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ABSTRACT
Point cloud compression can effectively save the amount of data
required for transmission and storage of point clouds. However, the
commonly used methods of point cloud compression have serious
impacts on the performance of downstream visual tasks due to the
ignorance of the semantic information represented by point cloud.
Towards this end, this paper proposes an object semantic-aware
compression network for 3D point cloud, namely OSC-Net. Firstly,
a ground points removal module based on the elevation difference
is designed, enabling the network to pay more attention to the
semantic information of objects. Secondly, a 3D voxel attention
module is proposed to extract multiple priors in deep entropy model
that can predict the probability distribution of occupied symbols in
voxel space. Finally, experimental results show that our proposed
network gains a notable bitrate saving of 16.71% compared to
the baseline on the KITTI 3D object detection dataset, while
maintaining a comparable detection accuracy.
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1 Introduction

In autonomous driving, point cloud is a crucial 3D data format that comprises
a series of dispersed, unordered, and topologically unstructured points. Each
point cloud contains a wealth of information, including not only geometric
details in 3D coordinate form, but also various attribute information such
as color, normal vector, and refractive index [15, 33]. However, the large
amount of point cloud data poses significant challenges in terms of transmission
and storage, thereby hindering its widespread application within the field of
autonomous driving [31, 34].

Point cloud compression can reduce the storage requirements and com-
putational costs of various visual tasks [21], thereby improving the speed of
downstream applications and saving storage space and transmission bandwidth
in autonomous driving.Therefore, it becomes especially popular to study point
cloud compression techniques [12, 24, 30].

In contrast to image and video compression, the compression of point
cloud data poses an enormous challenge primarily attributed to its inherent
sparsity. Early endeavors in this domain saw researchers adopting diverse data
structures, including octrees [17] and KD-trees [4] as means to organize the
unstructured point clouds. However, these approaches often overlooked the
sparsity of point cloud, thereby limiting their compression ratios. Due to the
effective training on the large scale dataset, the deep learning-based point
cloud compression methods outperform the Moving Picture Experts Group
(MPEG) international point cloud geometric compression standard G-PCC
which uses traditional octree-based method [8].

Typical learning-based point cloud compression methods include Vox-
elDNN [18], VoxelContext-Net [22], MSVoxelDNN [19], PCC-S [2], OctAt-
tention [6] and EHEM [23]. VoxelDNN adaptively divides the point cloud
into multiple voxel blocks and predicts the occupancy probability of the voxel
blocks sequentially using a 3D convolutional network, which incorporates the
idea of autoregressive modeling. Though this approach improves the lossless
compression rate of the point cloud, the contextual information of the point
cloud data is neglected. MSVoxelDNN innovatively achieves parallel process-
ing by decoupling certain dependencies among voxels within the same group,
resulting in a substantial enhancement in coding speeds when compared to its
predecessor, VoxelDNN. Nevertheless, this decoupling of dependencies leads to
a compromise in the precision of the generated context information. PCC-S
trained a deep entropy model on the KITTI dataset [7], pioneering the integra-
tion of sibling nodes context to minimize voxel redundancy. Furthermore, the
introduction of a two-step reconstruction strategy significantly increased the
performance. OctAttention applied an entropy model based on self attention
mechanism and achieved good results. But the global self attention mechanism
will bring huge computational complexity. EHEM proposed a hierarchical
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attention structure and a grouped context structure, achieving better rate
distortion performance and significant decoding delay reduction.

Recently, research on point cloud compression has shifted towards combin-
ing specific visual tasks, such as classification [29] and object detection [16] [13].
However, there are still many redundant point cloud data in Liu et al. [16], and
no special attention has been paid to the semantic information that adapts to
object detection.

Based on the above analysis, in order to focus more on the object to be
detected and reduce the redundant in point cloud data, we propose an object
semantic-aware compression network for 3D point cloud (OSC-Net). This
method preserves the semantic information in object detection while reducing
the number of points.

