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ABSTRACT

Region adaptive hierarchical transform (RAHT) is employed in
G-PCC to make attribute compression more efficient. The perfor-
mance of RAHT is closely related to the quantization parameter
(QP), where applying different QPs to different transform depths is
beneficial for coding efficiency. In this paper, QP cascading (QPC)
is designed based on rate-distortion modelling. Firstly, the single-
layer rate-quantization and distortion-quantization models are built
by investigating the distribution of residuals. Later, the depen-
dency of adjacent layers is studied to establish the rate-distortion
model with dependency. Based on the proposed model, a rate-
distortion optimization (RDO) guided QPC (O-QPC) and a fast
implementation (F-QPC) are proposed. The experimental results
verify the efficiency of the proposed methods. Compared with the
G-PCC anchor, under the lossless geometry compression, O-QPC
achieves an average of 1.5% performance gain in luma and nearly
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13% gain in chroma, and F-QPC achieved an average performance
gain of 1.0% in luma and almost 11% in chroma; Under the lossy
geometry compression, O-QPC obtained an average of 3.9% gain
in luma, and 13% gain in chroma, and F-QPC achieved an average
of 3.4% gain in luma and nearly 12% gain in chroma. In particular,
F-QPC achieves gains with almost no increase in complexity.

Keywords: point cloud compression, attribute, RAHT, quantization
parameter

1 Introduction

A point cloud generally contains millions of points, in which geometry coordi-
nates and a vector of attributes are associated with each point, such as color,
reflectance, and normal [20, 25]. Unfortunately, large amounts of data present
challenges for corresponding applications as well as research, such as storage,
transmission, or processing. Point cloud compression (PCC) is now an acute
need for applications for the general market, which has attracted the attention
of academia and industry.

Among the standards, geometry-based PCC (G-PCC) is the latest standard
developed by the 3D Graphics Coding Group under the Moving Picture
Experts Group [5, 34]. In G-PCC, the geometry is coded first, and then the
attribute is coded with the help of the reconstructed geometry [12]. This paper
focuses on attribute compression in G-PCC, and addresses Region Adaptive
Hierarchical Transform (RAHT) [9, 33] which is one of the common tools for
attribute compression. Currently, all RAHT residuals share the same quantizer
in G-PCC, which does not take advantage of the different contributions of
coefficients in different transform depths to the overall rate-distortion (R-D)
performance. Intuitively, it makes more sense to employ a smaller quantization
parameter (QP) for residuals that considerably influence performance and
vice versa [38]. Recent studies have demonstrated the potential of rate-
distortion optimized quantization to enhance the efficiency of geometry-based
point cloud compression, particularly for the predicting transform method
[16]. Additionally, a novel dependence-based coarse-to-fine approach has been
proposed to reduce distortion accumulation in attribute compression, further
improving the state-of-the-art [15].

However, it is unclear how to configure QP for RAHT. To ascertain the
reasonable setting scheme, it is necessary to establish the rate and distortion
models first. Most R-D modeling research is focused on video coding instead of
point clouds compression. Typically, the QP domain R-D modeling based on
QP [4], the λ-domain R-D modeling [22] based on the Lagrangian Multiplier
λ, and the ρ-domain R-D modeling [18] based on the percentage of non-zero
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coefficients after quantization ρ have been explored for video coding. Never-
theless, those models are dedicated for video, which are not directly applicable
for the octree-based structure as well as RAHT in G-PCC. As a result, it is
necessary to first analyze the distribution of the RAHT coefficients’ residuals
and then establish the rate and distortion models.

Additionally, since RAHT is a multi-depth transform, there are two factors
that affect the bitrate for each depth (the depth is referred to as the layer
in this paper). First, it is directly affected by the quantizer for the current
layer. Second, it is indirectly affected by the distortion of its reference layer.
To the best of the authors’ knowledge, this inter-layer interaction of distortion
in RAHT has not yet been investigated in previous work.

To address the issues above, we first establish the single-layer rate-quantization
(R-Q) and distortion-quantization (D-Q) models by investigating the distri-
bution of residuals. Secondly, the dependency of adjacent layers is studied to
understand how the reference layer distortion affects the rate of the coding
layer. Then, an R-D model with dependency is established. Finally, we provide
a rate-distortion optimization (RDO) guided QP cascading (QPC) as well as
a fast implementation as the solutions for improving the R-D performance of
G-PCC attribute compression.

