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ABSTRACT
Automatic prostate segmentation is an important step in
computer-aided diagnosis of prostate cancer and treatment plan-
ning. Existing methods of prostate segmentation are based on
deep learning models which have a large size and lack of trans-
parency which is essential for physicians. In this paper, a new
data-driven 3D prostate segmentation method on MRI is proposed,
named PSHop. Different from deep learning based methods, the
core methodology of PSHop is a feed-forward encoder-decoder sys-
tem based on successive subspace learning (SSL). It consists of two
modules: 1) encoder: fine to coarse unsupervised representation
learning with cascaded VoxelHop units, 2) decoder: coarse to fine
segmentation prediction with voxel-wise classification and local re-
finement. Experiments are conducted on the publicly available
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ISBI-2013 dataset, as well as on a larger private one. Experimen-
tal analysis shows that our proposed PSHop is effective, robust
and lightweight in the tasks of prostate gland and zonal segmen-
tation, achieving a Dice Similarity Coefficient (DSC) of 0.873 for
the gland segmentation task. PSHop achieves a competitive perfor-
mance comparatively to other deep learning methods, while keep-
ing the model size and inference complexity an order of magnitude
smaller.

Keywords: Magnetic resonance imaging, prostate gland segmentation, data-
driven radiomics, feed-forward model, interpretable pipeline

1 Introduction

Prostate cancer (PCa) is reported as the second most frequent cancer among
men in 2020, with an estimated of almost 1.4 million new cases and 375,000
deaths worldwide [52]. In 112 out of 185 countries of the world, it is even
the most frequently diagnosed cancer in men. International guidelines recom-
mend systematic 12-core transrectal ultrasound-guided biopsy (TRUSGB) in
biopsy-naïve men with elevated prostate-specific antigen (PSA) serum levels
of >3 ng/ml [18]. Compared to TRUSGB with limitations in the diagnosis,
multiparametric magnetic resonance imaging (mpMRI) has been reported to
reduce the detection of insignificant prostate cancer [59, 50, 32]. It has become
the imaging method that is best able to detect clinically significant prostate
cancer and guide biopsies [58], due to the superior resolution and contrast of
imaging, without harming the human body [61].

Based on prostate MRI, prostate segmentation is an important step in the
PCa diagnosis and treatment planning with various aims, such as localizing
prostate boundaries for radiotherapy [43], automating the calculation of the
prostate volume –key task for the Prostate-Specific Antigen Density (PSA-D)
calculation– as well as track disease progression [56], or localizing the region of
interest at the beginning of the computer-aided diagnosis (CADx) of PCa [60,
55, 41]. Moreover, zonal segmentation may enhance the PCa detection models
[64], since the prostate zones have different visual features [17] and potentially
zonal segmentation can be used to separate the feature extraction process.

However, manual MR segmentation takes extended time and labor. Ra-
diologists need to mark slice by slice through visual inspection with a high
demand of skills and expertise for accurate segmentation. It also comes with
high intra- and inter-observer variation. Thus, automated MR prostate seg-
mentation is needed to help improve the accuracy and efficiency in this rou-
tinely applied task from radiologists. Due to the various size and shape of



PSHop: A Lightweight Feed-Forward Method for 3D Prostate Gland Segmentation 3

the prostate gland across different patients, low contrast between the gland
and adjacent structures, imaging artifacts, as well as heterogeneity in signal
intensity around endorectal coils (ERCs) [16, 22, 23], it is still a challenging
task.

Existing prostate segmentation algorithms can be categorized into two
classes: traditional and deep learning based methods. The traditional meth-
ods mainly include contour based [49, 14], atlas based [25, 35, 15], deformable
models [11, 26], and machine learning based models such as c-means clustering
[48, 47] and classification [2, 34].

With the development of convolutional neural networks (CNNs), deep
learning based segmentation methods [53, 23, 1, 39, 51] are pioneered by
the popular U-Net [46] and V-Net [42] architectures. They have achieved su-
perior segmentation performance, comparable to that of expert radiologists
[20].

