4 Ablation Studies

To investigate the reasons for the superior performance achieved by the pro-
posed method, we performed ablation studies using aAUC as the evaluation
metric in order to compare the average performance of each ASD method. To
allow qualitative evaluation, the feature space was visualized using t-SNE [35].
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4.4.1 Evaluation of loss functions used for machine ID classification

Table 3 shows the results in terms of aAUC when the feature extractor was
trained using each of the loss functions. Figure 3 shows t-SNE visualizations
(perplexity= 40) of the feature space obtained when using each loss function
with the Fan DCASE2020 Task2 development set. Table 3 and Figure 3
compare the most suitable loss function for Lid in Eq. 3. GMADE+SSC was
excluded from the analysis because it is an ensemble system. The proposed
method and DDCSAD+BCE use BCE as the loss function for machine ID
classification, and SCAdaCos uses SCAdaCos as the loss function for machine
ID classification. The other methods, STgram-MFN, SW-WaveNet, CLP-
SCF, and Noisy-ArcMix, use ArcFace as the loss function for machine ID
classification. We compared the proposed method using these loss functions for
machine ID classification previously employed in conventional methods as Eq. 3.
We experimented with the proposed method by changing the BCE used for Lid

in Eq. 3 to cross-entropy, SCAdaCos, and ArcFace to evaluate the differences
in the resulting feature spaces. Note that Mixup and Ltype in Eq. 1 were also
applied in all versions of the system. The samples affected by changing the
loss function in Eq. 3 contain two types of sounds: mixtures of normal data
and normal data, and mixtures of normal data and pseudo-anomalous data.
Focusing on these samples, we discuss the effects of using each loss function.
BCE acquires features by focusing on whether the input sound contains the
sound of the target machine ID or not, cross-entropy, SCAdaCos, and ArcFace
acquire features for classification based on the class to which the input sample
belongs, and ArcFace and SCAdaCos acquire features that minimize intra-class
variance, and SCAdaCos uses sub-clusters, so that a machine ID which has
several different features can be classified according to each feature. Cross-
entropy, SCAdaCos, and ArcFace require the sum of the probabilities of each
class to be one, due to the characteristics of these loss functions. Therefore,
when normal and pseudo-anomalous data were mixed, the probability of the
normal data was set to 1. The usual mixing ratio of each sample was used
when mixing samples containing normal data and normal data.

Table 3: Average performance of the proposed method when using various loss functions for
Lid for DCASE2020 Task2 dataset. Values represent aAUC (the mean of AUC and partial
AUC (p = 0.1)).

Loss function Fan Pump Slider Valve ToyCar ToyConveyor Average
BCE (Proposed) 93.29±0.07 94.87±0.13 99.56±0.17 99.19±0.10 96.54±0.12 77.77±0.49 93.54±1.00
Cross-entropy 88.72±0.21 91.42±0.38 98.60±0.25 96.37±0.66 92.12±0.79 69.29±0.32 89.42±0.18
SCAdaCos [57] 84.83±0.52 88.72±0.59 97.81±0.68 88.97±2.68 84.11±0.79 63.38±1.01 84.64±0.46
ArcFace [6] 85.09±0.19 85.00±0.83 91.18±4.77 91.43±2.58 66.33±2.12 65.50±0.60 80.75±1.04

The results provided in Table 3 show that the best ASD performance was
obtained for all machine types when BCE was used as the loss function for
Lid in the proposed method. We will first discuss the reasons for the higher
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(a) Binary cross-entropy (b) Cross-entropy

(c) SCAdaCos (d) ArcFace

Figure 3: Visualizations of data for machine type Fan using t-SNE, when varying loss
function Lid of the proposed method. (a) Feature space distribution obtained using BCE.
(b) Feature space distribution obtained using cross-entropy. (c) Feature space distribution
obtained using SCAdaCos [57]. (d) Feature space distribution obtained using ArcFace [6].
The symbols ◦ and × denote normal and anomalous sounds, respectively. The normal and
anomalous feature space distributions for machine ID 0 are encircled by red dotted lines.

performance of BCE compared to cross-entropy. Comparing the visualization
when using BCE in Figure 3a and the visualization when using cross-entropy
in Figure 3b, we can see that the classes of normal data are more tightly
clustered in the BCE visualization at ID 0, shown circled with a red dotted
line. Considering the characteristics of the loss function, it is thought that
using features obtained by focusing on whether or not a particular machine ID
is included is more effective for ASD than using features obtained by classifying
machine IDs, as in the case of cross-entropy.