The contributions of this paper are summarized as follows.

• By studying the actual distribution of the RAHT residuals, the cor-
responding R-Q and D-Q models for a single layer are developed to
accurately estimate the actual R-D relationships.

• Based on the above models, an inter-layer dependency-based R-D model
is proposed, taking into account the inter-layer dependency between a
coding layer and its reference layer.

• An RDO guided QPC method and a fast QPC method are designed for
the RAHT, respectively. Both of the proposed QPC methods outperform
the state-of-the-art and the fast implementation has no increase in
encoding/decoding time compared to the original G-PCC.

The rest of this paper is organized as follows. Section 2 presents RAHT
related. Section 3 introduces the proposed rate and distortion models. Then,
we propose a QPC method and a fast one based on it in Section 4. Experimental
results and analysis are given in Section 5. Finally, the conclusion is drawn in
Section 6, which is followed by references.

2 RAHT related

We start with a brief introduction to RAHT, based on the idea of using the
attributes associated with nodes at the higher depths of an octree to predict
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Figure 1: Dyadic RAHT for a transform block.

the attributes of nodes at the next depth. We follow the octree scan backwards,
from voxels to the entire space, at each step recombining voxels into larger
ones until reaching the root.

A 2 × 2 × 2 block of nodes serves as the basic unit of RAHT, as shown
in Figure 1. First, RAHT is performed along a first direction, where the
transformed nodes are split in low (L) and high (H) frequency nodes. Then,
the decomposition is applied along a second direction on H and L nodes,
respectively, to obtain LL, LH, HL, and HH nodes. Applying the decomposition
along the third direction on LL, LH, HL and HH nodes will result in LLL,
LLH, LHL, LHH, HLL, HLH, HHL and HHH nodes [27]. A maximum of 7
AC coefficients and just 1 DC coefficient (LLL) are ultimately obtained, with
the AC coefficients being quantized and encoded and only the DC coefficient
being used to transform in the subsequent layer.

The number of AC coefficients is related to the occupancy information of
the block (i.e., density). A full occupied block, for instance, will have 7 AC
coefficients, while a block with only one node will have none. The transform
depth and point cloud’s density determine the transform block’s occupancy.
Therefore, for different types of point clouds, the AC coefficients will be
concentrated at different layers, which poses a challenge for optimization.

To further improve the performance, prediction is combined with transform
coding for RAHT in G-PCC, i.e., the transform domain up-sampled prediction
[26]. It is a multi-resolution prediction, utilizing the 19 neighbors that share
a face or an edge with the parent of the sub-node (the central node) to be
predicted, as shown in Figure 2. More specifically, for each sub-node of the
central node, 7 parent neighbors (i.e., 3 sharing the same face, 3 sharing the
same edge, and its own parent) will be used.

The prediction introduced a dependency between adjacent layers, that
is, the distortion of the parent nodes, which are used as the reference nodes,
directly affects the rate and distortion of the current sub-node. However,
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Figure 2: 19 nodes to up-sample the central node.

leveraging the inter-layer dependency to improve R-D performance is still a
challenging issue that has not been adequately addressed in the past.

In the latest G-PCC, only a rate-distortion optimization of quantization
(RDOQ) method [28] has been proposed to improve the coding efficiency by
optimizing and modifying the QPs of coefficients. Precisely, RDOQ is based
on a very simple estimation of the number of coded bins and then determines
the QP by minimizing the Lagrange cost for each coefficient. However, the
estimation is very simple and does not consider the dependency between
coefficients at different depths. This will make the performance gain very
limited, and the optimal solution cannot actually be obtained. In this paper,
we will study the dependency and establish a corresponding model to obtain
the optimized solution of QPC.

3 RD models with dependencies

This section begins with analyzing the distribution of RAHT residuals, from
which the single layer R-Q and D-Q models are established. Then the depen-
dency between adjacent layers is examined and an R-D model with dependency
is established. To facilitate the analysis, three typical point clouds are selected
as the analysis set, namely basketball_player_vox11, longdress_vox10, and
facade_vox14 [6], as shown in Figure 3.