Recently, a novel representation learning framework, named Green Learn-
ing (GL) was proposed by [30]. It provides a linear feature extraction model
for image analysis, with key benefits a lightweight model size, as well as trans-
parent and explainable pipeline. GL is based on the Successive Subspace
Learning (SSL) methodology for feature extraction that was proposed in a
sequence of papers [28, 27, 29, 31]. These features have multi-scale properties
and are extracted in an unsupervised feed-forward manner using core signal
processing operations [8]. GL has been applied for medical image analysis
in the tasks of Amyotrophic lateral sclerosis (ALS) classification and cardiac
MRI segmentation [38, 37].

In this work, we propose a novel prostate segmentation method named
PSHop, which is built upon the methodology of SSL. The main contributions
can be summarized in three folds:

1. To the best of our knowledge, PSHop is the first work which applies the
Green Learning paradigm and SSL methodology on a 3D medical image
segmentation problem, thus exploring a new direction in this field.

2. We propose a feed-forward encoder-decoder network for 3D medical im-
age segmentation without the use of back-propagation that makes the
entire pipeline transparent.

3. Our proposed PSHop method is lightweight which significantly reduces
the model size compared to other deep learning based methods while
keeping comparable performance.

The rest of the paper is organized as follows. Related work is reviewed
in Section 2. The proposed PSHop method is presented in Section 3. The
experimental setup and results are then discussed in Section 4 and Section 5.
Conclusions are finally drawn in Section 6.
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2 Related Work

2.1 Traditional Methods

Traditional methods mainly focus on atlas-based, deformable models, and
graph cuts optimization. Atlas-based methods [25, 35, 15] improve the seg-
mentation accuracy by measuring the similarity between target image and
multiple atlases. [25] build two deformed atlas images for comparisons, stress-
ing how important the atlas selected images are. For similarity measure they
use the normalized mutual information (NMI) and a majority voting algo-
rithm to combine multiple image segmentations. In a work of [35], a selective
and iterative method for performance level estimation is proposed instead of
majority voting.

For methods using graph cuts (GC) [5, 4], optimization is applied to find
an optimal solution that separates different regions. Images are represented
as graphs and segmentation is viewed as a graph cutting optimization process
under certain constraints. For example, [7] combine graph cuts with active
appearance models to improve the segmentation accuracy. Another work [45]
solves the dual problem using convex optimization and specifically employs
the flow-maximization algorithms in graphs. [54] propose supervoxel-based
graph cuts and a 3D active contour model for segmentation refinement.

2.2 Learning-based Methods

With the increasing number of accessible data with ground truth annotations,
learning based medical image segmentation methods have made a remarkable
progress with the support of machine learning and deep learning. At first,
fully convolutional network (FCN) was proposed by modifying the existing
classification CNN for the segmentation task. Several FCN-based methods for
medical image segmentation are then proposed [46, 42, 44, 53]. For example,
U-Net [46] and V-Net [42] are two representative pioneer work for the 2D and
3D medical image segmentation. In U-Net, combines a contracting path of
multiple convolutional layers and an expansive path of up-convolutional layers
as an encoder-decoder network struction. The skip architecture in U-Net uses
a simply concatenation operation that builds a bridge between encoder and
decoder that take advantage of both coarse and fine features. Different from U-
Net which processes 2D images, V-Net was generalized to 3D medical image
segmentation based on a volumetric processing. It also introduced a novel
loss layer based on the Dice coefficient. [44] proposed a 3D-GCN framework
based on FCN where a Global Convolutional Network (GCN) was designed to
address both the localization and classification for segmentation. A boundary
refinement block was also proposed which models the boundary alignment as
a residual structure.
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With the promising performance of U-Net and V-Net, more algorithms are
proposed having them as the backbone model in recent years. For example,
DenseNet-like U-Net [1] took advantage of the strengths of both DenseNet and
U-Net for segmentation of the prostate gland and its zones. [10] introduced
a network for volumetric segmentation that learns from sparsely annotated
volumetric images by extending the previous U-Net architecture by replacing
all 2D operations with their 3D counterparts. [51] proposed a shape attentive
U-Net (SAUNet) where both the texture information and shape information
are used to learn the segmentation. [24] propose a bicubic intepolation for
extracting the low frequencies of input MRI as a preprocessing step to V-Net
for the segmentation task. On the other hand, unsupervised methods [36, 57,
65] perform domain adaptation using contrastive or predictive learning and
can be also applied on medical imaging for segmenting several organs. Despite
their limitations in performance comparing to the supervised ones, this is a
prolific research area, especially in medical imaging, where annotated data are
scarce and expensive to obtain.