Next, we compare the performance of the proposed method when using
SCAdaCos and ArcFace as the loss function for Lid. Table 3 shows that ASD
performance decreases when either SCAdaCos or ArcFace is used. Comparing
the visualizations for BCE in Figure 3a, and for SCAdaCos in Figure 3c and
ArcFace in Figure 3d, we see that both SCAdaCos and ArcFace visualizations



Serial-OE 21

contain more anomalous data in the normal data cluster for machine ID 0 (red
dotted line) than when using BCE. Since both SCAdaCos and ArcFace utilize
Ltype to perform classification, using the norm of the feature vectors, its lower
performance may be due to the increased difficulty of performing angle-based
classification. Therefore, we need to carefully combine a loss function using
the norm of feature vectors with angle-based metric training [59].

These results suggest that which loss function is used when training the
feature extractor is important for distinguishing whether the sound of the
target machine is included in the input sound.

4.4.2 Evaluation of training methods for feature extractors

Table 4 shows the results of our comparison of the performance of the proposed
method when each element incorporated during training of the feature extractor
is deleted. First, focusing on the average, it is suggested that all three of
these elements are effective because the performance of the proposed method
is degraded when any of the elements are deleted compared to the proposed
method, and all methods improve performance compared to only Lid. In
addition, when comparing the performance of the two elements combined
and the performance of the individual elements, all combinations improved
performance to the same or greater extent. These comparisons of the impact
of each factor on ASD performance reveal that Mixup has the largest positive
impact on performance, followed by pre-training of the weights using ImageNet,
and then loss function Ltype, in that order.

Table 4: Average performance of ablation studies for elements other than Lid of the proposed
method when using the DCASE2020 Task2 dataset. Values represent aAUC (the mean of
AUC and partial AUC (p = 0.1)).

Method Ltype weight Mixup Fan Pump Slider Valve ToyCar ToyConveyor Average
Serial-OE ✓ ✓ ✓ 93.29±0.07 94.87±0.13 99.56±0.17 99.19±0.10 96.54±0.12 77.77±0.49 93.54±1.00
w/o Ltype ✓ ✓ 90.46±0.27 92.69±0.36 98.66±0.29 98.01±0.45 94.59±0.32 74.44±1.67 91.48±0.35
w/o weight ✓ ✓ 87.15±0.33 87.96±0.57 98.70±0.19 95.19±0.68 91.95±0.56 72.50±0.22 88.91±0.09
w/o Mixup ✓ ✓ 86.52±0.37 91.98±0.76 98.40±0.32 98.83±0.58 94.30±0.44 62.40±0.74 88.74±0.22
w/ Ltype ✓ 85.15±0.31 85.86±0.76 98.76±0.24 96.41±0.43 91.96±0.22 58.28±0.28 86.07±0.11
w/ weight ✓ 83.08±0.55 84.93±0.20 97.08±1.01 99.02±0.39 92.07±0.70 61.16±0.58 86.22±0.35
w/ Mixup ✓ 87.05±0.66 88.12±0.40 97.48±0.28 98.91±0.13 91.48±0.63 70.76±0.31 88.97±0.12
only Lid 82.02±0.54 84.80±0.34 97.77±0.61 99.34±0.14 92.44±0.29 56.80±0.63 85.53±0.11

The large improvement in ASD performance when using Mixup indicates
that acquiring an intermediate representation of the feature space is effective
for improving performance. This allows the distribution of the anomalous data,
which has features slightly different from normal data, into clusters farther
away from the normal data.