Our contributions in this work can be summarized as follows:

• We propose an object semantic-aware compression network for 3D point
cloud. This network is designed to save bitrate while ensuring high
accuracy of the object detection task.

• In order to save bitrate and ensure high accuracy of the object detection,
we propose a ground points removal module based on the elevation
difference, enabling the network to focus on object semantic information
within the point cloud.

• We propose a 3D voxel attention module in the deep entropy model. 3D
voxel attention module enhances semantic learning from point cloud data,
thereby improving the accuracy of probability distribution of occupancy
symbols.

• On the KITTI 3D object detection dataset, the reconstructed point
clouds of our method demonstrate similar object detection performance,
but the encoding bitrate is significantly reduced. Experimental results
show that our proposed method gains a notable bitrate saving of 16.71%
compared to the baseline method.

The remainder of this paper is organized as follows. Section 2 gives a brief
review of related work. Section 3 describes the architecture of our proposed
object semantic-aware compression network. Section 4 shows the detailed
experimental results and analysis. Section 5 concludes this paper.

2 Related Work

2.1 Traditional Point Cloud Compression Methods

The most representative of the traditional point cloud compression methods are
the three compression platforms proposed by the MPEG: static 3D point cloud
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compression test model class 1 (TMC1), dynamic 3D point cloud compression
test model class 2 (TMC2), and dynamically acquired 3D point cloud test
model class 3 (TMC3). Due to the similarity of the 3D geometric compression
methods of the TMC1 and the TMC3, the two are formed into a new platform
called G-PCC. The TMC2 is called the video-based point cloud compression
method V-PCC. The performance of the context model significantly affects
the coding efficiency [24].

2.2 Deep learning based point cloud compression methods

Traditional point cloud coding methods have certain limitations when dealing
with large-scale point cloud scenes. In recent years, deep learning based point
cloud compression methods have received much attention and research.

Some researchers [1, 26–28] used a distance image based point cloud
compression method to convert the point cloud into a depth map or distance
map, and then compress it using the image compression method. However,
these methods ignore the spatial information of the point cloud to some extent.
Huang et al. [10] proposed a method that directly compresses the raw point
cloud data for feature coding, but the point-based coding method leads to its
inefficiency in processing large-scale point clouds. Yan et al. [32] proposed a
method that employed a voxel-based approach to compress point cloud data,
involving the quantization of the point cloud into voxels. However, this method
is characterized by high computational complexity and overlooks the sparsity
of the original point cloud. After that, Huang et al. [9] proposed a method
that encoded the point cloud as an octree, used neural networks to train an
entropy model of the octree structure, predicted the node occupancy symbols
in conjunction with the context information, and compressed the encoding.
However, it still ignored the dependency of neighboring nodes of the octree.

Que et al. [22] achieves better coding performance by embedding the
octree information into voxels to get context information. The use of voxel
context-based 3D coordinate refinement after decoding reduces the loss caused
by quantizing the point cloud coordinates to integer precision. The method
proposed by PCC-S fuses ancestor nodes, neighbor nodes, and sibling nodes
into the voxel context based on combining octree and voxel, and adds surface
information as a strong prior, which gives better coding performance than the
VoxelContext-Net. Octattention [6] and EHEM [23] models use self attention
mechanisms to explore dependency relationships in large-scale environments,
achieving better coding performance and demonstrating the advantages of
attention mechanisms in entropy models.

2.3 Point cloud compression method combined with tasks

The methods in Section 2.2 are all optimized for feature extraction as well as
decoding and reconstruction loss of point cloud data but fail to adequately
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Figure 1: OSC-Net overview framework.

match the visual task. When utilizing point cloud data, the reconstructed
point cloud should not only preserve its original information but also be
adapted to specific tasks and various applications. As a result, point cloud
coding methodologies that seamlessly integrate specific tasks have progressively
emerged as a focal point of research.