Attention mechanisms have been proved quite efficient in learning better
feature representations. [39] proposed a feature pyramid attention sub-module
before the decoder in FCN, considering the semantic information from U-Net
may not be sufficient to represent the heterogeneous anatomic structures for a
clear boundary. [13] interleave the U-Net skip connections with a multi-scale
self-attention mechanism for recalibrating the feature maps across multiple
layers. [62] developed a two-stage approach, where they employ a Squeeze
and Excitation (SE) CNN for detecting the prostate’s existence in stage-1
and a Residual-Attention U-Net in stage-2 for segmenting the slices that in-
clude the prostate gland. [33] propose a dual attention mechanism using 3D
convolutions to learn in an end-to-end manner both the gland and lesion seg-
mentation tasks.

An interesting work of [23] proposes 3D APA-Net, a 3D adversarial pyra-
mid anisotropic convolutional deep neural network for prostate segmentation,
which has an encoder-decoder architecture, equipped with adversarial train-
ing for spatially consistent and continuous segmentation results. Recently, a
novel attention mechanism among slices is proposed from [19] to learn cross-
slices features at multiple scales using transformer blocks. A more generic
approach of [9] proposes a semi-supervised learning method for segmenting
medical images, using attention among slices to capture the common spatial
layout of patients organs and a contrastive learning scheme to incorporate
unlabeled data in training.

In some works, certain modules are proposed to help make the boundary
more clear and accurate. For example, [21] proposed hybrid discriminative
network named HD-Net, in which the decoder consists of two branches: a
3D segmentation branch and a 2D boundary branch to boost the shared en-
coder to learn features with more semantic discrimination. [66] proposed a
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BOWDA-Net where a boundary-weighted segmentation loss was introduced
to the transfer learning.

2.3 Successive Subspace Learning Methodology

Recently, being inspired by deep learning but being different, the successive
subspace learning (SSL) methodology was proposed by Kuo et al. in a se-
quence of papers [28, 27, 31]. Instead of using back-propagation, feature rep-
resentations in SSL-based methods are learnt in an unsupervised feedforward
manner using multi-stage principal component analysis (PCA) for multi-scale
subspace learning. The overall framework is named Green Learning, as it
is meant to offer image analysis and understanding solutions with much less
parameters and complexity.

Three variants of transforms were originally proposed, including Saak (sub-
space approximation with augmented kernels) transform [29], the Saab (sub-
space approximation via adjusted bias) transform [31], and the channel-wise
(c/w) Saab transform [8]. Among them, the c/w Saab transform requires
the smallest model size and has the best transform efficiency because it takes
advantage of the weak correlation between channels so that filters are learnt
from each channel separately. The details of c/w Saab transform is introduced
in Section 3.1.

SSL methodology has been applied to different problems in medical imag-
ing. A recent work which follows a similar feed-forward approach was pub-
lished by [40]. Two other representative works of SSL-based medical image
analysis can be found in [38] and [37], which solve ALS disease classification
and cardiac MRI segmentation, respectively. Our proposed PSHop can find
the closest shadows of [37] and is the first work that generalizes the SSL
methodology on a 3D medical image segmentation.

3 Methods

A complete solution to prostate segmentation entails two tasks: (1) the whole
gland segmentation and (2) the zonal segmentation. Each of those tasks has
its importance within the prostate medical diagnosis pipeline. Our proposed
PSHop method is used for both tasks separately and its architecture overview
is shown in Figure 1, which has an encoder-decoder structure, inspired by
U-Net structure. In the encoder part, unsupervised feature representations
of different scales are extracted from fine to coarse. In the decoder part,
segmentation mask is predicted in a coarse to fine fashion based on the rep-
resentations from the encoder. The details of the method are described in
Section 3.1 and Section 3.2.
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Figure 1: Illustration of the U-Net-like 3D architecture of PSHop for representation learning
and feature extraction. Four scales (layers) are used in PSHop. Deeper layers correspond
to coarser features, while shallower ones are meant to refine the segmentation result and
output the segmentation mask at the input’s scale. The process is shown for segmenting
one slice from the entire sequence. It is repeated for every single slice in the MRI input.