3.1 Distribution of RAHT residuals

Generally speaking, the rate and distortion models are determined by the
distribution of the residuals. Knowledge of the residuals’ probability distribu-
tion is essential in designing and optimizing the quantizer, entropy coder, and
related image processing algorithms, especially in RDO. The more accurate
the estimate of the distribution of the coefficients is, the more precise the
estimation of the rate and distortion will be.
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Figure 3: Point clouds in analysis set, basketball_player_vox11, longdress_vox10, and
facade_vox14.

Figure 4: Distribution of the residuals and the distortions in different layers, longdress_vox10.

It is widely acknowledged that residuals generally exhibit a symmetrical
distribution with a peak at zero. The distribution can usually be approximated
by Gaussian, Laplace, or Cauchy distributions [17, 21]. Since the work in this
paper is based on the residuals of each transform layer in RAHT, it is necessary
to perform statistics for the residual in different layers and the corresponding
distortions, as shown in Figure 4.
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Consistent with the literature, we observe a symmetric distribution with
a peak located at the zero point, and the distribution decreases rapidly as
the residuals deviate from zero. Compared to the Cauchy and Gaussian
distributions, the Laplace distribution has a higher fitting accuracy and can
fit the peak better because it has the form of an exponential distribution. The
probability distribution function of the Laplace distribution is

p(x) =
Λ

2
e−Λ|x|,Λ =

√
2/σ2, (1)

where Λ is the Laplace distribution parameter, and σ2 is the variance of the
transform residuals which indicates the property of the input point cloud.

A larger Laplace parameter Λ means smaller but more centralized energy,
which means the area is more sensitive to quantization, and a smaller quanti-
zation step (Q) should be used. On the other hand, a smaller Λ means the
energy is decentralized, and a minor change in the quantization parameter has
little effect on the overall distortion [36]. Because of the one-to-one mapping
between Λ and σ2, the latter will be used in the following expressions and
discussions for simplicity.

3.2 R-Q model

Based on the assumption that the residual is Laplace distributed and quantized
by a scalar quantizer with Q, the rate should be R(Q) ≈ H(Q), where H(Q) is
the empirical entropy [29]. The following is a popular rate estimation formula
using entropy [7, 30],

H(Q) = log2
σ

Q
+ log2(

√
2e), (2)

where σ is the standard derivation.
However, we observe that the empirical rate is not exactly the same as

that predicted by Eq (2) for G-PCC in practice. This is because the equation
above uses assumptions and approximations, while the actual R-Q curves are
more heavily damped in the tail, as shown in Figure 5.

One reason is that the quantized residuals are not just entropy-coded
individually but run-length-coded. The zero-grouping in the run-length coding
reduces the final bit counts. For this, a slightly different model was proposed
[10]

R = µ+
ν

Qγ
, 0 ≤ γ ≤ 2. (3)

To evaluate the model in Eq (3), we plot the R−1/Q curves in Figure 6.
It can be observed that the model fits the actual data well, while µ in the

actual data is rather small. We simplify Eq (3) considering that µ ≈ 0. Then,
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Figure 5: R−Q curves of actual point clouds.

Figure 6: R−1/Q curves.

Eq (3) can be expressed as R = ν/Q, where ν is related to the distribution of
the point cloud, i.e., to the variance of residuals. As a result, the model only
has one parameter ν and is easily used in practice.

Because the variance shows the dispersion of a random variable concerning
its mathematical expectation, the smaller the variance, the more concentrated
the random variable’s values are [31]. As a result, for entropy coding, the
higher the concentration of random variable values, the lower the corresponding
bitrate. It can then be concluded that ν is almost increasing monotonically with
the variance. Figure 7 shows the relationship between ν and the corresponding
variance σ2.

The relationship between σ2 and ν is fitted as the linear function ν = aσ2+b,
where a and b are the parameters. Finally, we can get

R =
aσ2 + b

Q
(4)
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Figure 7: Relationship between ν and σ2 using the analysis set with different layers.

3.3 D-Q model

Compared with the R-Q model, the distortion model is easier to obtain. With
the distribution, distortion in each quantization interval can be calculated.
Given the quantization step Q, the distortion in terms of MSE can be estimated
as follows [2],

D(Q) =

∞∑
i=−∞

∫ (i+1/2)Q

(i−1/2)Q

|x− iQ|2p(x)dx, (5)

where p(x) is the probability density function.
Such a complex issue can be approximated by an empirical power function

model [19, 24],
D = ξQγ , (6)

where ξ and γ are model parameters and can be found using the least-squared-
errors solution.