The ASD performance was also improved for all machine types by ini-
tializing the feature extractor using weights from models pre-trained on the
ImageNet classification task. This finding aligns with previous studies that
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have reported improved performance using pre-trained models [45, 49]. Our
results also show that the proposed method effectively utilizes weights from
models trained on other classification tasks as initial values. However, [58]
reported no performance improvement when using pre-trained models. Thus,
the effect of using pre-trained weights may depend on the specific method
employed.

Finally, focusing on the effect of loss function Ltype, it was found that ASD
performance improved when Ltype was used as a norm to classify normal and
pseudo-anomalous data. This is because Ltype concentrates anomalous data at
a point near the origin, improving anomaly detection performance. Ltype can
also create intermediate representations between normal and pseudo-anomalous
data when used with Mixup, which is also thought to improve performance.

The results of this ablation study indicate that Mixup, initialization with
pretrained weights and Ltype used in the proposed method were all effective
for improving ASD performance.

4.4.3 Evaluation without machine ID information

The conventional and proposed methods are based on the assumption that
training is performed using machine ID information. This information is used
because it allows the extraction of features that reflect the target machine’s
normal data in greater detail, improving ASD performance. Thus, it is desirable
to use machine IDs or similar information when available, however such data
is not always available. Table 5 shows ASD performance results when the
feature extractor and anomaly detector parameters are trained without the
use of machine ID information. When using the proposed method, we set
λ = 0 in Eq. 4. Forty-one classifications were created when SCAdaCos used
machine ID information, but only six were created when only machine types
were used. When using each method, GMMs were trained for each machine
type to create six anomaly detectors. Our results in Table V show that when
machine ID information is not used, ASD performance was degraded for both
models for all machine types.

Table 5: Average performance of models trained without machine ID information when
using the DCASE2020 Task2 dataset. Values represent aAUC (the mean of AUC and partial
AUC (p = 0.1)).

Method Lid Ltype Mixup Fan Pump Slider Valve ToyCar ToyConveyor Average
Serial-OE ✓ ✓ ✓ 93.29±0.07 94.87±0.13 99.56±0.17 99.19±0.10 96.54±0.12 77.77±0.49 93.54±1.00
SCAdaCos [57] — — ✓ 86.63±0.34 90.96±0.46 99.08±0.17 93.33±1.08 95.44±0.06 70.93±0.32 89.39±0.23
SCAdaCos (w/o ID) — — ✓ 75.72±0.51 77.10±0.61 87.44±0.43 76.25±0.55 76.79±0.82 54.83±0.27 74.69±0.38
w/o Lid ✓ ✓ 77.86±0.94 81.93±1.61 88.54±1.65 71.77±1.21 69.66±1.79 54.52±0.85 74.05±0.45
only Ltype ✓ 75.20±1.28 71.62±1.62 91.81±0.43 58.84±1.19 61.11±1.86 52.91±0.51 68.58±0.50

As was the case with machine IDs, ASD performance improved when the
feature extractor was trained to obtain an intermediate representation between
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normal and pseudo-anomalous data using Mixup, confirming the effectiveness
of acquisition of intermediate representations.

Next, we compared the performance of the proposed method without
machine IDs with that of SCAdaCos without machine IDs and found that
the performance of both methods was almost the same in terms of average
performance. When only normal data is used, and machine IDs cannot be
used, there is no difference between the two methods. However, the proposed
method has the advantage of being able to utilize anomalous data, as explained
in the following subsection.

4.5 Evaluating Performance when Anomalous Data is Utilized as Pseudo-
anomalous Data During Training

Since real anomalous audio data contains features useful for detecting anoma-
lous conditions, it is likely that it can be used to improve performance. There-
fore, we also investigated whether the proposed method can achieve higher
ASD performance by using a small amount of anomalous data during training.
We also evaluated the effectiveness of using anomalous data when information
such as machine IDs is not available.