In 2019, Dovrat et al. [5] pioneeringly introduced S-Net, the inaugural
deep learning-based downsampling network designed specifically for both
point cloud classification and reconstruction tasks. S-Net crafts subsets of
point clouds that closely resemble the original shapes through sampling loss
constraints, while also generating tailored subsets optimized for downstream
machine vision tasks via task-specific loss constraints. In 2021, Lin et al. [14]
proposed DA-Net, which extends S-Net using a density-adaptive sampling
strategy, thus reducing the effect of noise points and improving the performance
of downstream classification tasks. In 2023, Ulhaq et al. [29] proposed the
first point cloud coding compression network specifically for classification
tasks. This network was built based on PointNet and achieves a better
trade-off between code rate and classification accuracy, as compared to non-
task-specific compression networks. Liu et al. [16] proposed a method for
jointly optimizing point cloud compression and object detection. By designing
a gradient bridge function, this method enables gradient back-propagation
from the detector to the codec. In 2024, Li et al. [13] proposed a 3D multi-scale
feature compression method for object detection called 3D-MSFC. 3D-MSFC
uses sparse convolution [3] to extract, compress, and reconstruct 3D multi-scale
sparse features, which are then fed into a 3D detection network to obtain
detection results. The importance of each scale in object detection accuracy is
analyzed.

In this paper, we propose an OSC-Net which combines point cloud com-
pression with object detection. Firstly, filter out ground points from LiDAR
data and focus on the region of interest for object detection. Subsequently,
the proposed 3D voxel attention module extracts features from the voxel
space, improving compression performance while maintaining object detection
accuracy in the reconstructed point cloud.
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3 Methodology

3.1 Overview

The overview of OSC-Net is shown in Figure 1. Given a set of point clouds
containing N points, each point containing 3 dimensions, denoted as P . Firstly,
P is inputted into the ground points removal module, and the ground points is
removed from the original point cloud data based on the elevation difference in-
formation to generate P∗. Secondly, P∗ is inputted into the data preprocessing
module to organize the structure of the octree, and the occupied information
are filled into the voxel space to generate a hierarchical voxel context. The
Level L deep entropy model is then utilized to extract both global and local
features from the hierarchical voxel context. Subsequently, the probability
distribution of the occupancy symbol for each non-leaf node, spanning 256
classes, is predicted based on varying levels of features. These occupancy
symbols consist of a sequence of 8-bit binary symbols, each representing the
occupancy status of one of the 256 voxel spaces. Finally, the occupancy sym-
bols are encoded into a more compact bit stream using the arithmetic encoder
in the codec module, and the point cloud is reconstructed using the arithmetic
decoder.

The reconstructed point cloud is denoted as P∗
rec. In the object detection

task module, the reflectivity information, r, is added to P∗
rec, which is then

inputted into the object detection network to perform the detection task and
output the object detection result.

3.2 Ground Points Removal Module

In LiDAR point cloud data, ground points exhibit distinct ripple-like features.
In terms of point cloud encoding, the ground points in the point cloud dataset
consume significantly computational resources during the coding processes.
For the task of object detection, the ground points belong to background
information, but the attention given by the object detector to background
information is not apparent.

Therefore, we propose an algorithm for removing ground points based on
the elevation difference in the ground points removal module. This method can
reduce the input data volume of point cloud encoding networks while making
the network more focused on detecting objects. Specifically, the fundamental
principle underlying the ground points classification, leveraging the elevation
difference algorithm, involves classifying the point cloud by calculating the
distances between each current point and its neighboring points. This process
aims to accurately extract the ground points, as illustrated in Figure 2.