The distortion of the residuals of each layer in longdress_vox10 are as
shown in Figure 8 in the form of log-log.

It can also be seen that D is related not only to Q but also to the distribution
of residuals of each layer of the point cloud, so the model parameters ξ and γ
are related to the content of the point cloud, i.e., the variance.

3.4 Dependencies between layers

Up-sample prediction introduces dependency between a coding layer and its
reference layer, as shown in Figure 9. However, the dependency complicates
the RDO problem.

Since the current layer is only directly dependent on the previous layer,
any two adjacent layers (k + 1th layer and kth layer) are used for analysis to
evaluate the propagation of distortion.
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Figure 8: D versus Q, longdress_vox10.

Figure 9: Dependency between adjacent layers.

Let the residuals of the kth layer be ek, we can get

ek = ck − ĉk, (7)

where ck and ĉk are the original coefficients and their predicted values of the
kth layer.

The reference layer is the k + 1th layer, then ĉk = c̃k+1, where c̃k+1 is
the reconstructed coefficients of the k + 1th layer. Let ck+1 be the original
coefficients of the k + 1th layer, then its distortion is dk+1 = ck+1 − c̃k+1.
Substituting into Eq (7), we get ek = ck − ck+1 + dk+1.

Let rk = ck − ck+1 , which is determined by the content of the point cloud.
Finally, ek can be expressed as

ek = rk + dk+1. (8)

Eq (8) demonstrates that the residual of the kth layer is divided into two
parts: the first part is related to the coefficients of the current and the previous
layer, and the second part is the distortion of the previous layer, which is the
dependency between adjacent layers.
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Figure 10: Schematic diagram of QPC.

The variance of ek can be found according to Eq (8),

σ2
ek

= σ2
rk

+ σ2
dk+1

− 2Cov(rk · dk+1), (9)

where σ2
dk+1

is actually the distortion of the k + 1 layer (denoted as Dk+1), σ2
rk

is only related to the content of the point cloud, and Cov(rk · dk+1) denotes
the covariance.

Eq (9) is a direct dependency between two adjacent layers. Theoretically,
distortion comes from quantization. An approximation that rk and dk+1 are
uncorrelated in Eq (9) leads to

σ2
ek

≈ σ2
rk

+ σ2
dk+1

. (10)

Substituting into the Eq (4), we can get the R-D model with dependency,
the representation between the rate of kth layer and the distortion of k + 1th
layer is shown as

Rk =
a
(
σ2
rk

+Dk+1

)
+ b

Qk
. (11)

So far, the dependent R-D model have been achieved.

4 QPC for RAHT

The up-sample prediction of RAHT can be briefly represented as the structure
shown in Figure 10.

For any layer other than the layer with the greatest transform depth, set
as the kth layer, it uses the reconstructed values of the previous layer (k+ 1th
layer) for up-sampling prediction. Thus, the k+1th layer has a more significant
impact on R-D performance. It can be concluded that the impact of each layer
increases with the depth of the transform.

The layer with a larger influence should be applied with a smaller QP, while
the layer with less influence can use a larger QP. This is similar to what video
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Figure 11: Distribution of residuals of luma, Cb and Cr of the first slice of facade_vox14.

coding does in the time domain, i.e., QPC in hierarchical temporal prediction
[14]. Following a similar spirit, let QPk = QPk+1 + xk, (xk ≥ 0), where xk is
the kth layer’s QP offset.

Moreover, the distribution of residuals differs for each component of color
space in addition to the distribution of different layers. Take the point cloud
facade_vox14 as an example, and the corresponding residuals of the three
components are shown in Figure 11.

The distributions of Cb and Cr are very similar, almost coincide, and have
much more zeros than luma. Consequently, the bitrate of luma is much higher
than that of chroma. Additionally, luma is the primary source of appropriate
information for humans to view since luma is significantly more sensitive to
human eyes than chroma. Chroma can therefore withstand more substantial
distortion [32].