Figure 4a is a graph in which the ratio of anomalous data to training data
is represented on the x-axis, while average AUC (aAUC) is represented on
the vertical axis. A similar graph is shown in Figure 4b, but minimum AUC
(mAUC) is shown on the vertical axis. Here, the volume of training data per
machine ID is 1,000 samples, and each sample has a duration of 10 seconds,
so a ratio of 1% anomalous data represents 10 samples obtained from 100
seconds of anomalous data. In the experiment, {2i | i = 0, 1, . . . , 5} samples of
anomalous data were used for training. Because the evaluation data contains
approximately 100 anomalous samples, we set i = 5 as the maximum to ensure
a sufficient amount of data for evaluation. Since the proposed method defines
and binarily classifies normal and pseudo-anomalous data, as described in
Section 3, a small amount of real anomalous data can be used to improve ASD
performance, when it is available. The same experiment was conducted when
machine ID information was unavailable. DDCSAD + BCE [30], a conventional
method for classifying normal and pseudo-anomalous data, was used for
comparison. SCAdaCos [57] performance scores are also shown as a reference.
Figures 4a and 4b show that Serial-OE achieved the highest performance in
terms of both aAUC and mAUC, respectively, followed by DDCSAD+BCE.
These results show that the proposed method can utilize anomalous data more
effectively than DDCSAD+BCE to improve ASD performance, in terms of
both average performance and performance stability. The proposed method
significantly improved ASD performance even when only 0.1% of the anomalous
data (1 sample of 10-second data) was added to the normal data as training
data, demonstrating the usefulness of utilizing a small amount of anomalous
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(a) Average AUC (aAUC) (b) Minimum AUC (mAUC)

Figure 4: Relationship between the ratio of anomalous to normal data used during training
and ASD performance, when using two different performance evaluation metrics: (a) aAUC
[%] and (b) mAUC [%]. Error bars represent the standard error obtained from five calculations
with different seeds.

data during training. This improvement was equivalent to a 2.4% improvement
in performance in terms of aAUC, which is a much easier means of boosting
performance than developing a new ASD method.

Next, we compared ASD performance when anomalous data is used for
training, but the data does not contain machine IDs. The results in Figures 4a
and 4b show that when the percentage of anomalous data is 3.2%, i.e., when
only 320 seconds of anomalous data is available, the proposed method’s
performance is equal to or better than that of the conventional method using
machine IDs (SCAdaCos). Many ASD methods are based on the assumption
that machine ID information is a baseline characteristic of audio data used for
ASD. However, in real environments it may not always be possible to collect
data equivalent to machine IDs. On the other hand, anomalous data will likely
be available, since machines monitored by ASD systems presumably experience
anomalous states on a somewhat regular basis. Moreover, hours of anomalous
data are not needed for training, since only a few seconds to a few minutes
of data is sufficient to improve performance. Thus, the proposed method can
be used to improve performance by using a small amount of anomalous data,
even when machine ID information is unavailable, which is considered to be
a major operational advantage. The fact that the hyperparameters do not
need to be adjusted for each machine is also considered to be an operational
advantage, since this allows the model to be easily adapted if many machines
are being monitored, for example.
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4.6 Evaluating Performance when Anomalous Data used for Training
is Contaminated with Normal Data

Finally, when utilizing a small amount of anomalous data obtained during
machine operation to better train the ASD system, depending on the data
collection method used, this anomalous data may contaminate the normal
training data. Therefore, we evaluated the performance of the proposed method
when the small amount of real anomalous data added to the normal data.
We randomly contaminated the normal training data with anomalous data,
then trained the feature extractor and anomaly detector using this data. In
Figure 5a the percentage of contaminated anomalous data used is shown on
the x-axis, while performance in terms of aAUC is represented on the y-axis.
Similarly, Figure 5b shows the percentage of contaminated anomalous data
on the x-axis and stability in terms of mAUC on the y-axis. Figure 5 shows
that the more contaminated the normal data was, the worse the performance
of all the ASD methods. However, the proposed method achieved the best
performance at all contamination levels compared to the other methods, thus
the proposed method is more robust against contaminated anomalous data
than the other methods. In particular, the proposed method was able to
achieve the same performance as SCAdaCos, even when the normal data was
contaminated with about 80 seconds of anomalous data. If this amount of
contaminated anomalous data was successfully classified and used for training,
the aAUC-based performance could be improved by nearly 5%, as shown in
Figure 4a. Therefore, the management of anomalous data is very important in
terms of improving model performance.