Firstly, for calculating the elevation difference between the points, it is
necessary to construct a neighborhood Ni with a radius of R,taking the current
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Figure 2: The schematic diagram of remove ground points based on the elevation difference.

point ni = (xi, yi, zi) as the center, as shown in Eq. (1):

Ni = {nj |
√
(xi − xj)

2
+ (yi − yj)

2 ≤ R} (1)

where i ∈ [1, N ], N is the number of input point cloud points, nj = (xj, yj,
zj) is a non-ni point in the current neighborhood Ni.After constructing the
neighborhood, the elevation difference is obtained by calculating the difference
in z-values between ni and nj, where the maximum elevation difference is Di,
as shown in Eq. (2):

Di = max
nj∈Ni\{i}

|zi − zj | (2)

Next, we set the neighborhood threshold, hthreshold. By comparing Di with
hthreshold, we can know whether it belongs to a ground point. If Di < hthreshold,
point ni is confirmed as a ground point and removed, otherwise it is regarded
as a non-ground point. Finally, by applying our method to all points, the
ground points can be removed from the original point cloud P . Removing
ground points can reduce the amount of data and enable the network to focus
on the semantic information of objects.

3.3 Data Preprocessing Module

The primary objective of the data preprocessing module is to organize the point
cloud data through an octree approach. This methodology aims to mitigate
the unstructured complexity inherent in the point cloud and to populate
the voxel space with precise occupancy information derived from the octree
structure. The use of data preprocessing method based on octree and voxel
combination can enable deep entropy models to better learn the dependency
relationships between adjacent nodes at the same depth, accurately predict the
occupancy information of non empty voxels, and further improve compression
performance. Our method for constructing the octree is shown in Figure 3.
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Figure 3: An example of the process of building a two-level octree.

Firstly, the three-dimensional space containing P* is uniformly divided
along the X-axis, Y-axis, and Z-axis into eight voxel spaces, ensuring that each
voxel occupies the same volume proportion.For the voxel space occupied by a
point, the occupancy information is set to “1” and continues to be divided into
8 sub-voxel spaces, and for the unoccupied space, the occupancy information
is set to “0” and the division is stopped.

Afterward, iteratively divide each voxel space in the same way until the
maximum depth level Lmax. By adopting this approach, the point cloud can
be sequentially represented as a stream of 8-bit binary occupancy symbols,
such as 01011001. This process ultimately generates a series of binary voxel
spaces and the corresponding stream of occupancy symbols, denoted as S, S =
[s1, s2, ..., si, ..., su], where u is the total number of voxel spaces, and si denotes
the occupancy symbols corresponding to the i -th voxel.

Subsequently, for the i-th non-empty voxel space, the coordinates of its
central point are adopted as the localization coordinates for that specific voxel
space. The 8-bit occupancy symbol of the i -th voxel space, the octree depth
Li, the sibling index, the voxel size, the occupancy code of the parent node,
and the coordinate information (xi,yi,zi) are populated into the corresponding
voxel space to generate the local voxel context Vi, and at the same time,
generate its sibling nodes voxel context Vsib.The Vi’s size is 9× 9× 9 and the
Vsib’s size is 4× 4× 4 in our method.

3.4 Deep Entropy Model

Inputting hierarchical contexts Vi and Vsib into the deep entropy model allows
learning the spatial characteristics of the point cloud data and predicting the
probability of occurrence of occupancy symbols. The deep entropy model
consists of sibling dependence prior branch, neighbor dependence prior branch,
and surface prior branch. The structure of our deep entropy model network is
shown in Figure 4.
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Figure 4: Our deep entropy model network. The deep entropy model consists of three
feature extraction branches, namely (a)the sibling dependence prior branch, (b)the neighbor
dependence prior branch and (c)the surface prior branch. Our proposed 3D Voxel Attention
is in (b) neighbor dependence prior branch.

3.4.1 The neighbor dependence prior branch

In the neighbor dependence prior branch, low feature extraction is first per-
formed on local voxel context Vi of size 9× 9× 9 to obtain the latent features
Flow. The Low Feature Extraction Module consists of two convolutional layers
followed by ReLU activation functions. To further enhance the expression of
features, Flow is concatenated with node information ci to obtain the feature
Fσ before passing it to the 3D Voxel Attention Module. This can supplement
the node information during feature extraction and strengthen the network’s
perception of the voxel’s spatial location, enabling the 3D Voxel Attention
Module to accurately capture positional features in space.