Accordingly, we set the QP of chroma with a larger value than luma. Let
the QP of luma in the kth layer be QPk,luma, and then the QP of chroma can
be expressed as

QPk,chroma = QPk,luma +∆chroma, (12)

where ∆chroma is the QP offset of chroma, which is set as 1 in this work for
simplification.

4.1 Lagrange factor λ

The fundamental concept of QPC is to provide each layer with a more appropri-
ate quantization step by assigning fewer bits to a layer that can tolerate more
distortion. RDO is usually used for this purpose. The RDO-guided QPC can
be transformed into a non-constrained optimization problem by introducing
the Lagrange factor λ, as,

J =

L∑
k=1

ωkDk (QPk, · · · , QPL) + λ

L∑
k=1

Rk(QPk, · · · , QPL), (13)
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Figure 12: R-D curves.

QP ∗ = arg min
QPk∈QP

J(QP , λ), (14)

where QP ∗ = (QP ∗
1 , · · · , QP ∗

L) is the optimal QP vector in the set of all
possible and admissible quantization candidates: QP , L is the total number
of transform layers, Dk and Rk denote the distortion and the bitrate of the
kth layer respectively, and ωk is the kth layer’s weight, which is obtained by

ωk = Nk/N, (15)

where Nk is the number of the AC coefficients of the kth layer and N is
the total number of the coefficients of the point cloud. Apparently, ωk is
determined by the percentage of valid coefficients in that layer. The more the
AC coefficients, the larger the weight of ωk will be.

The Lagrangian multiplier is commonly regarded as a function of the
quantization step in video coding [23, 35]. This paper also adopts the Q-
field representation where the λ-Q relationship is offline trained according
to λ = −∂D/∂R[11, 37]. The R-D curves obtained based on different point
clouds are shown in Figure 12. It is observed that the trends of different point
clouds are very close to each other.

Approximate λ = −∂D/∂R as λ = −
(
DQP+1 −DQP

)
/
(
RQP+1 −RQP

)
,

the relationship between λ and QP is obtained statistically, as shown in
Figure 13.

Estimating λ as an exponential function of QP in the form of

λ = αeQP ·β , (16)

where α=0.04 and β=0.25 (R-squared: 0.9875), as shown by the blue line
in Figure 13. The fitting accuracy is evaluated by the square of correlation
coefficient (R-square), the closer the value of R-squared is to 1, the better the
fit; conversely, the smaller the value of R-squared, the worse the fit.
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Figure 13: Relationship between λ and QP .

Substituting Eq (4), (6), and (16) into (13), we can get

J = ωLξQ
γ
L +

L−1∑
k=1

ωkξQ
γ
k

+

(
αeQPL·β ασ

2
rL + b

QL
+

L−1∑
k=1

αeQPk·β a
(
σ2
rk

+ ξQγ
k+1

)
+ b

Qk

)
,

(17)

where Qk = 2(QPk−4)/6 and QPL = QP0.

4.2 Determination of QPC layers

As discussed in Section 2, the weight ωk is related to the point cloud’s density.
For the dense point clouds, the number of nodes in each layer will exponentially
decline as transform depth increases, and the corresponding AC coefficients
will similarly exponentially decrease. However, the number of AC coefficients
derived in the earlier several transform depths is greatly limited for the sparse
points. Each block will include progressively more nodes as the transform
continues. It will resemble a dense point cloud at a certain depth, that is,
each layer’s AC coefficients will then dramatically decrease as the transform
continues after this specific depth.

As shown in Table 1, the weights ωk derived by Eq (15) of the analysis set
are calculated, and the analysis and the results agree in every detail.

Many layers’ weights are extremely low, i.e., almost zero, which can be
ignored in Eq (17). Consequently, the optimization can be realized by optimiz-
ing for the layers that satisfy ωk>θ (θ is an empirical threshold, 0.04 in this
paper). Since the distribution of ωk is monotonic or convex, we mark these
layers by finding the starting layer (denoted as the sth layer) and the ending
layer (denoted as the eth layer).
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Table 2: values of xs selected by O-QPC.