3.1 Encoder: Fine to Coarse Representation Learning

We treat the segmentation task as a voxel-wise classification problem and
extract the representation of a neighborhood for each voxel in different scales.
Different from deep learning based methods where the convolutional filters are
learnt through end-to-end optimization of the loss function, we use cascaded
VoxelHop units [38] which is a statistical approach to extract feature vectors.
The process is fully unsupervised, with no ground truth labels required during
training. It is also a feed-forward learning process instead of using back-
propagation in deep learning based encoders.

3.1.1 Feature Extraction Based on VoxelHop Units

Figure 2 illustrates the process of each VoxelHop unit. It consists of two
consecutive steps: 1) neighborhood construction in the 3D space, and 2) rep-
resentation learning through the c/w Saab transform [8].

Suppose the input tensor of the i-th VoxelHop unit is of dimension Hi ×
Wi ×Ci ×Ki, where Hi, Wi and Ci represent the resolution in 3D space, and
Ki represents the dimension of the feature vector for each voxel extracted
from the (i − 1)-th VoxelHop unit. Specifically, for the first VoxelHop unit
where i = 1, H1×W1×C1 corresponds to the input MRI data resolution, and
K1 = 1. We first gather the neighborhood in the 3D space centered at each
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Figure 2: Feature representation in one VoxelHop layer within PSHop. Layer 2 is borrowed
as example to show the connection between encoder-decoder and feature concatenation
from the encoder Fe, the voxel-wise probabilities from the coarser scale after interpolation
Fp and the 3D voxel positions Fs. The concatenated feature is fed in XGB classifier to
predict the voxel-wise features for layer-1.

voxel. The neighborhood size is defined as SHi × SWi × SCi in spatial. Each
voxel in the neighborhood has a feature vector of dimension Ki, which results
in a tensor of size SHi × SWi × SCi ×Ki.

The neighborhood tensor is then flattened in the spatial domain. Channel-
wise Saab transform is performed in each of the Ci channels separately to
learn spectral signals through subspace approximation at the current scale.
Suppose the input vector is xϵRN , where N = SHi × SWi × SCi. Features
can be extracted by projecting the input vector on to several anchor vectors,
which can be expressed as an affine transform expressed as:

ym = aTm · x+ bm,m = 0, 1, · · · ,M − 1, (1)
where am is the m-th anchor vector of dimension N , and M is the total num-
ber of anchor vectors. Here, the channel-wise Saab transform is a data-driven
approach to learn the anchor vectors from all the neighborhood tensors col-
lected from the input data. First, it decomposes the input subspaces into the
direct sum of two subspaces, i.e. DC and AC, expressed in Equation 2, where
the terms are borrowed from the “direct circuit” and “alternating circuit” in
the circuit theory.

S = SDC ⊕ SAC . (2)
SDC and SAC are spanned by DC and AC anchor vectors, defined as:

• DC anchor vector a0 = 1√
N
(1, 1, · · · , 1)T

• AC anchor vectors am, m = 1, · · · ,M − 1.
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The two subspaces are orthogonal to each other, where the input signal x is
projected on to a0 to get the DC component xDC . Then the AC component
is extracted by subtracting DC component from the input signal, i.e. xAC =
x− xDC .

After that, AC anchor vectors are learnt by conducting principal compo-
nent analysis (PCA) on the AC component. The first K principal components
are kept as the AC anchor vectors. Thus, one can extract features by project-
ing x on to the above learnt anchor vectors based on Equation 1. The bias
term is selected to ensure all features are positive by following [31]. An illus-
tration of the feature extraction concept behind the VoxelHop unit using the
derived subspaces from PCA is provided in Figure 3.
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Training Data

Neighborhood 
Construction

3

3
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3

Stride

Figure 3: An illustration of the local neighborhood construction for unsupervised filter
learning using the Saab transform based on PCA. Each anchor vector corresponds to a
subspace on the N-dimensional plane (denoted in different colors). The input image is
projected on to these subspaces to obtain its spectral decomposition at a certain scale that
corresponds to the output feature map. In c/w Saab this decomposition is applied on every
single feature map in a recursive manner, until the maximum number of layers is reached.