Our proposed 3D Voxel Attention Module is shown in Figure 5. Using the
average pooling function, the feature Fσ is decomposed into direction-aware
feature mappings zc_W , zc_H , and zc_D along the three spatial directions,
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Figure 5: Network structure of 3D Voxel Attention.

respectively, as shown in Eq. (3):

zc_W = 1
D×H

D∑
i=1

H∑
j=1

Fσ(i, j)

zc_H = 1
D×W

D∑
i=1

W∑
k=1

Fσ(i, k)

zc_D = 1
W×H

W∑
j=1

H∑
k=1

Fσ(j, k)

(3)

where zc_W refers to compressing the Fσ scale to (DH1) on the c-th channel.
Similarly, zc_H compresses the scale to (D× 1×W) and zc_D compresses the
scale to (1×H×W).

The transformation of (3) aggregates features along each of the three
directions in 3D space, enabling the 3D Voxel Attention Module to capture
long-range dependencies along one of the spatial directions while retaining
positional information in the other two spatial directions, which helps the
network to more accurately localize objects of interest.The resulting feature
mappings zc_W , zc_H and zc_D in different directions are then transposed
and concatenated in the last dimension, and intermediate feature mappings
are obtained through BatchNormal and Non-linear layers. This enables the
interaction of contextual features in the three spatial directions, making the
network more focused on the hierarchical context structure in the channel
and space. After that, the intermediate feature mapping is split into three
independent tensors z∗c_W , z∗c_H and z∗c_D along the spatial dimension. The
split in Figure 5 represents the above process. And these three tensors are
adjusted to feature maps tc_W , tc_H and tc_D respectively with the same
number of channels as the input Fσ using the convolutional transform as shown
in Eq. (4): 

tc_W = Sigmoid(Conv3D(z∗c_W ))

tc_H = Sigmoid(Conv3D(z∗c_H))

tc_D = Sigmoid(Conv3D(z∗c_D))

(4)
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The three feature maps obtained reflect well the relationship between the
object of interest and the three spatial directions, enabling the network to
accurately localize the position of the non-empty voxels. Ultimately, the high-
level semantic feature Fhigh obtained after the 3D Voxel Attention Module
can be expressed as the input Fσ multiplied by three feature maps as shown
in Eq. (5):

Fhigh = Fσ×tc_W×tc_H×tc_D (5)

Afterward, the neighbor dependence hniegh
i is obtained by the feature

extraction function fhigh, as shown in Figure 4. The feature extraction
function fhigh is composed of two FC layers and a ReLu activation function.
To ensure the robustness of the deep entropy model, we adopt the approach
of processing the ancestor context information as a priori information as
well. Specifically, since the ancestor context information han

i+1 of the current
processing node contains occupancy symbols at a shallow depth, we use a
level-by-level training approach for nodes at each level of octree depth in the
deep entropy model, where hniegh

i is processed as han
i+1 and passed to the next

level. Based on this, a linear layer [γ] is applied to reduce the features to their
original dimensions, and then the features are fused with hniegh

i through a
skip connection to recover the original neighbor context feature hniegh∗

i of the
current node, denoted as Eq. (6):

hneigh∗
i = ReLU[γ(han

i+1) + hneigh
i ] (6)

where hniegh∗
i is the original neighbor dependence of the current node, han

i+1 is
the ancestor dependence passed from the current depth node to the next depth
node, γ is a linear layer that reduces the feature dimensions, and ReLU is the
activation function, which ultimately yields the outputs hniegh∗

i and han
i+1 of

the neighbor dependence prior branch.