In terms of the ratio of the decrease in anomaly detection scores in re-
lation to the ratio of anomalous data contamination, DDCSAD+BCE had
the sharpest decrease in performance. DDCSAD+BCE is considered to be
more vulnerable to contaminated data than other methods because it trains a
single model for a single machine ID. The proposed method and SCAdaCos
were less sensitive to contamination of the anomalous data than the other
methods. Comparing the proposed method with SCAdaCos, the proposed
method exhibited a more gradual decline in performance as the percentage of
contamination with anomalous data increased, compared to SCAdaCos. The
proposed method uses one model to infer one machine type, while SCAdaCos
uses one model to infer all of the machine types. The influence of contaminated
normal data on each machine ID may be reduced by defining the feature space
for multiple types of machines. This result suggests that single models used
for multiple types of machines may be more robust to contamination of the
anomalous data than methods which use a different model for each machine
type. On the other hand, the method that improves performance the most
when utilizing anomalous data is the one which uses a different model for each
machine type, so the relationship between resistance to contamination and
increased performance is considered to be a trade-off.
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(a) Average AUC (aAUC) (b) Minimum AUC (mAUC)

Figure 5: Relationship between the ratio of anomalous to normal data used during training
and ASD performance when the anomalous data was contaminated with various amounts
of normal data, using two different evaluation metrics: (a) aAUC [%], and (b) mAUC [%].
Error bars represent the standard error obtained from five calculations with different seeds.

5 Limitations

Although this study evaluated the change in ASD performance when real
anomalous data was used for training, many different types of anomalous
conditions exist. Due to the limitations of the DCASE2020 Task2 dataset, this
study did not investigate how effective data from various different anomalous
conditions are for improving ASD performance when training the proposed
method. Further research on this point would be helpful for finding the most
suitable conditions when adopting the proposed Serial-OE method. Further-
more, the proposed method assumes the use of machine IDs, obtained from
annotated evaluation data, which is not always available. Since the perfor-
mance of both the proposed and conventional methods decreases when machine
IDs are not used, it is necessary to investigate what types of data can be
used as alternative features. This issue was also not investigated due to the
limitations of the dataset.

Investigating the impact of domain shift on performance, and the proposed
method’s applicability to edge devices were also outside the scope of this study.
We believe that investigation of these issues would be advantageous.
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6 Conclusion

Most previous studies on improving ASD performance have only focused on
the use of normal data. In this study, we explored the use of small amounts of
anomalous data for model training, based on the assumption that such data
should be readily available since machines monitored by ASD systems are likely
to occasionally experience anomalous states. In this study we have proposed a
novel ASD method called Serial-OE, which combines the use of outlier exposure
with a serial method. The proposed method improves ASD performance when
using normal and pseudo-anomalous data and when utilizing a small amount
of real anomalous data combined with the pseudo-anomalous data, which
resulted in the best ASD performance in our evaluation experiment.

This study also evaluated the performance of each component of the pro-
posed method, including the use of loss functions during training, visualization,
impact of machine ID information, and performance when the normal data
was contaminated with anomalous data, which has provided useful insights for
improving ASD performance, and for applying the proposed method under
various conditions.

This study focused not only on comparing the performance of the proposed
method with the performance of conventional ASD methods when using normal
data from the DCASE2020 Task2 dataset, but also on the practical utilization
of anomalous data to further boost ASD performance. It may be obvious that
utilizing anomalous data improves detection performance, however it is not
obvious that a significant increase in performance can be achieved by using
only a 10-second sample of the sound of a machine malfunctioning. Although
we are aware of the long-held view that collecting anomalous data is not
practical (an assumption which we challenge), this study was nevertheless able
to demonstrate the significant benefits that can be obtained by utilizing such
data, while also identifying several areas with high potential for achieving
further incremental increases in ASD performance. In order to move our
proposed system into the real world, various issues must still be addressed,
such as countermeasures against domain shift, application to edge devices,
restrictions on collectible data, automated collection of anomalous data, and
data management. Therefore, we will continue our research in order to develop
a highly accurate ASD system that can operate in the real world.
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