3.1.2 Representation Learning Through Cascaded VoxelHop Units

Each of the above presented VoxelHop unit extracts the representation in a
certain resolution. For segmentation tasks, both local and global descriptions
are important. Features that represent a small neighborhood serve for bet-
ter localization, while features from a larger neighborhood provide a more
accurate context semantic understanding.

In the PSHop encoder, we use cascaded VoxelHop units with max-pooling
in between. Thus, the receptive field of the representations grows fast as
more VoxelHop units are cascaded until a preset number of cascaded layers,
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L, is reached. The detailed architecture of the proposed PSHop encoder is
summarized in Table 1. We set L = 4, where VoxelHop units from Hop-1 to
Hop-4 form a representation learning from fine to coarse. Here, we use “hop”
to represent a certain neighborhood range. The four cascaded hops can be
constructed as a tree-decomposed structure, where the i-the VoxelHop unit
yields the i-th child nodes (see Figure 2). The number of Saab filters for each
hop unit is decided by the input data using a pre-set energy threshold, where
the energy of a child node refers to the multiplication of the energy of the
parent node and the normalized energy from PCA among child nodes in the
same level.

Table 1: Encoder Architecture of the Proposed PSHop

Filter Size Stride
VoxelHop 1 (3× 3)× 3 (1× 1)× 1
Max-pooling 1 (2× 2)× 2 (2× 2)× 2
VoxelHop 2 (3× 3)× 3 (1× 1)× 1
Max-pooling 2 (2× 2)× 2 (2× 2)× 2
VoxelHop 3 (3× 3)× 3 (1× 1)× 1
Max-pooling 3 (2× 2)× 2 (2× 2)× 2
VoxelHop 4 (3× 3)× 3 (1× 1)× 1

3.2 Decoder: Coarse to Fine Segmentation Prediction

The segmentation is conducted from coarse to fine based on the features from
PSHop encoder. We first start from the deepest hop, Hop-L, and perform a
one-level PSHop decoder unit. Then the process gradually move to a shal-
lower hop unit until it outputs the segmentation prediction for the full input
resolution. Each PSHop decoder unit consists of the following three steps: 1)
feature aggregation; 2) segmentation and local refinement at the current scale;
and 3) prediction upsampling.

3.2.1 Feature Aggregation

The feature for the segmentation at each scale comes from different sources.
Besides the encoder features F i

e at the i-th hop, a position encoding feature
vector F i

s is included where the 3D voxel coordinate is recorded, expressed as

F i
s = [x, y, z]

T
. (3)
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Also, the predicted probability vectors F i
p upsampled from all the coarser hops

is also included. The final feature vector for segmentation prediction is an
aggregation of the above mentioned three features detailed as

F i
seg = F i

s ⊙ F i
p ⊙ F i

e , (4)

where F i
e is copied from encoder to the decoder at the i-th hop using a skip

connection, and ⊙ represents the voxel-wise concatenation operation. A de-
tailed illustration can be found in Figure 2.

The three parts serve as different roles. First, the relative physical posi-
tions of different structures is similar among different patients in MRI images,
for example, the prostate is always around the center region in the 2D plains.
The position encoding Fs helps merge this prior knowledge into the prediction
process. Second, F i

p is propagated from all the coarser grids, which contains
the probability of classes predicted using different receptive fields that are
larger than that of the ith hop. Thus, F i

p provides a memory of coarse to
fine context semantic information. With these conditions, the role of F i

e is to
provide a representation of the local neighborhood of each voxel so that the
segmentation prediction can result in a finer detail.

3.2.2 Segmentation Prediction and Local Refinement

We treat the segmentation at each scale as a voxel-wise classification problem.
In the training process, the ground truth masks are first encoded as one-hot
vectors representing the corresponding class. The ground truth of each voxel
grid at the ith hop is then downsampled from ground truth in the original
resolution using bilinear interpolation. The selection of the training samples
is based on the confidence level of the interpolated ground truth mask. Only
the voxels with high confidence is included as the training samples. Then,
an eXtreme Gradient Boosting (XGBoost [6]) classifier is trained using the
aggregated feature F i

seg. The output is the predicted soft decision vectors at
the current scale.