3.4.2 The surface prior branch

During the actual acquisition of point cloud data utilizing LiDAR technology,
a vast quantity of discrete point data pertaining to the surface of the target
object can be captured by transmitting a laser beam towards the object and
subsequently receiving the reflected signal. Given that the surface of the object
typically exhibits a complex curved structure, the point cloud data inherently
contains a substantial amount of curved surface information. Consequently,
the incorporation of surface priors can significantly enhance the learning of
point cloud data features.

Specifically, the input to the surface prior branch is the latent feature Flow.
The Flow is fed into the Surface Prior Extraction Module to extract the surface
prior feature F geo

i . Next, the surface prior dependence hgeo
i is extracted using



12 Kangrui Luo et al.

MLP after concatenating F geo
i with the node information ci, as shown in Eq.

(7):
hgeo
i = MLP ([F geo

i , ci]) (7)

The Surface Linear Projection Layer τ is also utilized to extract the
quadratic surface parameter δ = [x2, y2, xy, x, y, 1] ∈ R6 from the surface prior
dependence hgeo

i , as shown in Eq. (8):

δ = τ(hgeo
i ) (8)

3.4.3 The sibling dependence prior branch

To fully learn the specific local structure and features of the octree subspace,
we refer to PCC-S which introduces sibling nodes as a complement to a
priori information when constructing context information. Assuming that an
occupied leaf node n is located at the octree L− 1 level depth, and continuing
to octree it until L + 1 depth, the three-dimensional space represented by
this node n is then divided into 4× 4× 4 subspaces, which is the input Vsib

to obtain the sibling dependence hsib, which is further provided to the deep
entropy model as prior information.

3.5 Loss function

The total loss function we use contains the cross-entropy loss and the surface
loss, as shown in Eq. (9):

L = LCE + λLsf (9)

where LCE is the cross-entropy loss function, Lsf is the surface loss function,
and λ is the weight of the surface loss.

Since the output of the deep entropy model is a probability distribution,
we preprocess the input point cloud to compute the probability distribution of
the symbols occupied by the original point cloud as the ground truth. Mini-
mizing the difference between the model’s predictions and the ground truth by
minimizing the cross-entropy loss can make the model’s predictions as close as
possible to the original point cloud. Defining q(si) as the probability distribu-
tion of the occupied symbol si and p(si) as the true probability distribution
of the ground truth, the cross-entropy loss function LCE and the predicted
probability of the occupied symbol si are shown in Eq. (10) and Eq. (11):

LCE = −
∑
i

p(si) log q(si) (10)

q(s) =
∏
i

q(si|han
i , hneigh∗

i , hsib
i , hgeo

i , ci; θ) (11)
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where han
i , hneigh∗

i , hsib
i , hgeo

i , ci and θ respectively refer to ancestor depen-
dence, neighbor dependence, siblings’s dependence, surface prior dependence,
node information, and entropy model parameters. After that, a quadratic
surface Z is fitted using the original point cloud, which constitutes the surface
loss function Lsf by minimizing the minimum distance from each point to the
surface, as shown in Eq. (12):

Lsf = ||Z − δT ||22 (12)

where δ is the quadratic surface parameter learned in the surface prior branch,
see Eq. (8).

4 Experiments

4.1 Experimental Setup

Both our point cloud encoding network and object detection network are
trained using the KITTI 3D object detection dataset. We use Pointpillar [11]
as an object detection network. In the training of the object detection network,
the samples are initially divided into 7481 training samples and 7518 test
samples, and 80 rounds of training are performed using the Adam optimizer
with a learning rate of 2e-4, saving the last model as the one used in the
experiments.In the training of the deep entropy model, we randomly selected
2000 groups of point clouds in the training samples and performed 20 rounds of
training using the Adam optimizer with a learning rate of 1e-4. In the testing
phase, 550 sets of point clouds from the object detection test set are extracted,
and the coding network is used to compress and reconstruct these 550 sets of
point clouds, and the final object detection test is performed on these 550 sets
of reconstructed point clouds. In addition, we conducted experiments on the
Waymo Open Dataset [25] to further determine the advantages of OSC-Net.
We use PyTorch [20] to implement all our models and train them on Nvidia
Quadro RTX 8000 GPU.