Sequences xs (QP0 = 22, 28, 34, 40, 46)

C1 C2

basketball_player_vox11 (2,1,1,1,3) (3,1,1,1,2)
longdress_vox10 (1,1,1,0,0) (3,1,0,1,2)
facade_vox14 (1,0,1,1,3) (1,1,1,2,2)

Additionally, only the QP offset xs of the most influential layer among these
layers (i.e., the sth layer) is calculated to simplify the model, and the QP offsets
of the remaining layers are all set to a fixed value of 1. As we propose, the
above-described process is the optimized QPC (denoted as O-QPC) method.

Eq (17) can be rewritten as,

J ≈ ξωs+12
(QP0−4)γ/6 +

s∑
k=e

ξωk2
(QP0+xs+(s−k)−4)/6

+

(
αeQP0·β

ασ2
rs+1

+ b

2(QP0−4)/6
+

s∑
k=e

αe(QP0+xs+(s−k))β

·
a
(
σ2
rk

+ 2(QP0+xs+(s−k)−4)γ/6ξ
)
+ b

2(QP0+xs+(s−k)−4)/6

)
.

(18)

Set the derivation of J , i.e., ∂J/∂xs, to zero. Let f(xs) = ∂J/∂xs, and
the approximate solution of ∂J/∂xs = 0 is xs = Ψ − f(Ψ)/f ′(Ψ) using the
Newton–Raphson method [1].

The parameters in Eq (18) are not known before encoding, thus they need
to be estimated from the pre-analysis of point clouds. In this work, we pre-code
the input point cloud once to obtain the distribution characteristics of the
coefficients in each layer, as well as the rate and distortion, which are used to
fit the corresponding model parameters. Detailed information of pre-analysis
can be found in Section 5.2. Then, Ψ is taken as the empirical value of 6,
and the final approximate optimal value of xs is obtained, the corresponding
QP is QPs = ⌊QP0 + xs⌋, where ⌊·⌋ denotes rounding to the nearest possible
quantization parameter.

The specific process of the proposed O-QPC is summarized as Algorithm 1.
The results of the analysis set are shown in Table 2. The test conditions

for lossy attribute compression in common test conditions (CTC) are applied,
i.e., C1 and C2, corresponding to lossless and lossy geometry compression,
respectively [6]. Note that for lossless and lossy geometry compression and
different QPs, the residuals’ distribution of each layer is different. Therefore,
separate calculations are required and different results are obtained.
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Algorithm 1 O-QPC
Input: θ,QP0.
Output: QP ∗ = (QP ∗

1 , QP ∗
2 , . . . , QP ∗

L).
1. Initialize: flag = true, k = 1, s = 0, e = 0, QP ∗ = (QP0, . . . , QP0)
2. for k in [1, L] do {

Calculate ωk;
if (flag and ωk > θ) then { s = k; flag = false; }
if (!flag and ωk ≤ θ) then e = k;
}

3. for k in [L− 1, 1] do {
if (k == s) then Calculate xk by Eq (18);
else if (k > s and k < e) then xk = 1;
else xk = 0;
QP ∗

k = QP ∗
k+1 + xk

}
4. return QP ∗

Taking basketball_player_vox11 as an example, the O-QPC chooses the
values of xs as 2, 1, 1, 1, and 3 for QP0=22, 28, 34, 40, and 46, respectively.
In addition, it can be seen that xs is 1 for most QP0.

Since the content-related parameters in Eq (18) must only be obtained
through pre-coding and fitting, the offline pre-analysis of the optimization
process is relatively complex and time-consuming. To avoid the laborious pre-
analysis process and to make the optimization more practical while maintaining
a significant performance gain, we propose a fast QPC (denoted as F-QPC)
method based on the observation of Tables 1 and 2 and the analysis above.

F-QPC specifically means that for any point cloud and any QP0, set xs to
1 to maintain the performance gain. It completely avoids intricate pre-analysis
step and computation of xs. Meanwhile, F-QPC requires to identify the
starting and ending layers, which is simply a comparison of the associated
weight of each depth with a threshold when constructing the RAHT tree. Since
the number of nodes in each depth is already available as well as the total
number of the points of the point cloud at this time, it will hardly increase
the encoding time.