Since the segmentation requires smoothness in a local neighborhood while
the classification solution is made for each voxel separately, we adopt a local
refinement step after each XGBoost classifier based on the soft decisions. In-
spired by the soft-label smoothing (SLS) technique proposed in [63], we gather
a cubic of soft decisions in the 3D domain of size 3 × 3 × 3. The aggregated
neighborhood soft decisions are concatenated as the new feature to train an-
other XGBoost classifier. This is repeated iteratively. In practice, we perform
two iterations for the soft decision update. In this way, the resulted segmen-
tation prediction is smoothed and the precision is improved. This is used at
all scales of the prediction, up to layer-1 which gives the final segmentation
output. To further refine the output and correct any segmentation artifacts,
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we employ a median filter of size 7 × 7 as a post-processing step. In the
experimental section we demonstrate the effectiveness of the post-processing
filter.

3.2.3 Prediction Upsampling

To propagate the predicted soft decisions of a coarser grid to a finer grid, we
perform a bilinear upsampling towards the target resolution. This process is
cumulative, which means that the predicted probability vector F i

p propagated
to the i-th hop is from all the coarser hops, detailed as

F i
p =

{
F i+1
p ⊙ ŷi+1

}
↑, ∀ i ≤ L− 1, (5)

where ŷi+1 is the predicted soft decision at the (i+1)-th hop, and {·} ↑ means
the bilinear upsampling.

4 Experimental Setup

4.1 Database and Pre-processing

To demonstrate the effectiveness of the proposed PSHop method, we conduct
experiments based on one public MR image database NCI-ISBI 2013 Chal-
lenge (Automated Segmentation of Prostate Structures [3]) and one private
in-house USC-Keck dataset. The ISBI-2013 dataset consists of 60 training
cases of axial T2-weighted MR 3D series, where half were obtained at 1.5T
(Philips Achieva at Boston Medical Center) and the other half at 3T (Siemens
TIM at Radboud University Nijmegen Medical Center). Since the ground
truth segmentation includes background, peripheral zone (PZ), and transi-
tional zone (TZ), we merge PZ and TZ as one class – prostate area, for the
model training and evaluation since we consider the prostate segmentation
task in this paper. The pixel spacing within each slice ranges from 0.39 mm
to 0.75 mm, while the through-plane resolution ranges from 3.0 mm to 4.0
mm among different patients.

The USC-Keck dataset consists of a cohort of 260 patients collected in the
Keck Medicine School in the University of Southern California. Besides T2-w
3D series, for each patient T2-Cube series is also available. It is known that
T2-Cube has smaller pixel spacing, especially along the z-axis. That means,
higher resolution and thinner slices. Specifically, for T2-w pixel spacing ranges
from 0.5 mm to 0.7 mm and the through-plane resolution (z-axis) from 3.0 mm
mm to 4.0 mm. For T2-Cube pixel spacing is set at 0.83 mm and the through-
plane resolution (z-axis) at 1.4 mm. The scanner used to acquire those images
is the GE 3T with 8ch Cardiac coil. In our experimental analysis with USC-
Keck data, the T2-Cube series is used since it can presumably provide more
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accurate segmentation results because of the higher perspicuity of the images
(stemming from the smaller voxel spacing).

For both datasets, we first regularize the resolution of different images to
the same physical resolution of 0.625×0.625×1.5mm3. We use Lanczos inter-
polation where the factor is calculated based on the original pixel spacing and
through-plane resolution of each image. Here, the through-plane resolution
is increased so that the segmentation in the 3D space can be more accu-
rate. After that, to reduce the artifacts while acquiring the images, contrast
enhancement using CLAHE [67] is applied. Finally, before feeding PSHop
input, for the whole gland segmentation task the input sequence is resized to
128× 128. For the zonal segmentation task, a 256× 256 centered crop around
the segmented gland is resized to 128× 128 to standardize the PSHop input.

4.2 Evaluation Metrics

To quantitatively evaluate the performance, we calculate the Dice Similarity
Coefficient (DSC) [12] expressed in Equation (6) in a binary scenario, where
X and Y represent the ground truth and the predicted segmentation mask,
respectively. DSC is widely used in evaluating segmentation tasks for medical
images. It measures the ratio of the intersection of two binary sets to the
averaged cardinality.