4.2 Evaluation Metrics

Since we have adapted the raw point cloud data to fit the point cloud 3D object
detection task, we no longer use the peak signal-to-noise ratio (D1-PSNR,
D2-PSNR) and Chamfer Distance to evaluate the reconstructed point cloud,
and instead use the coding code rate to evaluate the rate accuracy performance
compared to the accuracy of the object detection task. Bpp stands for Bits per
point and is the most commonly used metric for evaluating the compression
performance of point clouds. Since we only consider the geometric compression
of the point cloud in this section, the size of the original point cloud data is
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calculated as 96× N, where N is the number of points and 96 is the size of
the coordinates x, y, and z, where each coordinate is represented as a 32-bit
floating-point number. Bpp is defined as Eq. (13):

BPP = |bit| /N (13)

where |bit | is the total bits.In point cloud object detection, we use average
precision AP as an evaluation metric. The average precision AP is defined as
the area under the curve of precision and recall (P-R curve) as shown in Eq.
(14):

AP =

1∑
r=0

(rn+1 − rn)ρinterp (rn+1) (14)

where the precision on each recall r is interpolated by finding the maximum
value of the precision on that recall with the precision on its right-hand side
recall, as shown in Eq. (15):

ρinterp (rn+1) = max
r̃:r̃≥rn+1

ρ (r̃) (15)

where ρ (r̃) is the object detection precision at recall.

4.3 Performance Evaluation

To evaluate the effectiveness of the proposed methods, we report the perfor-
mance of the proposed methods in an object detection task. The comparison
methods for quan-titative evaluation are G-PCC, Draco, Voxelcontext-Net, and
PCC-S. For qualitative evaluation, the ground points classified by the ground
points removal module and the point cloud after removing the ground points
are first visualized. Secondly, the object detection results of reconstructed
point clouds for PCC-S and OSC-Net are visualized. Finally, the results of
object detection for reconstructed point clouds with different octree depths
are visualized.

4.3.1 Quantitative Assessment

To address the issue of how hthreshold affects object detection performance in
different fields, we conducted quantitative analysis experiments on the KITTI
dataset by setting the octree depth to 12. By adjusting the hthreshold and
observing its impact on detection performance and Bpp, the results are shown
in Table 1. According to the Table 1, an excessively large threshold results
in a notable decline in object detection performance. The reason behind
this is that a highly elevated domain hthreshold prompts the ground point
removal module to incorrectly classify points within objects as ground points,



OSC-Net: Object Semantic-aware Compression Network for 3D Point Cloud 15

Table 1: The impact of different hthreshold on detection performance and Bpp.

hthreshold 0.5 0.3 0.21 0.2 0.19 0.1
Car bbox AP 56.86% 74.31% 88.19% 89.65% 89.67% 89.71%

Bpp 2.135 2.730 3.187 3.230 3.319 3.811

Figure 6: Comparison chart of rate accuracy performance between OSC-Net and comparison
methods on KITTI. Fig.6 (b) is an enlarged view of the local details in Fig.6 (a).

ultimately undermining detection accuracy. Conversely, when a relatively
low hthreshold value is chosen, there is no marked enhancement in object
detection performance, yet a substantial number of ground points still remain
to be removed, causing an increase in bitrate. After conducting numerous
experiments, we ultimately settled on a domain hthreshold of 0.2. This choice
enables the network to prioritize object semantics while minimizing the bitrate
to the fullest extent feasible.