5 Experimental results

To evaluate the R-D performance of the proposed methods (O-QPC and F-
QPC), we implement both on TMC13 v26.0, the test model for G-PCC [13].
We compare the proposed methods with the G-PCC anchor, as well as with
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the RDOQ proposed in [28]. The G-PCC datasets as required by the CTC
are tested [6, 8], with the analysis set used for analysis in Section 3 excluded.
These datasets are generally classified into the following categories according
to the different densities of the point clouds, i.e., solid, dense, sparse, and
scant categories. The test conditions for lossy attribute compression in CTC
are applied, i.e., C1 and C2, corresponding to lossless and lossy geometry
compression, respectively. The objective performance is evaluated using the
Bjontegaard-Delta rate (BD-rate) [3]. Since the attribute is encoded separately
in PCC, the BD-rate of the attribute (denoted as End-to-End BD-AttrRate)
is reported.

5.1 Objective Performance

Tables 3 and 4 give the objective performance and time complexity of the
O-QPC and F-QPC under C1 and C2, respectively.

Under C1 and C2, O-QPC and F-QPC both improve the R-D perfor-
mance for all categories of point clouds compared to G-PCC, and significantly
outperform RDOQ especially in luma. In overall, the performance gain of
Q-QPC is larger than F-QPC in both luma and chroma components, while
F-QPC obtains significant performance gain over G-PCC with no increase in
complexity in terms of coding time and decoding time. If offline pre-analysis
is not practical in applications, F-QPC can serve as a practical strategy for
optimization.

The R-D curves of O-QPC, F-QPC, RDOQ, and G-PCC anchor under C1
and C2 are compared in Figure 14, to evaluate the performance differences at
different bitrates.

It is observed that the proposed methods consistently outperform G-PCC
and RDOQ at different bitrates. A larger performance gain can be observed
at higher bitrates. It is because, as the figure illustrates, the attribute bitrate
is already quite low when QP is large, even very close to zero. Even though
some coefficients’ QP has increased, the improvement in performance will be
pretty limited. On the other hand, when QP is small, the attribute bitrate
is comparatively high. QPC can be used to reduce the bitrate efficiently
while maintaining the distortion as much as possible to improve performance.
In addition, O-QPC and F-QPC are always very close, indicating that the
performance gap between the two methods is marginal.

5.2 Complexity analysis

It can be seen from Tables 3 and 4 that although the encoding/decoding time of
Q-QPC, FQPC and RDOQ is close to that of the anchor, while O-QPC requires
extra complexity of pre-analysis of the input point cloud before encoding.
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Figure 14: (a)-(c) R−D curves under C1, (d)-(f) R−D curves under C2, facade_vox11.

Specifically, the first step of pre-analysis is pre-coding the total point cloud.
When building the transform tree, the number of AC coefficients in each depth
is available at each transform. In addition, the total number of coefficients
(i.e., the total number of points in the point cloud) is known so that the weight
of each depth can be calculated by Eq (15), and then the starting and ending
layers are determined by comparing the weight with the threshold. Next, the
characteristics of each layer’s coefficients distribution, rate, and distortion are
collected by pre-coding. With the help of the data above, Eq (4) and (6) are
fitted using the least-squared-errors solution to get the parameters used in Eq
(18). Finally, the QP offset of the starting layer is calculated by Eq (18).
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In contrast, neither RDOQ nor F-QPC requires any pre-analysis. Specifi-
cally, RDOQ uses some addition and shift operations to calculate the Lagrange
cost for each coefficient, which has negligible impact on the time complexity.
F-QPC employs a fixed value for the QP offsets rather than performing com-
plex calculations. In addition, the starting and ending layers are adaptively
selected by simply comparing the weight of each layer with the threshold. Since
the number of nodes in each depth is already available, as well as the total
number of the points of the point cloud at this time, it will hardly increase
the encoding/decoding time.

6 Conclusions

In this paper, we presented rate and distortion models dedicated to RAHT
in G-PCC using Laplace density approximation. Later, we further explored
the dependence between the adjacent layers to build the R-D model with
dependency. At last, we proposed two QPC methods, i.e., O-QPC and F-QPC
for G-PCC attribute compression. The experimental results verify that both
of the proposed methods can efficiently improve the R-D performance and
outperform the state-of-the-art. In particular, F-QPC has a marginal perfor-
mance loss when compared to O-QPC and achieves significant performance
gain over G-PCC without increasing encoding/decoding time. Future work
will involve utilizing the proposed model for G-PCC rate control.
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