DSC (X,Y ) =
2 |X ∩ Y |
|X|+ |Y |

. (6)

Additionally to DSC, we include in our analysis the average Hausdorff
Distance (HD) which is used to measure the distance between two finite sets
of points (i.e. graound truth and prediction) and has been used in medical
image analysis for segmentation performance comparison. The units we report
the results is distance in voxels.

aHD = (
GtoS

G
+

StoG

S
)/2 (7)

G and S are the voxel counts in the ground truth and segmentation, respec-
tively. Also, GtoS is the HD distance from the ground truth to segmentation,
while StoG is the HD distance from segmentation to ground truth.

4.3 Experimental Details

For both datasets, we apply the same experimental settings. For ISBI-2013
and USC-Keck we apply 5-fold cross validation on the 60 and 260 training
images, respectively and calculate the mean and standard deviation of the
evaluation scores. That is, for ISBI-2013 48 sequences are used for training
PSHop from each fold and the rest 12 for validation. For USC-Keck dataset
206 sequences are used for training and the rest 54 for validation.
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For benchmarking PSHop with other DL-based methods we conduct the
same experiment setting for both datasets, and train V-Net and U-Net based
architectures. Besides segmentation performance comparison using the DSC
metric, we also compare the model size and complexity of the models, since
the main target and motivation of this work is to offer a lightweight solution
comparing to other methods.

5 Experimental Results

5.1 Segmentation Results

The DSC scores of ISBI-2013 and USC Keck datasets obtained by our pro-
posed PSHop method for the prostate gland segmentation task are summa-
rized in Table 2. The averaged validation performance over the 5-folds is
reported and the standard deviation as well (shown in parenthesis). To be-
gin with, PSHop has a very competitive performance among the two baseline
supervised DL-based works. Also, comparing it with a state-of-the-art unsu-
pervised method, such as CUTS [36] it outperforms by large margins in both
datasets (see Tables 3 and 4) in both metrics. We benchmark with CUTS us-
ing two different versions for applying labels. From the results, one can infer
that supervision definitely helps to achieve a higher performance, as it is hard
to capture all the variations of prostate appearance without any supervision.

Table 2: Comparison of the whole gland segmentation performance with PSHop and two
popular baseline deep learning models using the DSC metric.

ISBI-2013 USC-Keck
V-Net 0.762 (±0.139) 0.906 (± 0.009)
2D U-Net 0.684 (±0.031) 0.809 (± 0.036)
PSHop (Ours) 0.826 (±0.018) 0.873 (± 0.017)

Table 3: Comparison of the whole gland segmentation performance with PSHop and a
state-of-the-art unsupervised deep learning model using the DSC and HD metrics on the
ISBI-2013 dataset.

DSC HD
CUTS + Spectral K-Means 0.585 (± 0.010) 124.602 (± 1.403)
CUTS + Diffusion 0.589 (± 0.010) 121.638 (± 1.486)

PSHop (Ours) 0.826 (±0.018) 14.206 (± 4.967)
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Table 4: Comparison of the whole gland segmentation performance with PSHop and a
state-of-the-art unsupervised deep learning model using the DSC and HD metrics on the
USC-Keck dataset.

DSC HD
CUTS + Spectral K-Means 0.653 (± 0.009) 135.404 (± 1.188)
CUTS + Diffusion 0.661 (± 1.248) 131.696 (± 1.288)

PSHop (Ours) 0.873 (±0.017) 14.159 (± 7.991)

From the two supervised works, PSHop outperfoms V-Net on ISBI-2013
dataset and U-Net on the USC-Keck one. ISBI-2013 has considerably fewer
patient data than USC-Keck. Therefore, V-Net performs better when it is
given with sufficient training patients, while U-Net has a higher performance
with fewer training samples. That is also evident from the high standard
deviation on ISBI data from V-Net. Another important observation is that
PSHop has a more stable performance (low standard deviation in both experi-
ments), regardless the number of training samples. This underlines one of the
GL framework advantages that is more stable even for fewer training samples,
while large DL models fail to achieve a high performance when data are scarce.
That also confirms GL’s main assumption that statistical-based feed-forward
models can still perform well even with a small number of training samples,
which is usually the case for medical imaging datasets.