To quantitatively evaluate the performance of our method, we report a
comparison of our method on KITTI with other methods at the same octree
depth, as shown in Figure 6. We also compare OSC-Net with other methods
on the Waymo Open dataset. We report 3D mean Average Precision (mAP)for
vehicle detection on the LEVEL 1, as shown in Figure 7. On these two
datasets, OSC-Net achieved lower encoding Bpp compared to other methods
while maintaining higher detection accuracy. With the same octree depth,
OSC-Net reconstructs the point cloud with lower Bpp and superior object
detection performance.

4.3.2 Qualitative Assessment

The work of the ground points removal module is visualized in Figure 8 to
visually demonstrate the effectiveness of the proposed algorithm.

Figure 9 visualizes the results of different methods for object detection in
reconstructed point clouds. We randomly selected two groups of point clouds,
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Figure 7: Comparison chart of rate accuracy performance between OSC-Net and comparison
methods on the Waymo Open dataset.

Figure 8: Visualization of ground truth, ground points data, and point cloud removed ground
points data. (a) and (e) is ground truth data, (b) and (f) are ground points classified based
on difference of elevation, and (c) and (g) are point clouds after removing ground points.

’000031.bin’ and ’000006.bin’, and used different methods to codify and decode
them before performing the object detection task. The reconstructed point
cloud of OSC-Net achieves close performance to the original point cloud, and
the detection results of the proposed method are more accurate compared
with PCC-S.

To verify the detection effect of the proposed method at different Bpp,
Figure 10 visualizes the reconstructed point clouds of ‘000006.bin’ (left panel)
and ‘000981.bin’ (right panel) for two sets of point clouds at different octree
depths object detection results.

4.3.3 Ablation Experiment

As shown in Table 2, we conducted three octree-depth ablation studies, thus
confirming the effectiveness of the use or omission of our 3D voxel attention
module and de-ground points module in terms of coding effectiveness and
detection performance. As can be observed from the table, the Bpp is highest
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Figure 9: Visualization of ground truth and reconstruction point cloud object detection
results. Column (a) represents the result of object detection using ground truth data,
column (b) represents the result of object detection using point cloud data decoded and
reconstructed by PCC-S network at octree depth of 12, and column (c) represents the result
of object detection using point cloud data decoded and reconstructed by OSC-Net at octree
depth of 12.

Figure 10: Visualization of reconstructed point cloud object detection results, displayed
from left to right, at various octree levels corresponding to octree depths of 12 to 9, with
average bits per point (Bpp) of 3.230, 1.875, 0.930, and 0.393, respectively. (a) is “000006”
in the dataset and (b) is “000981”.

when both modules are not used, and the simultaneous use of both modules
can save more code rate while maintaining the accuracy of the object detection
task.

5 Conclusion

We propose OSC-Net, an object semantic-aware compression network for 3D
point cloud. Firstly, by leveraging the elevation difference, we identify and
eliminate ground points within the original point cloud that fall outside the
region of interest for the object detection. Simultaneously, we reduce data
redundancy so that the network can focus on object semantic information.



18 Kangrui Luo et al.

Table 2: Results of ablation experiments (Bpp/bbox AP).

3D Voxel Ground Points Bpp/AP
Attention Removal Level 10 Level 11 Level 12

✗ ✗ 1.129/87.86% 2.143/89.19% 3.864/89.51%
✓ ✗ 1.006/88.03% 2.034/89.37% 3.804/89.71%
✗ ✓ 0.983/87.02% 1.963/88.52% 3.415/88.21%
✓ ✓ 0.930/87.97% 1.875/88.90% 3.230/89.36%

Secondly, benefiting from utilizing the 3D voxel attention module, hierarchical
voxel context is extracted from raw point cloud data, capturing both channel
and spatial features. Our proposed approach empowers the deep entropy
model to anticipate a significantly more precise probability distribution of
occupancy symbols, enhancing its predictive capabilities. Experimental results
show that our method outperforms previous methods in terms of compression
performance and object detection accuracy. It is hoped that our work will
inspire researchers to further combine the coding with the object detection in
future work to promote the application of point cloud coding technology in
autonomous driving.
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