Steering our comparisons to the zonal segmentation performance, Table 5
shows the benchmarking on USC-Keck dataset, since it is fairly larger than
the ISBI-2013 and thereby stronger conclusions can be drawn. For TZ, PSHop
surpasses U-Net by large margins and maintains a small performance gap with
V-Net. On the other hand, one can observe that the performance gap is larger
on the PZ when compared with V-Net and this is an area for further improve-
ment for GL. Yet, PSHop achieves a much higher DSC score comparing to
the U-Net, which is the baseline architecture for many works throughout the
literature. For the smaller ISBI-2013 dataset PSHop outperforms the other
methods on the PZ (see Table 6), mainly due to the small number of training
samples that PSHop has an advantage. On the TZ, PSHop surpasses the
U-Net performance by large margins.

In the above comparisons, V-Net generally performs better when trained
with a large number of samples and U-Net performs well only on the ISBI-
2013, which has many fewer samples. This is sensible because V-Net has
many more trainable parameters comparing to U-Net and thus can fit better
the data diversity. Table 7 demonstrates the green advantages and benefits of
GL when it comes to complexity and model size comparison. PSHop has an
order of magnitude less parameters than the DL-based models. Also, in terms
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Table 5: Comparison of the zonal segmentation performance with PSHop and two popular
baseline deep learning models using the DSC metric on USC-Keck data.

TZ PZ
V-Net 0.878 (± 0.019) 0.747 (± 0.014)
U-Net 0.741 (± 0.041) 0.525 (± 0.032)
PSHop (Ours) 0.845 (± 0.025) 0.656 (± 0.012)

Table 6: Comparison of the zonal segmentation performance with PSHop and two popular
baseline deep learning models using the DSC metric on ISBI-2013 data.

TZ PZ
V-Net 0.629 (± 0.064) 0.431 (± 0.030)
2D U-Net 0.563 (± 0.020) 0.316 (± 0.031)
PSHop (Ours) 0.667 (± 0.026) 0.366 (± 0.039)

Table 7: Comparison of model size and complexity in inference between PSHOP and the
two deep learning baseline models.

# of parameters FLOPS
V-Net 45,603,934 379B (×5269)
2D U-Net 17,970,626 13.6B (×190)
PSHop (Ours) 235,206 72M (×1)

of complexity, it has ×190 less FLOPS than U-Net and ×5269 than V-Net.
These comparisons stress the tremendous advantages of GL-based solutions
for application deployment.

Overall, PSHop maintains a very competitive standing performance-wise
with other DL baseline models, outperforming in general U-Net in both tasks
and having a close performance with V-Net. Nevertheless, V-Net’s perfor-
mance comes at the expense of a higher complexity and model size.

In Figures 4 and 5, we provide qualitative comparisons for the whole gland
and zonal segmentation, respectively. One observation is the segmentation
refinement from the post-processing module for both tasks. Moreover, our
module performs better on segmenting the TZ than PZ which is usually a more
challenging task for various models, due to its irregular shape variations along
slices. Looking at the qualitative results, one can see that unclear boundaries
between TZ and PZ, or uneven and cluttered texture of the prostate challenges
our method, particularly in the zonal segmentation task. PZ is relatively much
smaller than TZ and hence it provides less information during training. This
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Figure 4: Qualitative comparison among DL methods and PSHop on the whole gland
segmentation task. Results are also shown before and after the post-processing operation
of the median filter.

is a limitation of PSHop that can be addressed in a future extension of this
work by introducing an attention mechanism to enhance learning on the PZ,
as well as include stronger topological features to leverage on the priors of
prostate structure.

6 Conclusion

This work proposes the PSHop method for accurate prostate gland and zonal
segmentation. Unlike other majority state-of-the-art works based on DNNs,
such as U-Net or V-Net, PSHop follows the GL paradigm and adopts a feed-
forward model for feature extraction. The model architecture is inspired by
U-Net, where there are several multi-scale representations of the input MRI,
nevertheless PSHop uses no back-propagation, but the SSL methodology to ex-
tract feature representations. PSHop has a competitive performance standing
among other DL-based methods, outperforming U-Net on the larger dataset
and has a small performance margin with V-Net. All in all, PSHop method



18 Yang et al.

Figure 5: Qualitative comparison among DL methods and PSHop on the zonal segmentation
task.

comes with a very lightweight model size and orders of magnitude less com-
putational complexity, thus providing a green alternative for prostate segmen-
tation task. Additionally, the linear feature extraction model provides more
transparency in the pipeline and hence makes PSHop decisions more trust-
worthy to physicians.
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